Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.134
      1 /*	$NetBSD: cpu.c,v 1.134 2017/08/27 09:32:12 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.134 2017/08/27 09:32:12 maxv Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 
     72 #include "lapic.h"
     73 #include "ioapic.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/systm.h>
     78 #include <sys/device.h>
     79 #include <sys/kmem.h>
     80 #include <sys/cpu.h>
     81 #include <sys/cpufreq.h>
     82 #include <sys/idle.h>
     83 #include <sys/atomic.h>
     84 #include <sys/reboot.h>
     85 
     86 #include <uvm/uvm.h>
     87 
     88 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     89 
     90 #include <machine/cpufunc.h>
     91 #include <machine/cpuvar.h>
     92 #include <machine/pmap.h>
     93 #include <machine/vmparam.h>
     94 #if defined(MULTIPROCESSOR)
     95 #include <machine/mpbiosvar.h>
     96 #endif
     97 #include <machine/mpconfig.h>		/* for mp_verbose */
     98 #include <machine/pcb.h>
     99 #include <machine/specialreg.h>
    100 #include <machine/segments.h>
    101 #include <machine/gdt.h>
    102 #include <machine/mtrr.h>
    103 #include <machine/pio.h>
    104 #include <machine/cpu_counter.h>
    105 
    106 #include <x86/fpu.h>
    107 
    108 #ifdef i386
    109 #include <machine/tlog.h>
    110 #endif
    111 
    112 #if NLAPIC > 0
    113 #include <machine/apicvar.h>
    114 #include <machine/i82489reg.h>
    115 #include <machine/i82489var.h>
    116 #endif
    117 
    118 #include <dev/ic/mc146818reg.h>
    119 #include <i386/isa/nvram.h>
    120 #include <dev/isa/isareg.h>
    121 
    122 #include "tsc.h"
    123 
    124 static int	cpu_match(device_t, cfdata_t, void *);
    125 static void	cpu_attach(device_t, device_t, void *);
    126 static void	cpu_defer(device_t);
    127 static int	cpu_rescan(device_t, const char *, const int *);
    128 static void	cpu_childdetached(device_t, device_t);
    129 static bool	cpu_stop(device_t);
    130 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    131 static bool	cpu_resume(device_t, const pmf_qual_t *);
    132 static bool	cpu_shutdown(device_t, int);
    133 
    134 struct cpu_softc {
    135 	device_t sc_dev;		/* device tree glue */
    136 	struct cpu_info *sc_info;	/* pointer to CPU info */
    137 	bool sc_wasonline;
    138 };
    139 
    140 #ifdef MULTIPROCESSOR
    141 int mp_cpu_start(struct cpu_info *, paddr_t);
    142 void mp_cpu_start_cleanup(struct cpu_info *);
    143 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    144 					    mp_cpu_start_cleanup };
    145 #endif
    146 
    147 
    148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    149     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    150 
    151 /*
    152  * Statically-allocated CPU info for the primary CPU (or the only
    153  * CPU, on uniprocessors).  The CPU info list is initialized to
    154  * point at it.
    155  */
    156 #ifdef TRAPLOG
    157 struct tlog tlog_primary;
    158 #endif
    159 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    160 	.ci_dev = 0,
    161 	.ci_self = &cpu_info_primary,
    162 	.ci_idepth = -1,
    163 	.ci_curlwp = &lwp0,
    164 	.ci_curldt = -1,
    165 #ifdef TRAPLOG
    166 	.ci_tlog_base = &tlog_primary,
    167 #endif
    168 };
    169 
    170 struct cpu_info *cpu_info_list = &cpu_info_primary;
    171 
    172 #ifdef i386
    173 void		cpu_set_tss_gates(struct cpu_info *);
    174 #endif
    175 
    176 static void	cpu_init_idle_lwp(struct cpu_info *);
    177 
    178 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    179 			/* [0] basic features cpuid.1:%edx
    180 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    181 			 * [2] extended features cpuid:80000001:%edx
    182 			 * [3] extended features cpuid:80000001:%ecx
    183 			 * [4] VIA padlock features
    184 			 * [5] structured extended features cpuid.7:%ebx
    185 			 * [6] structured extended features cpuid.7:%ecx
    186 			 */
    187 
    188 #ifdef MULTIPROCESSOR
    189 bool x86_mp_online;
    190 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    191 #endif
    192 #if NLAPIC > 0
    193 static vaddr_t cmos_data_mapping;
    194 #endif
    195 struct cpu_info *cpu_starting;
    196 
    197 #ifdef MULTIPROCESSOR
    198 void    	cpu_hatch(void *);
    199 static void    	cpu_boot_secondary(struct cpu_info *ci);
    200 static void    	cpu_start_secondary(struct cpu_info *ci);
    201 #endif
    202 #if NLAPIC > 0
    203 static void	cpu_copy_trampoline(void);
    204 #endif
    205 
    206 /*
    207  * Runs once per boot once multiprocessor goo has been detected and
    208  * the local APIC on the boot processor has been mapped.
    209  *
    210  * Called from lapic_boot_init() (from mpbios_scan()).
    211  */
    212 #if NLAPIC > 0
    213 void
    214 cpu_init_first(void)
    215 {
    216 
    217 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    218 	cpu_copy_trampoline();
    219 
    220 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    221 	if (cmos_data_mapping == 0)
    222 		panic("No KVA for page 0");
    223 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    224 	pmap_update(pmap_kernel());
    225 }
    226 #endif
    227 
    228 static int
    229 cpu_match(device_t parent, cfdata_t match, void *aux)
    230 {
    231 
    232 	return 1;
    233 }
    234 
    235 static void
    236 cpu_vm_init(struct cpu_info *ci)
    237 {
    238 	int ncolors = 2, i;
    239 
    240 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    241 		struct x86_cache_info *cai;
    242 		int tcolors;
    243 
    244 		cai = &ci->ci_cinfo[i];
    245 
    246 		tcolors = atop(cai->cai_totalsize);
    247 		switch(cai->cai_associativity) {
    248 		case 0xff:
    249 			tcolors = 1; /* fully associative */
    250 			break;
    251 		case 0:
    252 		case 1:
    253 			break;
    254 		default:
    255 			tcolors /= cai->cai_associativity;
    256 		}
    257 		ncolors = max(ncolors, tcolors);
    258 		/*
    259 		 * If the desired number of colors is not a power of
    260 		 * two, it won't be good.  Find the greatest power of
    261 		 * two which is an even divisor of the number of colors,
    262 		 * to preserve even coloring of pages.
    263 		 */
    264 		if (ncolors & (ncolors - 1) ) {
    265 			int try, picked = 1;
    266 			for (try = 1; try < ncolors; try *= 2) {
    267 				if (ncolors % try == 0) picked = try;
    268 			}
    269 			if (picked == 1) {
    270 				panic("desired number of cache colors %d is "
    271 			      	" > 1, but not even!", ncolors);
    272 			}
    273 			ncolors = picked;
    274 		}
    275 	}
    276 
    277 	/*
    278 	 * Knowing the size of the largest cache on this CPU, potentially
    279 	 * re-color our pages.
    280 	 */
    281 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    282 	uvm_page_recolor(ncolors);
    283 
    284 	pmap_tlb_cpu_init(ci);
    285 #ifndef __HAVE_DIRECT_MAP
    286 	pmap_vpage_cpu_init(ci);
    287 #endif
    288 }
    289 
    290 static void
    291 cpu_attach(device_t parent, device_t self, void *aux)
    292 {
    293 	struct cpu_softc *sc = device_private(self);
    294 	struct cpu_attach_args *caa = aux;
    295 	struct cpu_info *ci;
    296 	uintptr_t ptr;
    297 #if NLAPIC > 0
    298 	int cpunum = caa->cpu_number;
    299 #endif
    300 	static bool again;
    301 
    302 	sc->sc_dev = self;
    303 
    304 	if (ncpu == maxcpus) {
    305 #ifndef _LP64
    306 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    307 #else
    308 		aprint_error(": too many CPUs\n");
    309 #endif
    310 		return;
    311 	}
    312 
    313 	/*
    314 	 * If we're an Application Processor, allocate a cpu_info
    315 	 * structure, otherwise use the primary's.
    316 	 */
    317 	if (caa->cpu_role == CPU_ROLE_AP) {
    318 		if ((boothowto & RB_MD1) != 0) {
    319 			aprint_error(": multiprocessor boot disabled\n");
    320 			if (!pmf_device_register(self, NULL, NULL))
    321 				aprint_error_dev(self,
    322 				    "couldn't establish power handler\n");
    323 			return;
    324 		}
    325 		aprint_naive(": Application Processor\n");
    326 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    327 		    KM_SLEEP);
    328 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    329 		ci->ci_curldt = -1;
    330 #ifdef TRAPLOG
    331 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    332 #endif
    333 	} else {
    334 		aprint_naive(": %s Processor\n",
    335 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    336 		ci = &cpu_info_primary;
    337 #if NLAPIC > 0
    338 		if (cpunum != lapic_cpu_number()) {
    339 			/* XXX should be done earlier. */
    340 			uint32_t reg;
    341 			aprint_verbose("\n");
    342 			aprint_verbose_dev(self, "running CPU at apic %d"
    343 			    " instead of at expected %d", lapic_cpu_number(),
    344 			    cpunum);
    345 			reg = lapic_readreg(LAPIC_ID);
    346 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    347 			    (cpunum << LAPIC_ID_SHIFT));
    348 		}
    349 		if (cpunum != lapic_cpu_number()) {
    350 			aprint_error_dev(self, "unable to reset apic id\n");
    351 		}
    352 #endif
    353 	}
    354 
    355 	ci->ci_self = ci;
    356 	sc->sc_info = ci;
    357 	ci->ci_dev = self;
    358 	ci->ci_acpiid = caa->cpu_id;
    359 	ci->ci_cpuid = caa->cpu_number;
    360 	ci->ci_func = caa->cpu_func;
    361 	aprint_normal("\n");
    362 
    363 	/* Must be before mi_cpu_attach(). */
    364 	cpu_vm_init(ci);
    365 
    366 	if (caa->cpu_role == CPU_ROLE_AP) {
    367 		int error;
    368 
    369 		error = mi_cpu_attach(ci);
    370 		if (error != 0) {
    371 			aprint_error_dev(self,
    372 			    "mi_cpu_attach failed with %d\n", error);
    373 			return;
    374 		}
    375 		cpu_init_tss(ci);
    376 	} else {
    377 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    378 	}
    379 
    380 	pmap_reference(pmap_kernel());
    381 	ci->ci_pmap = pmap_kernel();
    382 	ci->ci_tlbstate = TLBSTATE_STALE;
    383 
    384 	/*
    385 	 * Boot processor may not be attached first, but the below
    386 	 * must be done to allow booting other processors.
    387 	 */
    388 	if (!again) {
    389 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    390 		/* Basic init. */
    391 		cpu_intr_init(ci);
    392 		cpu_get_tsc_freq(ci);
    393 		cpu_init(ci);
    394 #ifdef i386
    395 		cpu_set_tss_gates(ci);
    396 #endif
    397 		pmap_cpu_init_late(ci);
    398 #if NLAPIC > 0
    399 		if (caa->cpu_role != CPU_ROLE_SP) {
    400 			/* Enable lapic. */
    401 			lapic_enable();
    402 			lapic_set_lvt();
    403 			lapic_calibrate_timer(ci);
    404 		}
    405 #endif
    406 		/* Make sure DELAY() is initialized. */
    407 		DELAY(1);
    408 		again = true;
    409 	}
    410 
    411 	/* further PCB init done later. */
    412 
    413 	switch (caa->cpu_role) {
    414 	case CPU_ROLE_SP:
    415 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    416 		cpu_identify(ci);
    417 		x86_errata();
    418 		x86_cpu_idle_init();
    419 		break;
    420 
    421 	case CPU_ROLE_BP:
    422 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    423 		cpu_identify(ci);
    424 		x86_errata();
    425 		x86_cpu_idle_init();
    426 		break;
    427 
    428 #ifdef MULTIPROCESSOR
    429 	case CPU_ROLE_AP:
    430 		/*
    431 		 * report on an AP
    432 		 */
    433 		cpu_intr_init(ci);
    434 		gdt_alloc_cpu(ci);
    435 #ifdef i386
    436 		cpu_set_tss_gates(ci);
    437 #endif
    438 		pmap_cpu_init_late(ci);
    439 		cpu_start_secondary(ci);
    440 		if (ci->ci_flags & CPUF_PRESENT) {
    441 			struct cpu_info *tmp;
    442 
    443 			cpu_identify(ci);
    444 			tmp = cpu_info_list;
    445 			while (tmp->ci_next)
    446 				tmp = tmp->ci_next;
    447 
    448 			tmp->ci_next = ci;
    449 		}
    450 		break;
    451 #endif
    452 
    453 	default:
    454 		panic("unknown processor type??\n");
    455 	}
    456 
    457 	pat_init(ci);
    458 
    459 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    460 		aprint_error_dev(self, "couldn't establish power handler\n");
    461 
    462 #ifdef MULTIPROCESSOR
    463 	if (mp_verbose) {
    464 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    465 		struct pcb *pcb = lwp_getpcb(l);
    466 
    467 		aprint_verbose_dev(self,
    468 		    "idle lwp at %p, idle sp at %p\n",
    469 		    l,
    470 #ifdef i386
    471 		    (void *)pcb->pcb_esp
    472 #else
    473 		    (void *)pcb->pcb_rsp
    474 #endif
    475 		);
    476 	}
    477 #endif
    478 
    479 	/*
    480 	 * Postpone the "cpufeaturebus" scan.
    481 	 * It is safe to scan the pseudo-bus
    482 	 * only after all CPUs have attached.
    483 	 */
    484 	(void)config_defer(self, cpu_defer);
    485 }
    486 
    487 static void
    488 cpu_defer(device_t self)
    489 {
    490 	cpu_rescan(self, NULL, NULL);
    491 }
    492 
    493 static int
    494 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    495 {
    496 	struct cpu_softc *sc = device_private(self);
    497 	struct cpufeature_attach_args cfaa;
    498 	struct cpu_info *ci = sc->sc_info;
    499 
    500 	memset(&cfaa, 0, sizeof(cfaa));
    501 	cfaa.ci = ci;
    502 
    503 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    504 		if (ci->ci_frequency == NULL) {
    505 			cfaa.name = "frequency";
    506 			ci->ci_frequency = config_found_ia(self,
    507 			    "cpufeaturebus", &cfaa, NULL);
    508 		}
    509 
    510 		if (ci->ci_padlock == NULL) {
    511 			cfaa.name = "padlock";
    512 			ci->ci_padlock = config_found_ia(self,
    513 			    "cpufeaturebus", &cfaa, NULL);
    514 		}
    515 
    516 		if (ci->ci_temperature == NULL) {
    517 			cfaa.name = "temperature";
    518 			ci->ci_temperature = config_found_ia(self,
    519 			    "cpufeaturebus", &cfaa, NULL);
    520 		}
    521 
    522 		if (ci->ci_vm == NULL) {
    523 			cfaa.name = "vm";
    524 			ci->ci_vm = config_found_ia(self,
    525 			    "cpufeaturebus", &cfaa, NULL);
    526 		}
    527 	}
    528 
    529 	return 0;
    530 }
    531 
    532 static void
    533 cpu_childdetached(device_t self, device_t child)
    534 {
    535 	struct cpu_softc *sc = device_private(self);
    536 	struct cpu_info *ci = sc->sc_info;
    537 
    538 	if (ci->ci_frequency == child)
    539 		ci->ci_frequency = NULL;
    540 
    541 	if (ci->ci_padlock == child)
    542 		ci->ci_padlock = NULL;
    543 
    544 	if (ci->ci_temperature == child)
    545 		ci->ci_temperature = NULL;
    546 
    547 	if (ci->ci_vm == child)
    548 		ci->ci_vm = NULL;
    549 }
    550 
    551 /*
    552  * Initialize the processor appropriately.
    553  */
    554 
    555 void
    556 cpu_init(struct cpu_info *ci)
    557 {
    558 	uint32_t cr4 = 0;
    559 
    560 	lcr0(rcr0() | CR0_WP);
    561 
    562 	/*
    563 	 * On a P6 or above, enable global TLB caching if the
    564 	 * hardware supports it.
    565 	 */
    566 	if (cpu_feature[0] & CPUID_PGE)
    567 		cr4 |= CR4_PGE;	/* enable global TLB caching */
    568 
    569 	/*
    570 	 * If we have FXSAVE/FXRESTOR, use them.
    571 	 */
    572 	if (cpu_feature[0] & CPUID_FXSR) {
    573 		cr4 |= CR4_OSFXSR;
    574 
    575 		/*
    576 		 * If we have SSE/SSE2, enable XMM exceptions.
    577 		 */
    578 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    579 			cr4 |= CR4_OSXMMEXCPT;
    580 	}
    581 
    582 	/* If xsave is supported, enable it */
    583 	if (cpu_feature[1] & CPUID2_XSAVE)
    584 		cr4 |= CR4_OSXSAVE;
    585 
    586 	/* If SMEP is supported, enable it */
    587 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    588 		cr4 |= CR4_SMEP;
    589 
    590 	if (cr4) {
    591 		cr4 |= rcr4();
    592 		lcr4(cr4);
    593 	}
    594 
    595 	/* If xsave is enabled, enable all fpu features */
    596 	if (cr4 & CR4_OSXSAVE)
    597 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    598 
    599 #ifdef MTRR
    600 	/*
    601 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    602 	 */
    603 	if (cpu_feature[0] & CPUID_MTRR) {
    604 		if ((ci->ci_flags & CPUF_AP) == 0)
    605 			i686_mtrr_init_first();
    606 		mtrr_init_cpu(ci);
    607 	}
    608 
    609 #ifdef i386
    610 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    611 		/*
    612 		 * Must be a K6-2 Step >= 7 or a K6-III.
    613 		 */
    614 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    615 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    616 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    617 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    618 				mtrr_funcs = &k6_mtrr_funcs;
    619 				k6_mtrr_init_first();
    620 				mtrr_init_cpu(ci);
    621 			}
    622 		}
    623 	}
    624 #endif	/* i386 */
    625 #endif /* MTRR */
    626 
    627 	if (ci != &cpu_info_primary) {
    628 		/* Synchronize TSC again, and check for drift. */
    629 		wbinvd();
    630 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    631 		tsc_sync_ap(ci);
    632 	} else {
    633 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    634 	}
    635 }
    636 
    637 #ifdef MULTIPROCESSOR
    638 void
    639 cpu_boot_secondary_processors(void)
    640 {
    641 	struct cpu_info *ci;
    642 	kcpuset_t *cpus;
    643 	u_long i;
    644 
    645 	/* Now that we know the number of CPUs, patch the text segment. */
    646 	x86_patch(false);
    647 
    648 	kcpuset_create(&cpus, true);
    649 	kcpuset_set(cpus, cpu_index(curcpu()));
    650 	for (i = 0; i < maxcpus; i++) {
    651 		ci = cpu_lookup(i);
    652 		if (ci == NULL)
    653 			continue;
    654 		if (ci->ci_data.cpu_idlelwp == NULL)
    655 			continue;
    656 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    657 			continue;
    658 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    659 			continue;
    660 		cpu_boot_secondary(ci);
    661 		kcpuset_set(cpus, cpu_index(ci));
    662 	}
    663 	while (!kcpuset_match(cpus, kcpuset_running))
    664 		;
    665 	kcpuset_destroy(cpus);
    666 
    667 	x86_mp_online = true;
    668 
    669 	/* Now that we know about the TSC, attach the timecounter. */
    670 	tsc_tc_init();
    671 
    672 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    673 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    674 }
    675 #endif
    676 
    677 static void
    678 cpu_init_idle_lwp(struct cpu_info *ci)
    679 {
    680 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    681 	struct pcb *pcb = lwp_getpcb(l);
    682 
    683 	pcb->pcb_cr0 = rcr0();
    684 }
    685 
    686 void
    687 cpu_init_idle_lwps(void)
    688 {
    689 	struct cpu_info *ci;
    690 	u_long i;
    691 
    692 	for (i = 0; i < maxcpus; i++) {
    693 		ci = cpu_lookup(i);
    694 		if (ci == NULL)
    695 			continue;
    696 		if (ci->ci_data.cpu_idlelwp == NULL)
    697 			continue;
    698 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    699 			continue;
    700 		cpu_init_idle_lwp(ci);
    701 	}
    702 }
    703 
    704 #ifdef MULTIPROCESSOR
    705 void
    706 cpu_start_secondary(struct cpu_info *ci)
    707 {
    708 	extern paddr_t mp_pdirpa;
    709 	u_long psl;
    710 	int i;
    711 
    712 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    713 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    714 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    715 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    716 		return;
    717 	}
    718 
    719 	/*
    720 	 * Wait for it to become ready.   Setting cpu_starting opens the
    721 	 * initial gate and allows the AP to start soft initialization.
    722 	 */
    723 	KASSERT(cpu_starting == NULL);
    724 	cpu_starting = ci;
    725 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    726 		i8254_delay(10);
    727 	}
    728 
    729 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    730 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    731 #if defined(MPDEBUG) && defined(DDB)
    732 		printf("dropping into debugger; continue from here to resume boot\n");
    733 		Debugger();
    734 #endif
    735 	} else {
    736 		/*
    737 		 * Synchronize time stamp counters. Invalidate cache and do
    738 		 * twice to try and minimize possible cache effects. Disable
    739 		 * interrupts to try and rule out any external interference.
    740 		 */
    741 		psl = x86_read_psl();
    742 		x86_disable_intr();
    743 		wbinvd();
    744 		tsc_sync_bp(ci);
    745 		x86_write_psl(psl);
    746 	}
    747 
    748 	CPU_START_CLEANUP(ci);
    749 	cpu_starting = NULL;
    750 }
    751 
    752 void
    753 cpu_boot_secondary(struct cpu_info *ci)
    754 {
    755 	int64_t drift;
    756 	u_long psl;
    757 	int i;
    758 
    759 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    760 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    761 		i8254_delay(10);
    762 	}
    763 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    764 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    765 #if defined(MPDEBUG) && defined(DDB)
    766 		printf("dropping into debugger; continue from here to resume boot\n");
    767 		Debugger();
    768 #endif
    769 	} else {
    770 		/* Synchronize TSC again, check for drift. */
    771 		drift = ci->ci_data.cpu_cc_skew;
    772 		psl = x86_read_psl();
    773 		x86_disable_intr();
    774 		wbinvd();
    775 		tsc_sync_bp(ci);
    776 		x86_write_psl(psl);
    777 		drift -= ci->ci_data.cpu_cc_skew;
    778 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    779 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    780 		tsc_sync_drift(drift);
    781 	}
    782 }
    783 
    784 /*
    785  * The CPU ends up here when it's ready to run.
    786  * This is called from code in mptramp.s; at this point, we are running
    787  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    788  * this processor will enter the idle loop and start looking for work.
    789  */
    790 void
    791 cpu_hatch(void *v)
    792 {
    793 	struct cpu_info *ci = (struct cpu_info *)v;
    794 	struct pcb *pcb;
    795 	int s, i;
    796 
    797 	cpu_init_msrs(ci, true);
    798 	cpu_probe(ci);
    799 
    800 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    801 	/* cpu_get_tsc_freq(ci); */
    802 
    803 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    804 
    805 	/*
    806 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    807 	 * to try and minimize possible cache effects.  Note that interrupts
    808 	 * are off at this point.
    809 	 */
    810 	wbinvd();
    811 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    812 	tsc_sync_ap(ci);
    813 
    814 	/*
    815 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    816 	 * in order to make the TSC drift as much as possible. so that
    817 	 * we can detect it later.  If not available, try 'pause'.
    818 	 * We'd like to use 'hlt', but we have interrupts off.
    819 	 */
    820 	while ((ci->ci_flags & CPUF_GO) == 0) {
    821 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    822 			x86_monitor(&ci->ci_flags, 0, 0);
    823 			if ((ci->ci_flags & CPUF_GO) != 0) {
    824 				continue;
    825 			}
    826 			x86_mwait(0, 0);
    827 		} else {
    828 	/*
    829 	 * XXX The loop repetition count could be a lot higher, but
    830 	 * XXX currently qemu emulator takes a _very_long_time_ to
    831 	 * XXX execute the pause instruction.  So for now, use a low
    832 	 * XXX value to allow the cpu to hatch before timing out.
    833 	 */
    834 			for (i = 50; i != 0; i--) {
    835 				x86_pause();
    836 			}
    837 		}
    838 	}
    839 
    840 	/* Because the text may have been patched in x86_patch(). */
    841 	wbinvd();
    842 	x86_flush();
    843 	tlbflushg();
    844 
    845 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    846 
    847 #ifdef PAE
    848 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    849 	for (i = 0 ; i < PDP_SIZE; i++) {
    850 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    851 	}
    852 	lcr3(ci->ci_pae_l3_pdirpa);
    853 #else
    854 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    855 #endif
    856 
    857 	pcb = lwp_getpcb(curlwp);
    858 	pcb->pcb_cr3 = rcr3();
    859 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    860 	lcr0(pcb->pcb_cr0);
    861 
    862 	cpu_init_idt();
    863 	gdt_init_cpu(ci);
    864 #if NLAPIC > 0
    865 	lapic_enable();
    866 	lapic_set_lvt();
    867 	lapic_initclocks();
    868 #endif
    869 
    870 	fpuinit(ci);
    871 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    872 	ltr(ci->ci_tss_sel);
    873 
    874 	cpu_init(ci);
    875 	cpu_get_tsc_freq(ci);
    876 
    877 	s = splhigh();
    878 	lapic_write_tpri(0);
    879 	x86_enable_intr();
    880 	splx(s);
    881 	x86_errata();
    882 
    883 	aprint_debug_dev(ci->ci_dev, "running\n");
    884 
    885 	idle_loop(NULL);
    886 	KASSERT(false);
    887 }
    888 #endif
    889 
    890 #if defined(DDB)
    891 
    892 #include <ddb/db_output.h>
    893 #include <machine/db_machdep.h>
    894 
    895 /*
    896  * Dump CPU information from ddb.
    897  */
    898 void
    899 cpu_debug_dump(void)
    900 {
    901 	struct cpu_info *ci;
    902 	CPU_INFO_ITERATOR cii;
    903 
    904 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    905 	for (CPU_INFO_FOREACH(cii, ci)) {
    906 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    907 		    ci,
    908 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    909 		    (long)ci->ci_cpuid,
    910 		    ci->ci_flags, ci->ci_ipis,
    911 		    ci->ci_curlwp,
    912 		    ci->ci_fpcurlwp);
    913 	}
    914 }
    915 #endif
    916 
    917 #if NLAPIC > 0
    918 static void
    919 cpu_copy_trampoline(void)
    920 {
    921 	/*
    922 	 * Copy boot code.
    923 	 */
    924 	extern u_char cpu_spinup_trampoline[];
    925 	extern u_char cpu_spinup_trampoline_end[];
    926 
    927 	vaddr_t mp_trampoline_vaddr;
    928 
    929 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    930 	    UVM_KMF_VAONLY);
    931 
    932 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    933 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    934 	pmap_update(pmap_kernel());
    935 	memcpy((void *)mp_trampoline_vaddr,
    936 	    cpu_spinup_trampoline,
    937 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    938 
    939 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    940 	pmap_update(pmap_kernel());
    941 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    942 }
    943 #endif
    944 
    945 #ifdef MULTIPROCESSOR
    946 int
    947 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    948 {
    949 	unsigned short dwordptr[2];
    950 	int error;
    951 
    952 	/*
    953 	 * Bootstrap code must be addressable in real mode
    954 	 * and it must be page aligned.
    955 	 */
    956 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    957 
    958 	/*
    959 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    960 	 */
    961 
    962 	outb(IO_RTC, NVRAM_RESET);
    963 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    964 
    965 	/*
    966 	 * "and the warm reset vector (DWORD based at 40:67) to point
    967 	 * to the AP startup code ..."
    968 	 */
    969 
    970 	dwordptr[0] = 0;
    971 	dwordptr[1] = target >> 4;
    972 
    973 #if NLAPIC > 0
    974 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    975 #endif
    976 
    977 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    978 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    979 		return ENODEV;
    980 	}
    981 
    982 	/*
    983 	 * ... prior to executing the following sequence:".  We'll also add in
    984 	 * local cache flush, in case the BIOS has left the AP with its cache
    985 	 * disabled.  It may not be able to cope with MP coherency.
    986 	 */
    987 	wbinvd();
    988 
    989 	if (ci->ci_flags & CPUF_AP) {
    990 		error = x86_ipi_init(ci->ci_cpuid);
    991 		if (error != 0) {
    992 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    993 			    __func__);
    994 			return error;
    995 		}
    996 		i8254_delay(10000);
    997 
    998 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    999 		if (error != 0) {
   1000 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1001 			    __func__);
   1002 			return error;
   1003 		}
   1004 		i8254_delay(200);
   1005 
   1006 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1007 		if (error != 0) {
   1008 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1009 			    __func__);
   1010 			return error;
   1011 		}
   1012 		i8254_delay(200);
   1013 	}
   1014 
   1015 	return 0;
   1016 }
   1017 
   1018 void
   1019 mp_cpu_start_cleanup(struct cpu_info *ci)
   1020 {
   1021 	/*
   1022 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1023 	 */
   1024 
   1025 	outb(IO_RTC, NVRAM_RESET);
   1026 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1027 }
   1028 #endif
   1029 
   1030 #ifdef __x86_64__
   1031 typedef void (vector)(void);
   1032 extern vector Xsyscall, Xsyscall32;
   1033 #endif
   1034 
   1035 void
   1036 cpu_init_msrs(struct cpu_info *ci, bool full)
   1037 {
   1038 #ifdef __x86_64__
   1039 	wrmsr(MSR_STAR,
   1040 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1041 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1042 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1043 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1044 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1045 
   1046 	if (full) {
   1047 		wrmsr(MSR_FSBASE, 0);
   1048 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1049 		wrmsr(MSR_KERNELGSBASE, 0);
   1050 	}
   1051 #endif	/* __x86_64__ */
   1052 
   1053 	if (cpu_feature[2] & CPUID_NOX)
   1054 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1055 }
   1056 
   1057 void
   1058 cpu_offline_md(void)
   1059 {
   1060 	int s;
   1061 
   1062 	s = splhigh();
   1063 	fpusave_cpu(true);
   1064 	splx(s);
   1065 }
   1066 
   1067 /* XXX joerg restructure and restart CPUs individually */
   1068 static bool
   1069 cpu_stop(device_t dv)
   1070 {
   1071 	struct cpu_softc *sc = device_private(dv);
   1072 	struct cpu_info *ci = sc->sc_info;
   1073 	int err;
   1074 
   1075 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1076 
   1077 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1078 		return true;
   1079 
   1080 	if (ci->ci_data.cpu_idlelwp == NULL)
   1081 		return true;
   1082 
   1083 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1084 
   1085 	if (sc->sc_wasonline) {
   1086 		mutex_enter(&cpu_lock);
   1087 		err = cpu_setstate(ci, false);
   1088 		mutex_exit(&cpu_lock);
   1089 
   1090 		if (err != 0)
   1091 			return false;
   1092 	}
   1093 
   1094 	return true;
   1095 }
   1096 
   1097 static bool
   1098 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1099 {
   1100 	struct cpu_softc *sc = device_private(dv);
   1101 	struct cpu_info *ci = sc->sc_info;
   1102 
   1103 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1104 		return true;
   1105 	else {
   1106 		cpufreq_suspend(ci);
   1107 	}
   1108 
   1109 	return cpu_stop(dv);
   1110 }
   1111 
   1112 static bool
   1113 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1114 {
   1115 	struct cpu_softc *sc = device_private(dv);
   1116 	struct cpu_info *ci = sc->sc_info;
   1117 	int err = 0;
   1118 
   1119 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1120 		return true;
   1121 
   1122 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1123 		goto out;
   1124 
   1125 	if (ci->ci_data.cpu_idlelwp == NULL)
   1126 		goto out;
   1127 
   1128 	if (sc->sc_wasonline) {
   1129 		mutex_enter(&cpu_lock);
   1130 		err = cpu_setstate(ci, true);
   1131 		mutex_exit(&cpu_lock);
   1132 	}
   1133 
   1134 out:
   1135 	if (err != 0)
   1136 		return false;
   1137 
   1138 	cpufreq_resume(ci);
   1139 
   1140 	return true;
   1141 }
   1142 
   1143 static bool
   1144 cpu_shutdown(device_t dv, int how)
   1145 {
   1146 	struct cpu_softc *sc = device_private(dv);
   1147 	struct cpu_info *ci = sc->sc_info;
   1148 
   1149 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1150 		return false;
   1151 
   1152 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1153 		return true;
   1154 
   1155 	return cpu_stop(dv);
   1156 }
   1157 
   1158 void
   1159 cpu_get_tsc_freq(struct cpu_info *ci)
   1160 {
   1161 	uint64_t last_tsc;
   1162 
   1163 	if (cpu_hascounter()) {
   1164 		last_tsc = cpu_counter_serializing();
   1165 		i8254_delay(100000);
   1166 		ci->ci_data.cpu_cc_freq =
   1167 		    (cpu_counter_serializing() - last_tsc) * 10;
   1168 	}
   1169 }
   1170 
   1171 void
   1172 x86_cpu_idle_mwait(void)
   1173 {
   1174 	struct cpu_info *ci = curcpu();
   1175 
   1176 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1177 
   1178 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1179 	if (__predict_false(ci->ci_want_resched)) {
   1180 		return;
   1181 	}
   1182 	x86_mwait(0, 0);
   1183 }
   1184 
   1185 void
   1186 x86_cpu_idle_halt(void)
   1187 {
   1188 	struct cpu_info *ci = curcpu();
   1189 
   1190 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1191 
   1192 	x86_disable_intr();
   1193 	if (!__predict_false(ci->ci_want_resched)) {
   1194 		x86_stihlt();
   1195 	} else {
   1196 		x86_enable_intr();
   1197 	}
   1198 }
   1199 
   1200 /*
   1201  * Loads pmap for the current CPU.
   1202  */
   1203 void
   1204 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1205 {
   1206 #ifdef PAE
   1207 	struct cpu_info *ci = curcpu();
   1208 	bool interrupts_enabled;
   1209 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1210 	int i;
   1211 
   1212 	/*
   1213 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1214 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1215 	 * reload cr3.
   1216 	 */
   1217 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1218 	if (interrupts_enabled)
   1219 		x86_disable_intr();
   1220 
   1221 	for (i = 0 ; i < PDP_SIZE; i++) {
   1222 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1223 	}
   1224 
   1225 	if (interrupts_enabled)
   1226 		x86_enable_intr();
   1227 	tlbflush();
   1228 #else /* PAE */
   1229 	lcr3(pmap_pdirpa(pmap, 0));
   1230 #endif /* PAE */
   1231 }
   1232 
   1233 /*
   1234  * Notify all other cpus to halt.
   1235  */
   1236 
   1237 void
   1238 cpu_broadcast_halt(void)
   1239 {
   1240 	x86_broadcast_ipi(X86_IPI_HALT);
   1241 }
   1242 
   1243 /*
   1244  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1245  */
   1246 
   1247 void
   1248 cpu_kick(struct cpu_info *ci)
   1249 {
   1250 	x86_send_ipi(ci, 0);
   1251 }
   1252