cpu.c revision 1.143 1 /* $NetBSD: cpu.c,v 1.143 2018/01/07 10:16:13 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.143 2018/01/07 10:16:13 maxv Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71
72 #include "lapic.h"
73 #include "ioapic.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/cpu.h>
80 #include <sys/cpufreq.h>
81 #include <sys/idle.h>
82 #include <sys/atomic.h>
83 #include <sys/reboot.h>
84
85 #include <uvm/uvm.h>
86
87 #include "acpica.h" /* for NACPICA, for mp_verbose */
88
89 #include <machine/cpufunc.h>
90 #include <machine/cpuvar.h>
91 #include <machine/pmap.h>
92 #include <machine/vmparam.h>
93 #if defined(MULTIPROCESSOR)
94 #include <machine/mpbiosvar.h>
95 #endif
96 #include <machine/mpconfig.h> /* for mp_verbose */
97 #include <machine/pcb.h>
98 #include <machine/specialreg.h>
99 #include <machine/segments.h>
100 #include <machine/gdt.h>
101 #include <machine/mtrr.h>
102 #include <machine/pio.h>
103 #include <machine/cpu_counter.h>
104
105 #include <x86/fpu.h>
106
107 #if NLAPIC > 0
108 #include <machine/apicvar.h>
109 #include <machine/i82489reg.h>
110 #include <machine/i82489var.h>
111 #endif
112
113 #include <dev/ic/mc146818reg.h>
114 #include <i386/isa/nvram.h>
115 #include <dev/isa/isareg.h>
116
117 #include "tsc.h"
118
119 static int cpu_match(device_t, cfdata_t, void *);
120 static void cpu_attach(device_t, device_t, void *);
121 static void cpu_defer(device_t);
122 static int cpu_rescan(device_t, const char *, const int *);
123 static void cpu_childdetached(device_t, device_t);
124 static bool cpu_stop(device_t);
125 static bool cpu_suspend(device_t, const pmf_qual_t *);
126 static bool cpu_resume(device_t, const pmf_qual_t *);
127 static bool cpu_shutdown(device_t, int);
128
129 struct cpu_softc {
130 device_t sc_dev; /* device tree glue */
131 struct cpu_info *sc_info; /* pointer to CPU info */
132 bool sc_wasonline;
133 };
134
135 #ifdef MULTIPROCESSOR
136 int mp_cpu_start(struct cpu_info *, paddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140 #endif
141
142
143 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
144 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
145
146 /*
147 * Statically-allocated CPU info for the primary CPU (or the only
148 * CPU, on uniprocessors). The CPU info list is initialized to
149 * point at it.
150 */
151 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
152 .ci_dev = 0,
153 .ci_self = &cpu_info_primary,
154 .ci_idepth = -1,
155 .ci_curlwp = &lwp0,
156 .ci_curldt = -1,
157 };
158
159 struct cpu_info *cpu_info_list = &cpu_info_primary;
160
161 #ifdef i386
162 void cpu_set_tss_gates(struct cpu_info *);
163 #endif
164
165 static void cpu_init_idle_lwp(struct cpu_info *);
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
168 /* [0] basic features cpuid.1:%edx
169 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
170 * [2] extended features cpuid:80000001:%edx
171 * [3] extended features cpuid:80000001:%ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 #ifdef MULTIPROCESSOR
178 bool x86_mp_online;
179 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
180 #endif
181 #if NLAPIC > 0
182 static vaddr_t cmos_data_mapping;
183 #endif
184 struct cpu_info *cpu_starting;
185
186 #ifdef MULTIPROCESSOR
187 void cpu_hatch(void *);
188 static void cpu_boot_secondary(struct cpu_info *ci);
189 static void cpu_start_secondary(struct cpu_info *ci);
190 #endif
191 #if NLAPIC > 0
192 static void cpu_copy_trampoline(paddr_t);
193 #endif
194
195 /*
196 * Runs once per boot once multiprocessor goo has been detected and
197 * the local APIC on the boot processor has been mapped.
198 *
199 * Called from lapic_boot_init() (from mpbios_scan()).
200 */
201 #if NLAPIC > 0
202 void
203 cpu_init_first(void)
204 {
205
206 cpu_info_primary.ci_cpuid = lapic_cpu_number();
207
208 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
209 if (cmos_data_mapping == 0)
210 panic("No KVA for page 0");
211 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
212 pmap_update(pmap_kernel());
213 }
214 #endif
215
216 static int
217 cpu_match(device_t parent, cfdata_t match, void *aux)
218 {
219
220 return 1;
221 }
222
223 #ifdef __HAVE_PCPU_AREA
224 void
225 cpu_pcpuarea_init(struct cpu_info *ci)
226 {
227 struct vm_page *pg;
228 size_t i, npages;
229 vaddr_t base, va;
230 paddr_t pa;
231
232 CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
233
234 npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
235 base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
236
237 for (i = 0; i < npages; i++) {
238 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
239 if (pg == NULL) {
240 panic("failed to allocate pcpu PA");
241 }
242
243 va = base + i * PAGE_SIZE;
244 pa = VM_PAGE_TO_PHYS(pg);
245
246 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
247 }
248
249 pmap_update(pmap_kernel());
250 }
251 #endif
252
253 static void
254 cpu_vm_init(struct cpu_info *ci)
255 {
256 int ncolors = 2, i;
257
258 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
259 struct x86_cache_info *cai;
260 int tcolors;
261
262 cai = &ci->ci_cinfo[i];
263
264 tcolors = atop(cai->cai_totalsize);
265 switch(cai->cai_associativity) {
266 case 0xff:
267 tcolors = 1; /* fully associative */
268 break;
269 case 0:
270 case 1:
271 break;
272 default:
273 tcolors /= cai->cai_associativity;
274 }
275 ncolors = max(ncolors, tcolors);
276 /*
277 * If the desired number of colors is not a power of
278 * two, it won't be good. Find the greatest power of
279 * two which is an even divisor of the number of colors,
280 * to preserve even coloring of pages.
281 */
282 if (ncolors & (ncolors - 1) ) {
283 int try, picked = 1;
284 for (try = 1; try < ncolors; try *= 2) {
285 if (ncolors % try == 0) picked = try;
286 }
287 if (picked == 1) {
288 panic("desired number of cache colors %d is "
289 " > 1, but not even!", ncolors);
290 }
291 ncolors = picked;
292 }
293 }
294
295 /*
296 * Knowing the size of the largest cache on this CPU, potentially
297 * re-color our pages.
298 */
299 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
300 uvm_page_recolor(ncolors);
301
302 pmap_tlb_cpu_init(ci);
303 #ifndef __HAVE_DIRECT_MAP
304 pmap_vpage_cpu_init(ci);
305 #endif
306 }
307
308 static void
309 cpu_attach(device_t parent, device_t self, void *aux)
310 {
311 struct cpu_softc *sc = device_private(self);
312 struct cpu_attach_args *caa = aux;
313 struct cpu_info *ci;
314 uintptr_t ptr;
315 #if NLAPIC > 0
316 int cpunum = caa->cpu_number;
317 #endif
318 static bool again;
319
320 sc->sc_dev = self;
321
322 if (ncpu == maxcpus) {
323 #ifndef _LP64
324 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
325 #else
326 aprint_error(": too many CPUs\n");
327 #endif
328 return;
329 }
330
331 /*
332 * If we're an Application Processor, allocate a cpu_info
333 * structure, otherwise use the primary's.
334 */
335 if (caa->cpu_role == CPU_ROLE_AP) {
336 if ((boothowto & RB_MD1) != 0) {
337 aprint_error(": multiprocessor boot disabled\n");
338 if (!pmf_device_register(self, NULL, NULL))
339 aprint_error_dev(self,
340 "couldn't establish power handler\n");
341 return;
342 }
343 aprint_naive(": Application Processor\n");
344 ptr = (uintptr_t)uvm_km_alloc(kernel_map,
345 sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
346 UVM_KMF_WIRED|UVM_KMF_ZERO);
347 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
348 ci->ci_curldt = -1;
349 } else {
350 aprint_naive(": %s Processor\n",
351 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
352 ci = &cpu_info_primary;
353 #if NLAPIC > 0
354 if (cpunum != lapic_cpu_number()) {
355 /* XXX should be done earlier. */
356 uint32_t reg;
357 aprint_verbose("\n");
358 aprint_verbose_dev(self, "running CPU at apic %d"
359 " instead of at expected %d", lapic_cpu_number(),
360 cpunum);
361 reg = lapic_readreg(LAPIC_ID);
362 lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
363 (cpunum << LAPIC_ID_SHIFT));
364 }
365 if (cpunum != lapic_cpu_number()) {
366 aprint_error_dev(self, "unable to reset apic id\n");
367 }
368 #endif
369 }
370
371 ci->ci_self = ci;
372 sc->sc_info = ci;
373 ci->ci_dev = self;
374 ci->ci_acpiid = caa->cpu_id;
375 ci->ci_cpuid = caa->cpu_number;
376 ci->ci_func = caa->cpu_func;
377 aprint_normal("\n");
378
379 /* Must be before mi_cpu_attach(). */
380 cpu_vm_init(ci);
381
382 if (caa->cpu_role == CPU_ROLE_AP) {
383 int error;
384
385 error = mi_cpu_attach(ci);
386 if (error != 0) {
387 aprint_error_dev(self,
388 "mi_cpu_attach failed with %d\n", error);
389 return;
390 }
391 #ifdef __HAVE_PCPU_AREA
392 cpu_pcpuarea_init(ci);
393 #endif
394 cpu_init_tss(ci);
395 } else {
396 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
397 }
398
399 pmap_reference(pmap_kernel());
400 ci->ci_pmap = pmap_kernel();
401 ci->ci_tlbstate = TLBSTATE_STALE;
402
403 /*
404 * Boot processor may not be attached first, but the below
405 * must be done to allow booting other processors.
406 */
407 if (!again) {
408 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
409 /* Basic init. */
410 cpu_intr_init(ci);
411 cpu_get_tsc_freq(ci);
412 cpu_init(ci);
413 #ifdef i386
414 cpu_set_tss_gates(ci);
415 #endif
416 pmap_cpu_init_late(ci);
417 #if NLAPIC > 0
418 if (caa->cpu_role != CPU_ROLE_SP) {
419 /* Enable lapic. */
420 lapic_enable();
421 lapic_set_lvt();
422 lapic_calibrate_timer(ci);
423 }
424 #endif
425 /* Make sure DELAY() is initialized. */
426 DELAY(1);
427 again = true;
428 }
429
430 /* further PCB init done later. */
431
432 switch (caa->cpu_role) {
433 case CPU_ROLE_SP:
434 atomic_or_32(&ci->ci_flags, CPUF_SP);
435 cpu_identify(ci);
436 x86_errata();
437 x86_cpu_idle_init();
438 break;
439
440 case CPU_ROLE_BP:
441 atomic_or_32(&ci->ci_flags, CPUF_BSP);
442 cpu_identify(ci);
443 x86_errata();
444 x86_cpu_idle_init();
445 break;
446
447 #ifdef MULTIPROCESSOR
448 case CPU_ROLE_AP:
449 /*
450 * report on an AP
451 */
452 cpu_intr_init(ci);
453 gdt_alloc_cpu(ci);
454 #ifdef i386
455 cpu_set_tss_gates(ci);
456 #endif
457 pmap_cpu_init_late(ci);
458 cpu_start_secondary(ci);
459 if (ci->ci_flags & CPUF_PRESENT) {
460 struct cpu_info *tmp;
461
462 cpu_identify(ci);
463 tmp = cpu_info_list;
464 while (tmp->ci_next)
465 tmp = tmp->ci_next;
466
467 tmp->ci_next = ci;
468 }
469 break;
470 #endif
471
472 default:
473 panic("unknown processor type??\n");
474 }
475
476 pat_init(ci);
477
478 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
479 aprint_error_dev(self, "couldn't establish power handler\n");
480
481 #ifdef MULTIPROCESSOR
482 if (mp_verbose) {
483 struct lwp *l = ci->ci_data.cpu_idlelwp;
484 struct pcb *pcb = lwp_getpcb(l);
485
486 aprint_verbose_dev(self,
487 "idle lwp at %p, idle sp at %p\n",
488 l,
489 #ifdef i386
490 (void *)pcb->pcb_esp
491 #else
492 (void *)pcb->pcb_rsp
493 #endif
494 );
495 }
496 #endif
497
498 /*
499 * Postpone the "cpufeaturebus" scan.
500 * It is safe to scan the pseudo-bus
501 * only after all CPUs have attached.
502 */
503 (void)config_defer(self, cpu_defer);
504 }
505
506 static void
507 cpu_defer(device_t self)
508 {
509 cpu_rescan(self, NULL, NULL);
510 }
511
512 static int
513 cpu_rescan(device_t self, const char *ifattr, const int *locators)
514 {
515 struct cpu_softc *sc = device_private(self);
516 struct cpufeature_attach_args cfaa;
517 struct cpu_info *ci = sc->sc_info;
518
519 memset(&cfaa, 0, sizeof(cfaa));
520 cfaa.ci = ci;
521
522 if (ifattr_match(ifattr, "cpufeaturebus")) {
523 if (ci->ci_frequency == NULL) {
524 cfaa.name = "frequency";
525 ci->ci_frequency = config_found_ia(self,
526 "cpufeaturebus", &cfaa, NULL);
527 }
528
529 if (ci->ci_padlock == NULL) {
530 cfaa.name = "padlock";
531 ci->ci_padlock = config_found_ia(self,
532 "cpufeaturebus", &cfaa, NULL);
533 }
534
535 if (ci->ci_temperature == NULL) {
536 cfaa.name = "temperature";
537 ci->ci_temperature = config_found_ia(self,
538 "cpufeaturebus", &cfaa, NULL);
539 }
540
541 if (ci->ci_vm == NULL) {
542 cfaa.name = "vm";
543 ci->ci_vm = config_found_ia(self,
544 "cpufeaturebus", &cfaa, NULL);
545 }
546 }
547
548 return 0;
549 }
550
551 static void
552 cpu_childdetached(device_t self, device_t child)
553 {
554 struct cpu_softc *sc = device_private(self);
555 struct cpu_info *ci = sc->sc_info;
556
557 if (ci->ci_frequency == child)
558 ci->ci_frequency = NULL;
559
560 if (ci->ci_padlock == child)
561 ci->ci_padlock = NULL;
562
563 if (ci->ci_temperature == child)
564 ci->ci_temperature = NULL;
565
566 if (ci->ci_vm == child)
567 ci->ci_vm = NULL;
568 }
569
570 /*
571 * Initialize the processor appropriately.
572 */
573
574 void
575 cpu_init(struct cpu_info *ci)
576 {
577 extern int x86_fpu_save;
578 uint32_t cr4 = 0;
579
580 lcr0(rcr0() | CR0_WP);
581
582 /*
583 * On a P6 or above, enable global TLB caching if the
584 * hardware supports it.
585 */
586 if (cpu_feature[0] & CPUID_PGE)
587 cr4 |= CR4_PGE; /* enable global TLB caching */
588
589 /*
590 * If we have FXSAVE/FXRESTOR, use them.
591 */
592 if (cpu_feature[0] & CPUID_FXSR) {
593 cr4 |= CR4_OSFXSR;
594
595 /*
596 * If we have SSE/SSE2, enable XMM exceptions.
597 */
598 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
599 cr4 |= CR4_OSXMMEXCPT;
600 }
601
602 /* If xsave is supported, enable it */
603 if (cpu_feature[1] & CPUID2_XSAVE)
604 cr4 |= CR4_OSXSAVE;
605
606 /* If SMEP is supported, enable it */
607 if (cpu_feature[5] & CPUID_SEF_SMEP)
608 cr4 |= CR4_SMEP;
609
610 #ifdef amd64
611 /* If SMAP is supported, enable it */
612 if (cpu_feature[5] & CPUID_SEF_SMAP)
613 cr4 |= CR4_SMAP;
614 #endif
615
616 if (cr4) {
617 cr4 |= rcr4();
618 lcr4(cr4);
619 }
620
621 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
622 fpuinit_mxcsr_mask();
623 }
624
625 /* If xsave is enabled, enable all fpu features */
626 if (cr4 & CR4_OSXSAVE)
627 wrxcr(0, x86_xsave_features & XCR0_FPU);
628
629 #ifdef MTRR
630 /*
631 * On a P6 or above, initialize MTRR's if the hardware supports them.
632 */
633 if (cpu_feature[0] & CPUID_MTRR) {
634 if ((ci->ci_flags & CPUF_AP) == 0)
635 i686_mtrr_init_first();
636 mtrr_init_cpu(ci);
637 }
638
639 #ifdef i386
640 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
641 /*
642 * Must be a K6-2 Step >= 7 or a K6-III.
643 */
644 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
645 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
646 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
647 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
648 mtrr_funcs = &k6_mtrr_funcs;
649 k6_mtrr_init_first();
650 mtrr_init_cpu(ci);
651 }
652 }
653 }
654 #endif /* i386 */
655 #endif /* MTRR */
656
657 if (ci != &cpu_info_primary) {
658 /* Synchronize TSC again, and check for drift. */
659 wbinvd();
660 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
661 tsc_sync_ap(ci);
662 } else {
663 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
664 }
665 }
666
667 #ifdef MULTIPROCESSOR
668 void
669 cpu_boot_secondary_processors(void)
670 {
671 struct cpu_info *ci;
672 kcpuset_t *cpus;
673 u_long i;
674
675 /* Now that we know the number of CPUs, patch the text segment. */
676 x86_patch(false);
677
678 kcpuset_create(&cpus, true);
679 kcpuset_set(cpus, cpu_index(curcpu()));
680 for (i = 0; i < maxcpus; i++) {
681 ci = cpu_lookup(i);
682 if (ci == NULL)
683 continue;
684 if (ci->ci_data.cpu_idlelwp == NULL)
685 continue;
686 if ((ci->ci_flags & CPUF_PRESENT) == 0)
687 continue;
688 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
689 continue;
690 cpu_boot_secondary(ci);
691 kcpuset_set(cpus, cpu_index(ci));
692 }
693 while (!kcpuset_match(cpus, kcpuset_running))
694 ;
695 kcpuset_destroy(cpus);
696
697 x86_mp_online = true;
698
699 /* Now that we know about the TSC, attach the timecounter. */
700 tsc_tc_init();
701
702 /* Enable zeroing of pages in the idle loop if we have SSE2. */
703 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
704 }
705 #endif
706
707 static void
708 cpu_init_idle_lwp(struct cpu_info *ci)
709 {
710 struct lwp *l = ci->ci_data.cpu_idlelwp;
711 struct pcb *pcb = lwp_getpcb(l);
712
713 pcb->pcb_cr0 = rcr0();
714 }
715
716 void
717 cpu_init_idle_lwps(void)
718 {
719 struct cpu_info *ci;
720 u_long i;
721
722 for (i = 0; i < maxcpus; i++) {
723 ci = cpu_lookup(i);
724 if (ci == NULL)
725 continue;
726 if (ci->ci_data.cpu_idlelwp == NULL)
727 continue;
728 if ((ci->ci_flags & CPUF_PRESENT) == 0)
729 continue;
730 cpu_init_idle_lwp(ci);
731 }
732 }
733
734 #ifdef MULTIPROCESSOR
735 void
736 cpu_start_secondary(struct cpu_info *ci)
737 {
738 paddr_t mp_pdirpa;
739 u_long psl;
740 int i;
741
742 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
743 cpu_copy_trampoline(mp_pdirpa);
744
745 atomic_or_32(&ci->ci_flags, CPUF_AP);
746 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
747 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
748 return;
749 }
750
751 /*
752 * Wait for it to become ready. Setting cpu_starting opens the
753 * initial gate and allows the AP to start soft initialization.
754 */
755 KASSERT(cpu_starting == NULL);
756 cpu_starting = ci;
757 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
758 i8254_delay(10);
759 }
760
761 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
762 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
763 #if defined(MPDEBUG) && defined(DDB)
764 printf("dropping into debugger; continue from here to resume boot\n");
765 Debugger();
766 #endif
767 } else {
768 /*
769 * Synchronize time stamp counters. Invalidate cache and do
770 * twice to try and minimize possible cache effects. Disable
771 * interrupts to try and rule out any external interference.
772 */
773 psl = x86_read_psl();
774 x86_disable_intr();
775 wbinvd();
776 tsc_sync_bp(ci);
777 x86_write_psl(psl);
778 }
779
780 CPU_START_CLEANUP(ci);
781 cpu_starting = NULL;
782 }
783
784 void
785 cpu_boot_secondary(struct cpu_info *ci)
786 {
787 int64_t drift;
788 u_long psl;
789 int i;
790
791 atomic_or_32(&ci->ci_flags, CPUF_GO);
792 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
793 i8254_delay(10);
794 }
795 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
796 aprint_error_dev(ci->ci_dev, "failed to start\n");
797 #if defined(MPDEBUG) && defined(DDB)
798 printf("dropping into debugger; continue from here to resume boot\n");
799 Debugger();
800 #endif
801 } else {
802 /* Synchronize TSC again, check for drift. */
803 drift = ci->ci_data.cpu_cc_skew;
804 psl = x86_read_psl();
805 x86_disable_intr();
806 wbinvd();
807 tsc_sync_bp(ci);
808 x86_write_psl(psl);
809 drift -= ci->ci_data.cpu_cc_skew;
810 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
811 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
812 tsc_sync_drift(drift);
813 }
814 }
815
816 /*
817 * The CPU ends up here when it's ready to run.
818 * This is called from code in mptramp.s; at this point, we are running
819 * in the idle pcb/idle stack of the new CPU. When this function returns,
820 * this processor will enter the idle loop and start looking for work.
821 */
822 void
823 cpu_hatch(void *v)
824 {
825 struct cpu_info *ci = (struct cpu_info *)v;
826 struct pcb *pcb;
827 int s, i;
828
829 cpu_init_msrs(ci, true);
830 cpu_probe(ci);
831
832 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
833 /* cpu_get_tsc_freq(ci); */
834
835 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
836
837 /*
838 * Synchronize time stamp counters. Invalidate cache and do twice
839 * to try and minimize possible cache effects. Note that interrupts
840 * are off at this point.
841 */
842 wbinvd();
843 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
844 tsc_sync_ap(ci);
845
846 /*
847 * Wait to be brought online. Use 'monitor/mwait' if available,
848 * in order to make the TSC drift as much as possible. so that
849 * we can detect it later. If not available, try 'pause'.
850 * We'd like to use 'hlt', but we have interrupts off.
851 */
852 while ((ci->ci_flags & CPUF_GO) == 0) {
853 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
854 x86_monitor(&ci->ci_flags, 0, 0);
855 if ((ci->ci_flags & CPUF_GO) != 0) {
856 continue;
857 }
858 x86_mwait(0, 0);
859 } else {
860 /*
861 * XXX The loop repetition count could be a lot higher, but
862 * XXX currently qemu emulator takes a _very_long_time_ to
863 * XXX execute the pause instruction. So for now, use a low
864 * XXX value to allow the cpu to hatch before timing out.
865 */
866 for (i = 50; i != 0; i--) {
867 x86_pause();
868 }
869 }
870 }
871
872 /* Because the text may have been patched in x86_patch(). */
873 wbinvd();
874 x86_flush();
875 tlbflushg();
876
877 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
878
879 #ifdef PAE
880 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
881 for (i = 0 ; i < PDP_SIZE; i++) {
882 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
883 }
884 lcr3(ci->ci_pae_l3_pdirpa);
885 #else
886 lcr3(pmap_pdirpa(pmap_kernel(), 0));
887 #endif
888
889 pcb = lwp_getpcb(curlwp);
890 pcb->pcb_cr3 = rcr3();
891 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
892 lcr0(pcb->pcb_cr0);
893
894 cpu_init_idt();
895 gdt_init_cpu(ci);
896 #if NLAPIC > 0
897 lapic_enable();
898 lapic_set_lvt();
899 lapic_initclocks();
900 #endif
901
902 fpuinit(ci);
903 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
904 ltr(ci->ci_tss_sel);
905
906 cpu_init(ci);
907 cpu_get_tsc_freq(ci);
908
909 s = splhigh();
910 lapic_write_tpri(0);
911 x86_enable_intr();
912 splx(s);
913 x86_errata();
914
915 aprint_debug_dev(ci->ci_dev, "running\n");
916
917 idle_loop(NULL);
918 KASSERT(false);
919 }
920 #endif
921
922 #if defined(DDB)
923
924 #include <ddb/db_output.h>
925 #include <machine/db_machdep.h>
926
927 /*
928 * Dump CPU information from ddb.
929 */
930 void
931 cpu_debug_dump(void)
932 {
933 struct cpu_info *ci;
934 CPU_INFO_ITERATOR cii;
935
936 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
937 for (CPU_INFO_FOREACH(cii, ci)) {
938 db_printf("%p %s %ld %x %x %10p %10p\n",
939 ci,
940 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
941 (long)ci->ci_cpuid,
942 ci->ci_flags, ci->ci_ipis,
943 ci->ci_curlwp,
944 ci->ci_fpcurlwp);
945 }
946 }
947 #endif
948
949 #if NLAPIC > 0
950 static void
951 cpu_copy_trampoline(paddr_t pdir_pa)
952 {
953 extern uint32_t nox_flag;
954 extern u_char cpu_spinup_trampoline[];
955 extern u_char cpu_spinup_trampoline_end[];
956 vaddr_t mp_trampoline_vaddr;
957 struct {
958 uint32_t large;
959 uint32_t nox;
960 uint32_t pdir;
961 } smp_data;
962 CTASSERT(sizeof(smp_data) == 3 * 4);
963
964 smp_data.large = (pmap_largepages != 0);
965 smp_data.nox = nox_flag;
966 smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
967
968 /* Enter the physical address */
969 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
970 UVM_KMF_VAONLY);
971 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
972 VM_PROT_READ | VM_PROT_WRITE, 0);
973 pmap_update(pmap_kernel());
974
975 /* Copy boot code */
976 memcpy((void *)mp_trampoline_vaddr,
977 cpu_spinup_trampoline,
978 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
979
980 /* Copy smp_data at the end */
981 memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
982 &smp_data, sizeof(smp_data));
983
984 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
985 pmap_update(pmap_kernel());
986 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
987 }
988 #endif
989
990 #ifdef MULTIPROCESSOR
991 int
992 mp_cpu_start(struct cpu_info *ci, paddr_t target)
993 {
994 unsigned short dwordptr[2];
995 int error;
996
997 /*
998 * Bootstrap code must be addressable in real mode
999 * and it must be page aligned.
1000 */
1001 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1002
1003 /*
1004 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1005 */
1006
1007 outb(IO_RTC, NVRAM_RESET);
1008 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1009
1010 /*
1011 * "and the warm reset vector (DWORD based at 40:67) to point
1012 * to the AP startup code ..."
1013 */
1014
1015 dwordptr[0] = 0;
1016 dwordptr[1] = target >> 4;
1017
1018 #if NLAPIC > 0
1019 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1020 #endif
1021
1022 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1023 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1024 return ENODEV;
1025 }
1026
1027 /*
1028 * ... prior to executing the following sequence:". We'll also add in
1029 * local cache flush, in case the BIOS has left the AP with its cache
1030 * disabled. It may not be able to cope with MP coherency.
1031 */
1032 wbinvd();
1033
1034 if (ci->ci_flags & CPUF_AP) {
1035 error = x86_ipi_init(ci->ci_cpuid);
1036 if (error != 0) {
1037 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1038 __func__);
1039 return error;
1040 }
1041 i8254_delay(10000);
1042
1043 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1044 if (error != 0) {
1045 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1046 __func__);
1047 return error;
1048 }
1049 i8254_delay(200);
1050
1051 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1052 if (error != 0) {
1053 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1054 __func__);
1055 return error;
1056 }
1057 i8254_delay(200);
1058 }
1059
1060 return 0;
1061 }
1062
1063 void
1064 mp_cpu_start_cleanup(struct cpu_info *ci)
1065 {
1066 /*
1067 * Ensure the NVRAM reset byte contains something vaguely sane.
1068 */
1069
1070 outb(IO_RTC, NVRAM_RESET);
1071 outb(IO_RTC+1, NVRAM_RESET_RST);
1072 }
1073 #endif
1074
1075 #ifdef __x86_64__
1076 typedef void (vector)(void);
1077 extern vector Xsyscall, Xsyscall32;
1078 #endif
1079
1080 void
1081 cpu_init_msrs(struct cpu_info *ci, bool full)
1082 {
1083 #ifdef __x86_64__
1084 wrmsr(MSR_STAR,
1085 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1086 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1087 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1088 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1089 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1090
1091 if (full) {
1092 wrmsr(MSR_FSBASE, 0);
1093 wrmsr(MSR_GSBASE, (uint64_t)ci);
1094 wrmsr(MSR_KERNELGSBASE, 0);
1095 }
1096 #endif /* __x86_64__ */
1097
1098 if (cpu_feature[2] & CPUID_NOX)
1099 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1100 }
1101
1102 void
1103 cpu_offline_md(void)
1104 {
1105 int s;
1106
1107 s = splhigh();
1108 fpusave_cpu(true);
1109 splx(s);
1110 }
1111
1112 /* XXX joerg restructure and restart CPUs individually */
1113 static bool
1114 cpu_stop(device_t dv)
1115 {
1116 struct cpu_softc *sc = device_private(dv);
1117 struct cpu_info *ci = sc->sc_info;
1118 int err;
1119
1120 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1121
1122 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1123 return true;
1124
1125 if (ci->ci_data.cpu_idlelwp == NULL)
1126 return true;
1127
1128 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1129
1130 if (sc->sc_wasonline) {
1131 mutex_enter(&cpu_lock);
1132 err = cpu_setstate(ci, false);
1133 mutex_exit(&cpu_lock);
1134
1135 if (err != 0)
1136 return false;
1137 }
1138
1139 return true;
1140 }
1141
1142 static bool
1143 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1144 {
1145 struct cpu_softc *sc = device_private(dv);
1146 struct cpu_info *ci = sc->sc_info;
1147
1148 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1149 return true;
1150 else {
1151 cpufreq_suspend(ci);
1152 }
1153
1154 return cpu_stop(dv);
1155 }
1156
1157 static bool
1158 cpu_resume(device_t dv, const pmf_qual_t *qual)
1159 {
1160 struct cpu_softc *sc = device_private(dv);
1161 struct cpu_info *ci = sc->sc_info;
1162 int err = 0;
1163
1164 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1165 return true;
1166
1167 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1168 goto out;
1169
1170 if (ci->ci_data.cpu_idlelwp == NULL)
1171 goto out;
1172
1173 if (sc->sc_wasonline) {
1174 mutex_enter(&cpu_lock);
1175 err = cpu_setstate(ci, true);
1176 mutex_exit(&cpu_lock);
1177 }
1178
1179 out:
1180 if (err != 0)
1181 return false;
1182
1183 cpufreq_resume(ci);
1184
1185 return true;
1186 }
1187
1188 static bool
1189 cpu_shutdown(device_t dv, int how)
1190 {
1191 struct cpu_softc *sc = device_private(dv);
1192 struct cpu_info *ci = sc->sc_info;
1193
1194 if ((ci->ci_flags & CPUF_BSP) != 0)
1195 return false;
1196
1197 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1198 return true;
1199
1200 return cpu_stop(dv);
1201 }
1202
1203 void
1204 cpu_get_tsc_freq(struct cpu_info *ci)
1205 {
1206 uint64_t last_tsc;
1207
1208 if (cpu_hascounter()) {
1209 last_tsc = cpu_counter_serializing();
1210 i8254_delay(100000);
1211 ci->ci_data.cpu_cc_freq =
1212 (cpu_counter_serializing() - last_tsc) * 10;
1213 }
1214 }
1215
1216 void
1217 x86_cpu_idle_mwait(void)
1218 {
1219 struct cpu_info *ci = curcpu();
1220
1221 KASSERT(ci->ci_ilevel == IPL_NONE);
1222
1223 x86_monitor(&ci->ci_want_resched, 0, 0);
1224 if (__predict_false(ci->ci_want_resched)) {
1225 return;
1226 }
1227 x86_mwait(0, 0);
1228 }
1229
1230 void
1231 x86_cpu_idle_halt(void)
1232 {
1233 struct cpu_info *ci = curcpu();
1234
1235 KASSERT(ci->ci_ilevel == IPL_NONE);
1236
1237 x86_disable_intr();
1238 if (!__predict_false(ci->ci_want_resched)) {
1239 x86_stihlt();
1240 } else {
1241 x86_enable_intr();
1242 }
1243 }
1244
1245 /*
1246 * Loads pmap for the current CPU.
1247 */
1248 void
1249 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1250 {
1251 #ifdef PAE
1252 struct cpu_info *ci = curcpu();
1253 bool interrupts_enabled;
1254 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1255 int i;
1256
1257 /*
1258 * disable interrupts to block TLB shootdowns, which can reload cr3.
1259 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1260 * reload cr3.
1261 */
1262 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1263 if (interrupts_enabled)
1264 x86_disable_intr();
1265
1266 for (i = 0 ; i < PDP_SIZE; i++) {
1267 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1268 }
1269
1270 if (interrupts_enabled)
1271 x86_enable_intr();
1272 tlbflush();
1273 #else /* PAE */
1274 lcr3(pmap_pdirpa(pmap, 0));
1275 #endif /* PAE */
1276 }
1277
1278 /*
1279 * Notify all other cpus to halt.
1280 */
1281
1282 void
1283 cpu_broadcast_halt(void)
1284 {
1285 x86_broadcast_ipi(X86_IPI_HALT);
1286 }
1287
1288 /*
1289 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1290 */
1291
1292 void
1293 cpu_kick(struct cpu_info *ci)
1294 {
1295 x86_send_ipi(ci, 0);
1296 }
1297