cpu.c revision 1.148 1 /* $NetBSD: cpu.c,v 1.148 2018/02/22 08:56:52 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.148 2018/02/22 08:56:52 maxv Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71 #include "opt_svs.h"
72
73 #include "lapic.h"
74 #include "ioapic.h"
75
76 #include <sys/param.h>
77 #include <sys/proc.h>
78 #include <sys/systm.h>
79 #include <sys/device.h>
80 #include <sys/cpu.h>
81 #include <sys/cpufreq.h>
82 #include <sys/idle.h>
83 #include <sys/atomic.h>
84 #include <sys/reboot.h>
85
86 #include <uvm/uvm.h>
87
88 #include "acpica.h" /* for NACPICA, for mp_verbose */
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #if defined(MULTIPROCESSOR)
95 #include <machine/mpbiosvar.h>
96 #endif
97 #include <machine/mpconfig.h> /* for mp_verbose */
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 #include <machine/cpu_counter.h>
105
106 #include <x86/fpu.h>
107
108 #if NLAPIC > 0
109 #include <machine/apicvar.h>
110 #include <machine/i82489reg.h>
111 #include <machine/i82489var.h>
112 #endif
113
114 #include <dev/ic/mc146818reg.h>
115 #include <i386/isa/nvram.h>
116 #include <dev/isa/isareg.h>
117
118 #include "tsc.h"
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static bool cpu_stop(device_t);
126 static bool cpu_suspend(device_t, const pmf_qual_t *);
127 static bool cpu_resume(device_t, const pmf_qual_t *);
128 static bool cpu_shutdown(device_t, int);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 #ifdef MULTIPROCESSOR
137 int mp_cpu_start(struct cpu_info *, paddr_t);
138 void mp_cpu_start_cleanup(struct cpu_info *);
139 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
140 mp_cpu_start_cleanup };
141 #endif
142
143
144 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
145 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159
160 struct cpu_info *cpu_info_list = &cpu_info_primary;
161
162 #ifdef i386
163 void cpu_set_tss_gates(struct cpu_info *);
164 #endif
165
166 static void cpu_init_idle_lwp(struct cpu_info *);
167
168 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
169 /* [0] basic features cpuid.1:%edx
170 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
171 * [2] extended features cpuid:80000001:%edx
172 * [3] extended features cpuid:80000001:%ecx
173 * [4] VIA padlock features
174 * [5] structured extended features cpuid.7:%ebx
175 * [6] structured extended features cpuid.7:%ecx
176 */
177
178 #ifdef MULTIPROCESSOR
179 bool x86_mp_online;
180 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
181 #endif
182 #if NLAPIC > 0
183 static vaddr_t cmos_data_mapping;
184 #endif
185 struct cpu_info *cpu_starting;
186
187 #ifdef MULTIPROCESSOR
188 void cpu_hatch(void *);
189 static void cpu_boot_secondary(struct cpu_info *ci);
190 static void cpu_start_secondary(struct cpu_info *ci);
191 #endif
192 #if NLAPIC > 0
193 static void cpu_copy_trampoline(paddr_t);
194 #endif
195
196 /*
197 * Runs once per boot once multiprocessor goo has been detected and
198 * the local APIC on the boot processor has been mapped.
199 *
200 * Called from lapic_boot_init() (from mpbios_scan()).
201 */
202 #if NLAPIC > 0
203 void
204 cpu_init_first(void)
205 {
206
207 cpu_info_primary.ci_cpuid = lapic_cpu_number();
208
209 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
210 if (cmos_data_mapping == 0)
211 panic("No KVA for page 0");
212 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
213 pmap_update(pmap_kernel());
214 }
215 #endif
216
217 static int
218 cpu_match(device_t parent, cfdata_t match, void *aux)
219 {
220
221 return 1;
222 }
223
224 #ifdef __HAVE_PCPU_AREA
225 void
226 cpu_pcpuarea_init(struct cpu_info *ci)
227 {
228 struct vm_page *pg;
229 size_t i, npages;
230 vaddr_t base, va;
231 paddr_t pa;
232
233 CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
234
235 npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
236 base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
237
238 for (i = 0; i < npages; i++) {
239 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
240 if (pg == NULL) {
241 panic("failed to allocate pcpu PA");
242 }
243
244 va = base + i * PAGE_SIZE;
245 pa = VM_PAGE_TO_PHYS(pg);
246
247 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
248 }
249
250 pmap_update(pmap_kernel());
251 }
252 #endif
253
254 static void
255 cpu_vm_init(struct cpu_info *ci)
256 {
257 int ncolors = 2, i;
258
259 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
260 struct x86_cache_info *cai;
261 int tcolors;
262
263 cai = &ci->ci_cinfo[i];
264
265 tcolors = atop(cai->cai_totalsize);
266 switch(cai->cai_associativity) {
267 case 0xff:
268 tcolors = 1; /* fully associative */
269 break;
270 case 0:
271 case 1:
272 break;
273 default:
274 tcolors /= cai->cai_associativity;
275 }
276 ncolors = max(ncolors, tcolors);
277 /*
278 * If the desired number of colors is not a power of
279 * two, it won't be good. Find the greatest power of
280 * two which is an even divisor of the number of colors,
281 * to preserve even coloring of pages.
282 */
283 if (ncolors & (ncolors - 1) ) {
284 int try, picked = 1;
285 for (try = 1; try < ncolors; try *= 2) {
286 if (ncolors % try == 0) picked = try;
287 }
288 if (picked == 1) {
289 panic("desired number of cache colors %d is "
290 " > 1, but not even!", ncolors);
291 }
292 ncolors = picked;
293 }
294 }
295
296 /*
297 * Knowing the size of the largest cache on this CPU, potentially
298 * re-color our pages.
299 */
300 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
301 uvm_page_recolor(ncolors);
302
303 pmap_tlb_cpu_init(ci);
304 #ifndef __HAVE_DIRECT_MAP
305 pmap_vpage_cpu_init(ci);
306 #endif
307 }
308
309 static void
310 cpu_attach(device_t parent, device_t self, void *aux)
311 {
312 struct cpu_softc *sc = device_private(self);
313 struct cpu_attach_args *caa = aux;
314 struct cpu_info *ci;
315 uintptr_t ptr;
316 #if NLAPIC > 0
317 int cpunum = caa->cpu_number;
318 #endif
319 static bool again;
320
321 sc->sc_dev = self;
322
323 if (ncpu == maxcpus) {
324 #ifndef _LP64
325 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
326 #else
327 aprint_error(": too many CPUs\n");
328 #endif
329 return;
330 }
331
332 /*
333 * If we're an Application Processor, allocate a cpu_info
334 * structure, otherwise use the primary's.
335 */
336 if (caa->cpu_role == CPU_ROLE_AP) {
337 if ((boothowto & RB_MD1) != 0) {
338 aprint_error(": multiprocessor boot disabled\n");
339 if (!pmf_device_register(self, NULL, NULL))
340 aprint_error_dev(self,
341 "couldn't establish power handler\n");
342 return;
343 }
344 aprint_naive(": Application Processor\n");
345 ptr = (uintptr_t)uvm_km_alloc(kernel_map,
346 sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
347 UVM_KMF_WIRED|UVM_KMF_ZERO);
348 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
349 ci->ci_curldt = -1;
350 } else {
351 aprint_naive(": %s Processor\n",
352 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
353 ci = &cpu_info_primary;
354 #if NLAPIC > 0
355 if (cpunum != lapic_cpu_number()) {
356 /* XXX should be done earlier. */
357 uint32_t reg;
358 aprint_verbose("\n");
359 aprint_verbose_dev(self, "running CPU at apic %d"
360 " instead of at expected %d", lapic_cpu_number(),
361 cpunum);
362 reg = lapic_readreg(LAPIC_ID);
363 lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
364 (cpunum << LAPIC_ID_SHIFT));
365 }
366 if (cpunum != lapic_cpu_number()) {
367 aprint_error_dev(self, "unable to reset apic id\n");
368 }
369 #endif
370 }
371
372 ci->ci_self = ci;
373 sc->sc_info = ci;
374 ci->ci_dev = self;
375 ci->ci_acpiid = caa->cpu_id;
376 ci->ci_cpuid = caa->cpu_number;
377 ci->ci_func = caa->cpu_func;
378 aprint_normal("\n");
379
380 /* Must be before mi_cpu_attach(). */
381 cpu_vm_init(ci);
382
383 if (caa->cpu_role == CPU_ROLE_AP) {
384 int error;
385
386 error = mi_cpu_attach(ci);
387 if (error != 0) {
388 aprint_error_dev(self,
389 "mi_cpu_attach failed with %d\n", error);
390 return;
391 }
392 #ifdef __HAVE_PCPU_AREA
393 cpu_pcpuarea_init(ci);
394 #endif
395 cpu_init_tss(ci);
396 } else {
397 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
398 }
399
400 #ifdef SVS
401 cpu_svs_init(ci);
402 #endif
403
404 pmap_reference(pmap_kernel());
405 ci->ci_pmap = pmap_kernel();
406 ci->ci_tlbstate = TLBSTATE_STALE;
407
408 /*
409 * Boot processor may not be attached first, but the below
410 * must be done to allow booting other processors.
411 */
412 if (!again) {
413 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
414 /* Basic init. */
415 cpu_intr_init(ci);
416 cpu_get_tsc_freq(ci);
417 cpu_init(ci);
418 #ifdef i386
419 cpu_set_tss_gates(ci);
420 #endif
421 pmap_cpu_init_late(ci);
422 #if NLAPIC > 0
423 if (caa->cpu_role != CPU_ROLE_SP) {
424 /* Enable lapic. */
425 lapic_enable();
426 lapic_set_lvt();
427 lapic_calibrate_timer(ci);
428 }
429 #endif
430 /* Make sure DELAY() is initialized. */
431 DELAY(1);
432 again = true;
433 }
434
435 /* further PCB init done later. */
436
437 switch (caa->cpu_role) {
438 case CPU_ROLE_SP:
439 atomic_or_32(&ci->ci_flags, CPUF_SP);
440 cpu_identify(ci);
441 x86_errata();
442 x86_cpu_idle_init();
443 break;
444
445 case CPU_ROLE_BP:
446 atomic_or_32(&ci->ci_flags, CPUF_BSP);
447 cpu_identify(ci);
448 x86_errata();
449 x86_cpu_idle_init();
450 break;
451
452 #ifdef MULTIPROCESSOR
453 case CPU_ROLE_AP:
454 /*
455 * report on an AP
456 */
457 cpu_intr_init(ci);
458 gdt_alloc_cpu(ci);
459 #ifdef i386
460 cpu_set_tss_gates(ci);
461 #endif
462 pmap_cpu_init_late(ci);
463 cpu_start_secondary(ci);
464 if (ci->ci_flags & CPUF_PRESENT) {
465 struct cpu_info *tmp;
466
467 cpu_identify(ci);
468 tmp = cpu_info_list;
469 while (tmp->ci_next)
470 tmp = tmp->ci_next;
471
472 tmp->ci_next = ci;
473 }
474 break;
475 #endif
476
477 default:
478 panic("unknown processor type??\n");
479 }
480
481 pat_init(ci);
482
483 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
484 aprint_error_dev(self, "couldn't establish power handler\n");
485
486 #ifdef MULTIPROCESSOR
487 if (mp_verbose) {
488 struct lwp *l = ci->ci_data.cpu_idlelwp;
489 struct pcb *pcb = lwp_getpcb(l);
490
491 aprint_verbose_dev(self,
492 "idle lwp at %p, idle sp at %p\n",
493 l,
494 #ifdef i386
495 (void *)pcb->pcb_esp
496 #else
497 (void *)pcb->pcb_rsp
498 #endif
499 );
500 }
501 #endif
502
503 /*
504 * Postpone the "cpufeaturebus" scan.
505 * It is safe to scan the pseudo-bus
506 * only after all CPUs have attached.
507 */
508 (void)config_defer(self, cpu_defer);
509 }
510
511 static void
512 cpu_defer(device_t self)
513 {
514 cpu_rescan(self, NULL, NULL);
515 }
516
517 static int
518 cpu_rescan(device_t self, const char *ifattr, const int *locators)
519 {
520 struct cpu_softc *sc = device_private(self);
521 struct cpufeature_attach_args cfaa;
522 struct cpu_info *ci = sc->sc_info;
523
524 memset(&cfaa, 0, sizeof(cfaa));
525 cfaa.ci = ci;
526
527 if (ifattr_match(ifattr, "cpufeaturebus")) {
528 if (ci->ci_frequency == NULL) {
529 cfaa.name = "frequency";
530 ci->ci_frequency = config_found_ia(self,
531 "cpufeaturebus", &cfaa, NULL);
532 }
533
534 if (ci->ci_padlock == NULL) {
535 cfaa.name = "padlock";
536 ci->ci_padlock = config_found_ia(self,
537 "cpufeaturebus", &cfaa, NULL);
538 }
539
540 if (ci->ci_temperature == NULL) {
541 cfaa.name = "temperature";
542 ci->ci_temperature = config_found_ia(self,
543 "cpufeaturebus", &cfaa, NULL);
544 }
545
546 if (ci->ci_vm == NULL) {
547 cfaa.name = "vm";
548 ci->ci_vm = config_found_ia(self,
549 "cpufeaturebus", &cfaa, NULL);
550 }
551 }
552
553 return 0;
554 }
555
556 static void
557 cpu_childdetached(device_t self, device_t child)
558 {
559 struct cpu_softc *sc = device_private(self);
560 struct cpu_info *ci = sc->sc_info;
561
562 if (ci->ci_frequency == child)
563 ci->ci_frequency = NULL;
564
565 if (ci->ci_padlock == child)
566 ci->ci_padlock = NULL;
567
568 if (ci->ci_temperature == child)
569 ci->ci_temperature = NULL;
570
571 if (ci->ci_vm == child)
572 ci->ci_vm = NULL;
573 }
574
575 /*
576 * Initialize the processor appropriately.
577 */
578
579 void
580 cpu_init(struct cpu_info *ci)
581 {
582 extern int x86_fpu_save;
583 uint32_t cr4 = 0;
584
585 lcr0(rcr0() | CR0_WP);
586
587 /*
588 * On a P6 or above, enable global TLB caching if the
589 * hardware supports it.
590 */
591 if (cpu_feature[0] & CPUID_PGE)
592 cr4 |= CR4_PGE; /* enable global TLB caching */
593
594 /*
595 * If we have FXSAVE/FXRESTOR, use them.
596 */
597 if (cpu_feature[0] & CPUID_FXSR) {
598 cr4 |= CR4_OSFXSR;
599
600 /*
601 * If we have SSE/SSE2, enable XMM exceptions.
602 */
603 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
604 cr4 |= CR4_OSXMMEXCPT;
605 }
606
607 /* If xsave is supported, enable it */
608 if (cpu_feature[1] & CPUID2_XSAVE)
609 cr4 |= CR4_OSXSAVE;
610
611 /* If SMEP is supported, enable it */
612 if (cpu_feature[5] & CPUID_SEF_SMEP)
613 cr4 |= CR4_SMEP;
614
615 /* If SMAP is supported, enable it */
616 if (cpu_feature[5] & CPUID_SEF_SMAP)
617 cr4 |= CR4_SMAP;
618
619 if (cr4) {
620 cr4 |= rcr4();
621 lcr4(cr4);
622 }
623
624 /*
625 * Changing CR4 register may change cpuid values. For example, setting
626 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
627 * ci_feat_val[1], so update it.
628 * XXX Other than ci_feat_val[1] might be changed.
629 */
630 if (cpuid_level >= 1) {
631 u_int descs[4];
632
633 x86_cpuid(1, descs);
634 ci->ci_feat_val[1] = descs[2];
635 }
636
637 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
638 fpuinit_mxcsr_mask();
639 }
640
641 /* If xsave is enabled, enable all fpu features */
642 if (cr4 & CR4_OSXSAVE)
643 wrxcr(0, x86_xsave_features & XCR0_FPU);
644
645 #ifdef MTRR
646 /*
647 * On a P6 or above, initialize MTRR's if the hardware supports them.
648 */
649 if (cpu_feature[0] & CPUID_MTRR) {
650 if ((ci->ci_flags & CPUF_AP) == 0)
651 i686_mtrr_init_first();
652 mtrr_init_cpu(ci);
653 }
654
655 #ifdef i386
656 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
657 /*
658 * Must be a K6-2 Step >= 7 or a K6-III.
659 */
660 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
661 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
662 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
663 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
664 mtrr_funcs = &k6_mtrr_funcs;
665 k6_mtrr_init_first();
666 mtrr_init_cpu(ci);
667 }
668 }
669 }
670 #endif /* i386 */
671 #endif /* MTRR */
672
673 if (ci != &cpu_info_primary) {
674 /* Synchronize TSC again, and check for drift. */
675 wbinvd();
676 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
677 tsc_sync_ap(ci);
678 } else {
679 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
680 }
681 }
682
683 #ifdef MULTIPROCESSOR
684 void
685 cpu_boot_secondary_processors(void)
686 {
687 struct cpu_info *ci;
688 kcpuset_t *cpus;
689 u_long i;
690
691 /* Now that we know the number of CPUs, patch the text segment. */
692 x86_patch(false);
693
694 kcpuset_create(&cpus, true);
695 kcpuset_set(cpus, cpu_index(curcpu()));
696 for (i = 0; i < maxcpus; i++) {
697 ci = cpu_lookup(i);
698 if (ci == NULL)
699 continue;
700 if (ci->ci_data.cpu_idlelwp == NULL)
701 continue;
702 if ((ci->ci_flags & CPUF_PRESENT) == 0)
703 continue;
704 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
705 continue;
706 cpu_boot_secondary(ci);
707 kcpuset_set(cpus, cpu_index(ci));
708 }
709 while (!kcpuset_match(cpus, kcpuset_running))
710 ;
711 kcpuset_destroy(cpus);
712
713 x86_mp_online = true;
714
715 /* Now that we know about the TSC, attach the timecounter. */
716 tsc_tc_init();
717
718 /* Enable zeroing of pages in the idle loop if we have SSE2. */
719 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
720 }
721 #endif
722
723 static void
724 cpu_init_idle_lwp(struct cpu_info *ci)
725 {
726 struct lwp *l = ci->ci_data.cpu_idlelwp;
727 struct pcb *pcb = lwp_getpcb(l);
728
729 pcb->pcb_cr0 = rcr0();
730 }
731
732 void
733 cpu_init_idle_lwps(void)
734 {
735 struct cpu_info *ci;
736 u_long i;
737
738 for (i = 0; i < maxcpus; i++) {
739 ci = cpu_lookup(i);
740 if (ci == NULL)
741 continue;
742 if (ci->ci_data.cpu_idlelwp == NULL)
743 continue;
744 if ((ci->ci_flags & CPUF_PRESENT) == 0)
745 continue;
746 cpu_init_idle_lwp(ci);
747 }
748 }
749
750 #ifdef MULTIPROCESSOR
751 void
752 cpu_start_secondary(struct cpu_info *ci)
753 {
754 paddr_t mp_pdirpa;
755 u_long psl;
756 int i;
757
758 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
759 cpu_copy_trampoline(mp_pdirpa);
760
761 atomic_or_32(&ci->ci_flags, CPUF_AP);
762 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
763 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
764 return;
765 }
766
767 /*
768 * Wait for it to become ready. Setting cpu_starting opens the
769 * initial gate and allows the AP to start soft initialization.
770 */
771 KASSERT(cpu_starting == NULL);
772 cpu_starting = ci;
773 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
774 i8254_delay(10);
775 }
776
777 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
778 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
779 #if defined(MPDEBUG) && defined(DDB)
780 printf("dropping into debugger; continue from here to resume boot\n");
781 Debugger();
782 #endif
783 } else {
784 /*
785 * Synchronize time stamp counters. Invalidate cache and do
786 * twice to try and minimize possible cache effects. Disable
787 * interrupts to try and rule out any external interference.
788 */
789 psl = x86_read_psl();
790 x86_disable_intr();
791 wbinvd();
792 tsc_sync_bp(ci);
793 x86_write_psl(psl);
794 }
795
796 CPU_START_CLEANUP(ci);
797 cpu_starting = NULL;
798 }
799
800 void
801 cpu_boot_secondary(struct cpu_info *ci)
802 {
803 int64_t drift;
804 u_long psl;
805 int i;
806
807 atomic_or_32(&ci->ci_flags, CPUF_GO);
808 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
809 i8254_delay(10);
810 }
811 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
812 aprint_error_dev(ci->ci_dev, "failed to start\n");
813 #if defined(MPDEBUG) && defined(DDB)
814 printf("dropping into debugger; continue from here to resume boot\n");
815 Debugger();
816 #endif
817 } else {
818 /* Synchronize TSC again, check for drift. */
819 drift = ci->ci_data.cpu_cc_skew;
820 psl = x86_read_psl();
821 x86_disable_intr();
822 wbinvd();
823 tsc_sync_bp(ci);
824 x86_write_psl(psl);
825 drift -= ci->ci_data.cpu_cc_skew;
826 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
827 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
828 tsc_sync_drift(drift);
829 }
830 }
831
832 /*
833 * The CPU ends up here when it's ready to run.
834 * This is called from code in mptramp.s; at this point, we are running
835 * in the idle pcb/idle stack of the new CPU. When this function returns,
836 * this processor will enter the idle loop and start looking for work.
837 */
838 void
839 cpu_hatch(void *v)
840 {
841 struct cpu_info *ci = (struct cpu_info *)v;
842 struct pcb *pcb;
843 int s, i;
844
845 cpu_init_msrs(ci, true);
846 cpu_probe(ci);
847
848 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
849 /* cpu_get_tsc_freq(ci); */
850
851 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
852
853 /*
854 * Synchronize time stamp counters. Invalidate cache and do twice
855 * to try and minimize possible cache effects. Note that interrupts
856 * are off at this point.
857 */
858 wbinvd();
859 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
860 tsc_sync_ap(ci);
861
862 /*
863 * Wait to be brought online. Use 'monitor/mwait' if available,
864 * in order to make the TSC drift as much as possible. so that
865 * we can detect it later. If not available, try 'pause'.
866 * We'd like to use 'hlt', but we have interrupts off.
867 */
868 while ((ci->ci_flags & CPUF_GO) == 0) {
869 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
870 x86_monitor(&ci->ci_flags, 0, 0);
871 if ((ci->ci_flags & CPUF_GO) != 0) {
872 continue;
873 }
874 x86_mwait(0, 0);
875 } else {
876 /*
877 * XXX The loop repetition count could be a lot higher, but
878 * XXX currently qemu emulator takes a _very_long_time_ to
879 * XXX execute the pause instruction. So for now, use a low
880 * XXX value to allow the cpu to hatch before timing out.
881 */
882 for (i = 50; i != 0; i--) {
883 x86_pause();
884 }
885 }
886 }
887
888 /* Because the text may have been patched in x86_patch(). */
889 wbinvd();
890 x86_flush();
891 tlbflushg();
892
893 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
894
895 #ifdef PAE
896 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
897 for (i = 0 ; i < PDP_SIZE; i++) {
898 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
899 }
900 lcr3(ci->ci_pae_l3_pdirpa);
901 #else
902 lcr3(pmap_pdirpa(pmap_kernel(), 0));
903 #endif
904
905 pcb = lwp_getpcb(curlwp);
906 pcb->pcb_cr3 = rcr3();
907 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
908 lcr0(pcb->pcb_cr0);
909
910 cpu_init_idt();
911 gdt_init_cpu(ci);
912 #if NLAPIC > 0
913 lapic_enable();
914 lapic_set_lvt();
915 lapic_initclocks();
916 #endif
917
918 fpuinit(ci);
919 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
920 ltr(ci->ci_tss_sel);
921
922 cpu_init(ci);
923 cpu_get_tsc_freq(ci);
924
925 s = splhigh();
926 lapic_write_tpri(0);
927 x86_enable_intr();
928 splx(s);
929 x86_errata();
930
931 aprint_debug_dev(ci->ci_dev, "running\n");
932
933 idle_loop(NULL);
934 KASSERT(false);
935 }
936 #endif
937
938 #if defined(DDB)
939
940 #include <ddb/db_output.h>
941 #include <machine/db_machdep.h>
942
943 /*
944 * Dump CPU information from ddb.
945 */
946 void
947 cpu_debug_dump(void)
948 {
949 struct cpu_info *ci;
950 CPU_INFO_ITERATOR cii;
951
952 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
953 for (CPU_INFO_FOREACH(cii, ci)) {
954 db_printf("%p %s %ld %x %x %10p %10p\n",
955 ci,
956 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
957 (long)ci->ci_cpuid,
958 ci->ci_flags, ci->ci_ipis,
959 ci->ci_curlwp,
960 ci->ci_fpcurlwp);
961 }
962 }
963 #endif
964
965 #if NLAPIC > 0
966 static void
967 cpu_copy_trampoline(paddr_t pdir_pa)
968 {
969 extern uint32_t nox_flag;
970 extern u_char cpu_spinup_trampoline[];
971 extern u_char cpu_spinup_trampoline_end[];
972 vaddr_t mp_trampoline_vaddr;
973 struct {
974 uint32_t large;
975 uint32_t nox;
976 uint32_t pdir;
977 } smp_data;
978 CTASSERT(sizeof(smp_data) == 3 * 4);
979
980 smp_data.large = (pmap_largepages != 0);
981 smp_data.nox = nox_flag;
982 smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
983
984 /* Enter the physical address */
985 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
986 UVM_KMF_VAONLY);
987 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
988 VM_PROT_READ | VM_PROT_WRITE, 0);
989 pmap_update(pmap_kernel());
990
991 /* Copy boot code */
992 memcpy((void *)mp_trampoline_vaddr,
993 cpu_spinup_trampoline,
994 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
995
996 /* Copy smp_data at the end */
997 memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
998 &smp_data, sizeof(smp_data));
999
1000 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1001 pmap_update(pmap_kernel());
1002 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1003 }
1004 #endif
1005
1006 #ifdef MULTIPROCESSOR
1007 int
1008 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1009 {
1010 unsigned short dwordptr[2];
1011 int error;
1012
1013 /*
1014 * Bootstrap code must be addressable in real mode
1015 * and it must be page aligned.
1016 */
1017 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1018
1019 /*
1020 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1021 */
1022
1023 outb(IO_RTC, NVRAM_RESET);
1024 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1025
1026 /*
1027 * "and the warm reset vector (DWORD based at 40:67) to point
1028 * to the AP startup code ..."
1029 */
1030
1031 dwordptr[0] = 0;
1032 dwordptr[1] = target >> 4;
1033
1034 #if NLAPIC > 0
1035 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1036 #endif
1037
1038 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1039 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1040 return ENODEV;
1041 }
1042
1043 /*
1044 * ... prior to executing the following sequence:". We'll also add in
1045 * local cache flush, in case the BIOS has left the AP with its cache
1046 * disabled. It may not be able to cope with MP coherency.
1047 */
1048 wbinvd();
1049
1050 if (ci->ci_flags & CPUF_AP) {
1051 error = x86_ipi_init(ci->ci_cpuid);
1052 if (error != 0) {
1053 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1054 __func__);
1055 return error;
1056 }
1057 i8254_delay(10000);
1058
1059 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1060 if (error != 0) {
1061 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1062 __func__);
1063 return error;
1064 }
1065 i8254_delay(200);
1066
1067 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1068 if (error != 0) {
1069 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1070 __func__);
1071 return error;
1072 }
1073 i8254_delay(200);
1074 }
1075
1076 return 0;
1077 }
1078
1079 void
1080 mp_cpu_start_cleanup(struct cpu_info *ci)
1081 {
1082 /*
1083 * Ensure the NVRAM reset byte contains something vaguely sane.
1084 */
1085
1086 outb(IO_RTC, NVRAM_RESET);
1087 outb(IO_RTC+1, NVRAM_RESET_RST);
1088 }
1089 #endif
1090
1091 #ifdef __x86_64__
1092 typedef void (vector)(void);
1093 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1094 #endif
1095
1096 void
1097 cpu_init_msrs(struct cpu_info *ci, bool full)
1098 {
1099 #ifdef __x86_64__
1100 wrmsr(MSR_STAR,
1101 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1102 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1103 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1104 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1105 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1106
1107 #ifdef SVS
1108 if (svs_enabled)
1109 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1110 #endif
1111
1112 if (full) {
1113 wrmsr(MSR_FSBASE, 0);
1114 wrmsr(MSR_GSBASE, (uint64_t)ci);
1115 wrmsr(MSR_KERNELGSBASE, 0);
1116 }
1117 #endif /* __x86_64__ */
1118
1119 if (cpu_feature[2] & CPUID_NOX)
1120 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1121 }
1122
1123 void
1124 cpu_offline_md(void)
1125 {
1126 int s;
1127
1128 s = splhigh();
1129 fpusave_cpu(true);
1130 splx(s);
1131 }
1132
1133 /* XXX joerg restructure and restart CPUs individually */
1134 static bool
1135 cpu_stop(device_t dv)
1136 {
1137 struct cpu_softc *sc = device_private(dv);
1138 struct cpu_info *ci = sc->sc_info;
1139 int err;
1140
1141 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1142
1143 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1144 return true;
1145
1146 if (ci->ci_data.cpu_idlelwp == NULL)
1147 return true;
1148
1149 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1150
1151 if (sc->sc_wasonline) {
1152 mutex_enter(&cpu_lock);
1153 err = cpu_setstate(ci, false);
1154 mutex_exit(&cpu_lock);
1155
1156 if (err != 0)
1157 return false;
1158 }
1159
1160 return true;
1161 }
1162
1163 static bool
1164 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1165 {
1166 struct cpu_softc *sc = device_private(dv);
1167 struct cpu_info *ci = sc->sc_info;
1168
1169 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1170 return true;
1171 else {
1172 cpufreq_suspend(ci);
1173 }
1174
1175 return cpu_stop(dv);
1176 }
1177
1178 static bool
1179 cpu_resume(device_t dv, const pmf_qual_t *qual)
1180 {
1181 struct cpu_softc *sc = device_private(dv);
1182 struct cpu_info *ci = sc->sc_info;
1183 int err = 0;
1184
1185 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1186 return true;
1187
1188 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1189 goto out;
1190
1191 if (ci->ci_data.cpu_idlelwp == NULL)
1192 goto out;
1193
1194 if (sc->sc_wasonline) {
1195 mutex_enter(&cpu_lock);
1196 err = cpu_setstate(ci, true);
1197 mutex_exit(&cpu_lock);
1198 }
1199
1200 out:
1201 if (err != 0)
1202 return false;
1203
1204 cpufreq_resume(ci);
1205
1206 return true;
1207 }
1208
1209 static bool
1210 cpu_shutdown(device_t dv, int how)
1211 {
1212 struct cpu_softc *sc = device_private(dv);
1213 struct cpu_info *ci = sc->sc_info;
1214
1215 if ((ci->ci_flags & CPUF_BSP) != 0)
1216 return false;
1217
1218 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1219 return true;
1220
1221 return cpu_stop(dv);
1222 }
1223
1224 void
1225 cpu_get_tsc_freq(struct cpu_info *ci)
1226 {
1227 uint64_t last_tsc;
1228
1229 if (cpu_hascounter()) {
1230 last_tsc = cpu_counter_serializing();
1231 i8254_delay(100000);
1232 ci->ci_data.cpu_cc_freq =
1233 (cpu_counter_serializing() - last_tsc) * 10;
1234 }
1235 }
1236
1237 void
1238 x86_cpu_idle_mwait(void)
1239 {
1240 struct cpu_info *ci = curcpu();
1241
1242 KASSERT(ci->ci_ilevel == IPL_NONE);
1243
1244 x86_monitor(&ci->ci_want_resched, 0, 0);
1245 if (__predict_false(ci->ci_want_resched)) {
1246 return;
1247 }
1248 x86_mwait(0, 0);
1249 }
1250
1251 void
1252 x86_cpu_idle_halt(void)
1253 {
1254 struct cpu_info *ci = curcpu();
1255
1256 KASSERT(ci->ci_ilevel == IPL_NONE);
1257
1258 x86_disable_intr();
1259 if (!__predict_false(ci->ci_want_resched)) {
1260 x86_stihlt();
1261 } else {
1262 x86_enable_intr();
1263 }
1264 }
1265
1266 /*
1267 * Loads pmap for the current CPU.
1268 */
1269 void
1270 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1271 {
1272 #ifdef SVS
1273 svs_pdir_switch(pmap);
1274 #endif
1275
1276 #ifdef PAE
1277 struct cpu_info *ci = curcpu();
1278 bool interrupts_enabled;
1279 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1280 int i;
1281
1282 /*
1283 * disable interrupts to block TLB shootdowns, which can reload cr3.
1284 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1285 * reload cr3.
1286 */
1287 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1288 if (interrupts_enabled)
1289 x86_disable_intr();
1290
1291 for (i = 0 ; i < PDP_SIZE; i++) {
1292 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1293 }
1294
1295 if (interrupts_enabled)
1296 x86_enable_intr();
1297 tlbflush();
1298 #else /* PAE */
1299 lcr3(pmap_pdirpa(pmap, 0));
1300 #endif /* PAE */
1301 }
1302
1303 /*
1304 * Notify all other cpus to halt.
1305 */
1306
1307 void
1308 cpu_broadcast_halt(void)
1309 {
1310 x86_broadcast_ipi(X86_IPI_HALT);
1311 }
1312
1313 /*
1314 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1315 */
1316
1317 void
1318 cpu_kick(struct cpu_info *ci)
1319 {
1320 x86_send_ipi(ci, 0);
1321 }
1322