cpu.c revision 1.165 1 /* $NetBSD: cpu.c,v 1.165 2019/02/14 07:12:40 cherry Exp $ */
2
3 /*
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.165 2019/02/14 07:12:40 cherry Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71 #include "opt_svs.h"
72
73 #include "lapic.h"
74 #include "ioapic.h"
75
76 #include <sys/param.h>
77 #include <sys/proc.h>
78 #include <sys/systm.h>
79 #include <sys/device.h>
80 #include <sys/cpu.h>
81 #include <sys/cpufreq.h>
82 #include <sys/idle.h>
83 #include <sys/atomic.h>
84 #include <sys/reboot.h>
85
86 #include <uvm/uvm.h>
87
88 #include "acpica.h" /* for NACPICA, for mp_verbose */
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #if defined(MULTIPROCESSOR)
95 #include <machine/mpbiosvar.h>
96 #endif
97 #include <machine/mpconfig.h> /* for mp_verbose */
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 #include <machine/cpu_counter.h>
105
106 #include <x86/fpu.h>
107
108 #if NLAPIC > 0
109 #include <machine/apicvar.h>
110 #include <machine/i82489reg.h>
111 #include <machine/i82489var.h>
112 #endif
113
114 #include <dev/ic/mc146818reg.h>
115 #include <i386/isa/nvram.h>
116 #include <dev/isa/isareg.h>
117
118 #include "tsc.h"
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static bool cpu_stop(device_t);
126 static bool cpu_suspend(device_t, const pmf_qual_t *);
127 static bool cpu_resume(device_t, const pmf_qual_t *);
128 static bool cpu_shutdown(device_t, int);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 #ifdef MULTIPROCESSOR
137 int mp_cpu_start(struct cpu_info *, paddr_t);
138 void mp_cpu_start_cleanup(struct cpu_info *);
139 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
140 mp_cpu_start_cleanup };
141 #endif
142
143
144 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
145 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159
160 struct cpu_info *cpu_info_list = &cpu_info_primary;
161
162 #ifdef i386
163 void cpu_set_tss_gates(struct cpu_info *);
164 #endif
165
166 static void cpu_init_idle_lwp(struct cpu_info *);
167
168 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
169 /* [0] basic features cpuid.1:%edx
170 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
171 * [2] extended features cpuid:80000001:%edx
172 * [3] extended features cpuid:80000001:%ecx
173 * [4] VIA padlock features
174 * [5] structured extended features cpuid.7:%ebx
175 * [6] structured extended features cpuid.7:%ecx
176 */
177
178 #ifdef MULTIPROCESSOR
179 bool x86_mp_online;
180 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
181 #endif
182 #if NLAPIC > 0
183 static vaddr_t cmos_data_mapping;
184 #endif
185 struct cpu_info *cpu_starting;
186
187 #ifdef MULTIPROCESSOR
188 void cpu_hatch(void *);
189 static void cpu_boot_secondary(struct cpu_info *ci);
190 static void cpu_start_secondary(struct cpu_info *ci);
191 #if NLAPIC > 0
192 static void cpu_copy_trampoline(paddr_t);
193 #endif
194 #endif /* MULTIPROCESSOR */
195
196 /*
197 * Runs once per boot once multiprocessor goo has been detected and
198 * the local APIC on the boot processor has been mapped.
199 *
200 * Called from lapic_boot_init() (from mpbios_scan()).
201 */
202 #if NLAPIC > 0
203 void
204 cpu_init_first(void)
205 {
206
207 cpu_info_primary.ci_cpuid = lapic_cpu_number();
208
209 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
210 if (cmos_data_mapping == 0)
211 panic("No KVA for page 0");
212 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
213 pmap_update(pmap_kernel());
214 }
215 #endif
216
217 static int
218 cpu_match(device_t parent, cfdata_t match, void *aux)
219 {
220
221 return 1;
222 }
223
224 #ifdef __HAVE_PCPU_AREA
225 void
226 cpu_pcpuarea_init(struct cpu_info *ci)
227 {
228 struct vm_page *pg;
229 size_t i, npages;
230 vaddr_t base, va;
231 paddr_t pa;
232
233 CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
234
235 npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
236 base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
237
238 for (i = 0; i < npages; i++) {
239 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
240 if (pg == NULL) {
241 panic("failed to allocate pcpu PA");
242 }
243
244 va = base + i * PAGE_SIZE;
245 pa = VM_PAGE_TO_PHYS(pg);
246
247 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
248 }
249
250 pmap_update(pmap_kernel());
251 }
252 #endif
253
254 static void
255 cpu_vm_init(struct cpu_info *ci)
256 {
257 int ncolors = 2, i;
258
259 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
260 struct x86_cache_info *cai;
261 int tcolors;
262
263 cai = &ci->ci_cinfo[i];
264
265 tcolors = atop(cai->cai_totalsize);
266 switch(cai->cai_associativity) {
267 case 0xff:
268 tcolors = 1; /* fully associative */
269 break;
270 case 0:
271 case 1:
272 break;
273 default:
274 tcolors /= cai->cai_associativity;
275 }
276 ncolors = uimax(ncolors, tcolors);
277 /*
278 * If the desired number of colors is not a power of
279 * two, it won't be good. Find the greatest power of
280 * two which is an even divisor of the number of colors,
281 * to preserve even coloring of pages.
282 */
283 if (ncolors & (ncolors - 1) ) {
284 int try, picked = 1;
285 for (try = 1; try < ncolors; try *= 2) {
286 if (ncolors % try == 0) picked = try;
287 }
288 if (picked == 1) {
289 panic("desired number of cache colors %d is "
290 " > 1, but not even!", ncolors);
291 }
292 ncolors = picked;
293 }
294 }
295
296 /*
297 * Knowing the size of the largest cache on this CPU, potentially
298 * re-color our pages.
299 */
300 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
301 uvm_page_recolor(ncolors);
302
303 pmap_tlb_cpu_init(ci);
304 #ifndef __HAVE_DIRECT_MAP
305 pmap_vpage_cpu_init(ci);
306 #endif
307 }
308
309 static void
310 cpu_attach(device_t parent, device_t self, void *aux)
311 {
312 struct cpu_softc *sc = device_private(self);
313 struct cpu_attach_args *caa = aux;
314 struct cpu_info *ci;
315 uintptr_t ptr;
316 #if NLAPIC > 0
317 int cpunum = caa->cpu_number;
318 #endif
319 static bool again;
320
321 sc->sc_dev = self;
322
323 if (ncpu > maxcpus) {
324 #ifndef _LP64
325 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
326 #else
327 aprint_error(": too many CPUs\n");
328 #endif
329 return;
330 }
331
332 /*
333 * If we're an Application Processor, allocate a cpu_info
334 * structure, otherwise use the primary's.
335 */
336 if (caa->cpu_role == CPU_ROLE_AP) {
337 if ((boothowto & RB_MD1) != 0) {
338 aprint_error(": multiprocessor boot disabled\n");
339 if (!pmf_device_register(self, NULL, NULL))
340 aprint_error_dev(self,
341 "couldn't establish power handler\n");
342 return;
343 }
344 aprint_naive(": Application Processor\n");
345 ptr = (uintptr_t)uvm_km_alloc(kernel_map,
346 sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
347 UVM_KMF_WIRED|UVM_KMF_ZERO);
348 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
349 ci->ci_curldt = -1;
350 } else {
351 aprint_naive(": %s Processor\n",
352 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
353 ci = &cpu_info_primary;
354 #if NLAPIC > 0
355 if (cpunum != lapic_cpu_number()) {
356 /* XXX should be done earlier. */
357 uint32_t reg;
358 aprint_verbose("\n");
359 aprint_verbose_dev(self, "running CPU at apic %d"
360 " instead of at expected %d", lapic_cpu_number(),
361 cpunum);
362 reg = lapic_readreg(LAPIC_ID);
363 lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
364 (cpunum << LAPIC_ID_SHIFT));
365 }
366 if (cpunum != lapic_cpu_number()) {
367 aprint_error_dev(self, "unable to reset apic id\n");
368 }
369 #endif
370 }
371
372 ci->ci_self = ci;
373 sc->sc_info = ci;
374 ci->ci_dev = self;
375 ci->ci_acpiid = caa->cpu_id;
376 ci->ci_cpuid = caa->cpu_number;
377 ci->ci_func = caa->cpu_func;
378 aprint_normal("\n");
379
380 /* Must be before mi_cpu_attach(). */
381 cpu_vm_init(ci);
382
383 if (caa->cpu_role == CPU_ROLE_AP) {
384 int error;
385
386 error = mi_cpu_attach(ci);
387 if (error != 0) {
388 aprint_error_dev(self,
389 "mi_cpu_attach failed with %d\n", error);
390 return;
391 }
392 #ifdef __HAVE_PCPU_AREA
393 cpu_pcpuarea_init(ci);
394 #endif
395 cpu_init_tss(ci);
396 } else {
397 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
398 }
399
400 #ifdef SVS
401 cpu_svs_init(ci);
402 #endif
403
404 pmap_reference(pmap_kernel());
405 ci->ci_pmap = pmap_kernel();
406 ci->ci_tlbstate = TLBSTATE_STALE;
407
408 /*
409 * Boot processor may not be attached first, but the below
410 * must be done to allow booting other processors.
411 */
412 if (!again) {
413 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
414 /* Basic init. */
415 cpu_intr_init(ci);
416 cpu_get_tsc_freq(ci);
417 cpu_init(ci);
418 #ifdef i386
419 cpu_set_tss_gates(ci);
420 #endif
421 pmap_cpu_init_late(ci);
422 #if NLAPIC > 0
423 if (caa->cpu_role != CPU_ROLE_SP) {
424 /* Enable lapic. */
425 lapic_enable();
426 lapic_set_lvt();
427 lapic_calibrate_timer(ci);
428 }
429 #endif
430 /* Make sure DELAY() is initialized. */
431 DELAY(1);
432 again = true;
433 }
434
435 /* further PCB init done later. */
436
437 switch (caa->cpu_role) {
438 case CPU_ROLE_SP:
439 atomic_or_32(&ci->ci_flags, CPUF_SP);
440 cpu_identify(ci);
441 x86_errata();
442 x86_cpu_idle_init();
443 break;
444
445 case CPU_ROLE_BP:
446 atomic_or_32(&ci->ci_flags, CPUF_BSP);
447 cpu_identify(ci);
448 x86_errata();
449 x86_cpu_idle_init();
450 break;
451
452 #ifdef MULTIPROCESSOR
453 case CPU_ROLE_AP:
454 /*
455 * report on an AP
456 */
457 cpu_intr_init(ci);
458 gdt_alloc_cpu(ci);
459 #ifdef i386
460 cpu_set_tss_gates(ci);
461 #endif
462 pmap_cpu_init_late(ci);
463 cpu_start_secondary(ci);
464 if (ci->ci_flags & CPUF_PRESENT) {
465 struct cpu_info *tmp;
466
467 cpu_identify(ci);
468 tmp = cpu_info_list;
469 while (tmp->ci_next)
470 tmp = tmp->ci_next;
471
472 tmp->ci_next = ci;
473 }
474 break;
475 #endif
476
477 default:
478 panic("unknown processor type??\n");
479 }
480
481 pat_init(ci);
482
483 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
484 aprint_error_dev(self, "couldn't establish power handler\n");
485
486 #ifdef MULTIPROCESSOR
487 if (mp_verbose) {
488 struct lwp *l = ci->ci_data.cpu_idlelwp;
489 struct pcb *pcb = lwp_getpcb(l);
490
491 aprint_verbose_dev(self,
492 "idle lwp at %p, idle sp at %p\n",
493 l,
494 #ifdef i386
495 (void *)pcb->pcb_esp
496 #else
497 (void *)pcb->pcb_rsp
498 #endif
499 );
500 }
501 #endif
502
503 /*
504 * Postpone the "cpufeaturebus" scan.
505 * It is safe to scan the pseudo-bus
506 * only after all CPUs have attached.
507 */
508 (void)config_defer(self, cpu_defer);
509 }
510
511 static void
512 cpu_defer(device_t self)
513 {
514 cpu_rescan(self, NULL, NULL);
515 }
516
517 static int
518 cpu_rescan(device_t self, const char *ifattr, const int *locators)
519 {
520 struct cpu_softc *sc = device_private(self);
521 struct cpufeature_attach_args cfaa;
522 struct cpu_info *ci = sc->sc_info;
523
524 memset(&cfaa, 0, sizeof(cfaa));
525 cfaa.ci = ci;
526
527 if (ifattr_match(ifattr, "cpufeaturebus")) {
528 if (ci->ci_frequency == NULL) {
529 cfaa.name = "frequency";
530 ci->ci_frequency = config_found_ia(self,
531 "cpufeaturebus", &cfaa, NULL);
532 }
533
534 if (ci->ci_padlock == NULL) {
535 cfaa.name = "padlock";
536 ci->ci_padlock = config_found_ia(self,
537 "cpufeaturebus", &cfaa, NULL);
538 }
539
540 if (ci->ci_temperature == NULL) {
541 cfaa.name = "temperature";
542 ci->ci_temperature = config_found_ia(self,
543 "cpufeaturebus", &cfaa, NULL);
544 }
545
546 if (ci->ci_vm == NULL) {
547 cfaa.name = "vm";
548 ci->ci_vm = config_found_ia(self,
549 "cpufeaturebus", &cfaa, NULL);
550 }
551 }
552
553 return 0;
554 }
555
556 static void
557 cpu_childdetached(device_t self, device_t child)
558 {
559 struct cpu_softc *sc = device_private(self);
560 struct cpu_info *ci = sc->sc_info;
561
562 if (ci->ci_frequency == child)
563 ci->ci_frequency = NULL;
564
565 if (ci->ci_padlock == child)
566 ci->ci_padlock = NULL;
567
568 if (ci->ci_temperature == child)
569 ci->ci_temperature = NULL;
570
571 if (ci->ci_vm == child)
572 ci->ci_vm = NULL;
573 }
574
575 /*
576 * Initialize the processor appropriately.
577 */
578
579 void
580 cpu_init(struct cpu_info *ci)
581 {
582 extern int x86_fpu_save;
583 uint32_t cr4 = 0;
584
585 lcr0(rcr0() | CR0_WP);
586
587 /*
588 * On a P6 or above, enable global TLB caching if the
589 * hardware supports it.
590 */
591 if (cpu_feature[0] & CPUID_PGE)
592 #ifdef SVS
593 if (!svs_enabled)
594 #endif
595 cr4 |= CR4_PGE; /* enable global TLB caching */
596
597 /*
598 * If we have FXSAVE/FXRESTOR, use them.
599 */
600 if (cpu_feature[0] & CPUID_FXSR) {
601 cr4 |= CR4_OSFXSR;
602
603 /*
604 * If we have SSE/SSE2, enable XMM exceptions.
605 */
606 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
607 cr4 |= CR4_OSXMMEXCPT;
608 }
609
610 /* If xsave is supported, enable it */
611 if (cpu_feature[1] & CPUID2_XSAVE)
612 cr4 |= CR4_OSXSAVE;
613
614 /* If SMEP is supported, enable it */
615 if (cpu_feature[5] & CPUID_SEF_SMEP)
616 cr4 |= CR4_SMEP;
617
618 /* If SMAP is supported, enable it */
619 if (cpu_feature[5] & CPUID_SEF_SMAP)
620 cr4 |= CR4_SMAP;
621
622 if (cr4) {
623 cr4 |= rcr4();
624 lcr4(cr4);
625 }
626
627 /*
628 * Changing CR4 register may change cpuid values. For example, setting
629 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
630 * ci_feat_val[1], so update it.
631 * XXX Other than ci_feat_val[1] might be changed.
632 */
633 if (cpuid_level >= 1) {
634 u_int descs[4];
635
636 x86_cpuid(1, descs);
637 ci->ci_feat_val[1] = descs[2];
638 }
639
640 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
641 fpuinit_mxcsr_mask();
642 }
643
644 /* If xsave is enabled, enable all fpu features */
645 if (cr4 & CR4_OSXSAVE)
646 wrxcr(0, x86_xsave_features & XCR0_FPU);
647
648 #ifdef MTRR
649 /*
650 * On a P6 or above, initialize MTRR's if the hardware supports them.
651 */
652 if (cpu_feature[0] & CPUID_MTRR) {
653 if ((ci->ci_flags & CPUF_AP) == 0)
654 i686_mtrr_init_first();
655 mtrr_init_cpu(ci);
656 }
657
658 #ifdef i386
659 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
660 /*
661 * Must be a K6-2 Step >= 7 or a K6-III.
662 */
663 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
664 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
665 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
666 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
667 mtrr_funcs = &k6_mtrr_funcs;
668 k6_mtrr_init_first();
669 mtrr_init_cpu(ci);
670 }
671 }
672 }
673 #endif /* i386 */
674 #endif /* MTRR */
675
676 if (ci != &cpu_info_primary) {
677 /* Synchronize TSC */
678 wbinvd();
679 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
680 tsc_sync_ap(ci);
681 } else {
682 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
683 }
684 }
685
686 #ifdef MULTIPROCESSOR
687 void
688 cpu_boot_secondary_processors(void)
689 {
690 struct cpu_info *ci;
691 kcpuset_t *cpus;
692 u_long i;
693
694 /* Now that we know the number of CPUs, patch the text segment. */
695 x86_patch(false);
696
697 kcpuset_create(&cpus, true);
698 kcpuset_set(cpus, cpu_index(curcpu()));
699 for (i = 0; i < maxcpus; i++) {
700 ci = cpu_lookup(i);
701 if (ci == NULL)
702 continue;
703 if (ci->ci_data.cpu_idlelwp == NULL)
704 continue;
705 if ((ci->ci_flags & CPUF_PRESENT) == 0)
706 continue;
707 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
708 continue;
709 cpu_boot_secondary(ci);
710 kcpuset_set(cpus, cpu_index(ci));
711 }
712 while (!kcpuset_match(cpus, kcpuset_running))
713 ;
714 kcpuset_destroy(cpus);
715
716 x86_mp_online = true;
717
718 /* Now that we know about the TSC, attach the timecounter. */
719 tsc_tc_init();
720
721 /* Enable zeroing of pages in the idle loop if we have SSE2. */
722 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
723 }
724 #endif
725
726 static void
727 cpu_init_idle_lwp(struct cpu_info *ci)
728 {
729 struct lwp *l = ci->ci_data.cpu_idlelwp;
730 struct pcb *pcb = lwp_getpcb(l);
731
732 pcb->pcb_cr0 = rcr0();
733 }
734
735 void
736 cpu_init_idle_lwps(void)
737 {
738 struct cpu_info *ci;
739 u_long i;
740
741 for (i = 0; i < maxcpus; i++) {
742 ci = cpu_lookup(i);
743 if (ci == NULL)
744 continue;
745 if (ci->ci_data.cpu_idlelwp == NULL)
746 continue;
747 if ((ci->ci_flags & CPUF_PRESENT) == 0)
748 continue;
749 cpu_init_idle_lwp(ci);
750 }
751 }
752
753 #ifdef MULTIPROCESSOR
754 void
755 cpu_start_secondary(struct cpu_info *ci)
756 {
757 u_long psl;
758 int i;
759
760 #if NLAPIC > 0
761 paddr_t mp_pdirpa;
762 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
763 cpu_copy_trampoline(mp_pdirpa);
764 #endif
765
766 atomic_or_32(&ci->ci_flags, CPUF_AP);
767 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
768 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
769 return;
770 }
771
772 /*
773 * Wait for it to become ready. Setting cpu_starting opens the
774 * initial gate and allows the AP to start soft initialization.
775 */
776 KASSERT(cpu_starting == NULL);
777 cpu_starting = ci;
778 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
779 i8254_delay(10);
780 }
781
782 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
783 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
784 #if defined(MPDEBUG) && defined(DDB)
785 printf("dropping into debugger; continue from here to resume boot\n");
786 Debugger();
787 #endif
788 } else {
789 /*
790 * Synchronize time stamp counters. Invalidate cache and do
791 * twice (in tsc_sync_bp) to minimize possible cache effects.
792 * Disable interrupts to try and rule out any external
793 * interference.
794 */
795 psl = x86_read_psl();
796 x86_disable_intr();
797 wbinvd();
798 tsc_sync_bp(ci);
799 x86_write_psl(psl);
800 }
801
802 CPU_START_CLEANUP(ci);
803 cpu_starting = NULL;
804 }
805
806 void
807 cpu_boot_secondary(struct cpu_info *ci)
808 {
809 int64_t drift;
810 u_long psl;
811 int i;
812
813 atomic_or_32(&ci->ci_flags, CPUF_GO);
814 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
815 i8254_delay(10);
816 }
817 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
818 aprint_error_dev(ci->ci_dev, "failed to start\n");
819 #if defined(MPDEBUG) && defined(DDB)
820 printf("dropping into debugger; continue from here to resume boot\n");
821 Debugger();
822 #endif
823 } else {
824 /* Synchronize TSC again, check for drift. */
825 drift = ci->ci_data.cpu_cc_skew;
826 psl = x86_read_psl();
827 x86_disable_intr();
828 wbinvd();
829 tsc_sync_bp(ci);
830 x86_write_psl(psl);
831 drift -= ci->ci_data.cpu_cc_skew;
832 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
833 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
834 tsc_sync_drift(drift);
835 }
836 }
837
838 /*
839 * The CPU ends up here when it's ready to run.
840 * This is called from code in mptramp.s; at this point, we are running
841 * in the idle pcb/idle stack of the new CPU. When this function returns,
842 * this processor will enter the idle loop and start looking for work.
843 */
844 void
845 cpu_hatch(void *v)
846 {
847 struct cpu_info *ci = (struct cpu_info *)v;
848 struct pcb *pcb;
849 int s, i;
850
851 /* ------------------------------------------------------------- */
852
853 /*
854 * This section of code must be compiled with SSP disabled, to
855 * prevent a race against cpu0. See sys/conf/ssp.mk.
856 */
857
858 cpu_init_msrs(ci, true);
859 cpu_probe(ci);
860 cpu_speculation_init(ci);
861
862 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
863 /* cpu_get_tsc_freq(ci); */
864
865 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
866
867 /*
868 * Synchronize the TSC for the first time. Note that interrupts are
869 * off at this point.
870 */
871 wbinvd();
872 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
873 tsc_sync_ap(ci);
874
875 /* ------------------------------------------------------------- */
876
877 /*
878 * Wait to be brought online.
879 *
880 * Use MONITOR/MWAIT if available. These instructions put the CPU in
881 * a low consumption mode (C-state), and if the TSC is not invariant,
882 * this causes the TSC to drift. We want this to happen, so that we
883 * can later detect (in tsc_tc_init) any abnormal drift with invariant
884 * TSCs. That's just for safety; by definition such drifts should
885 * never occur with invariant TSCs.
886 *
887 * If not available, try PAUSE. We'd like to use HLT, but we have
888 * interrupts off.
889 */
890 while ((ci->ci_flags & CPUF_GO) == 0) {
891 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
892 x86_monitor(&ci->ci_flags, 0, 0);
893 if ((ci->ci_flags & CPUF_GO) != 0) {
894 continue;
895 }
896 x86_mwait(0, 0);
897 } else {
898 /*
899 * XXX The loop repetition count could be a lot higher, but
900 * XXX currently qemu emulator takes a _very_long_time_ to
901 * XXX execute the pause instruction. So for now, use a low
902 * XXX value to allow the cpu to hatch before timing out.
903 */
904 for (i = 50; i != 0; i--) {
905 x86_pause();
906 }
907 }
908 }
909
910 /* Because the text may have been patched in x86_patch(). */
911 wbinvd();
912 x86_flush();
913 tlbflushg();
914
915 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
916
917 #ifdef PAE
918 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
919 for (i = 0 ; i < PDP_SIZE; i++) {
920 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
921 }
922 lcr3(ci->ci_pae_l3_pdirpa);
923 #else
924 lcr3(pmap_pdirpa(pmap_kernel(), 0));
925 #endif
926
927 pcb = lwp_getpcb(curlwp);
928 pcb->pcb_cr3 = rcr3();
929 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
930 lcr0(pcb->pcb_cr0);
931
932 cpu_init_idt();
933 gdt_init_cpu(ci);
934 #if NLAPIC > 0
935 lapic_enable();
936 lapic_set_lvt();
937 lapic_initclocks();
938 #endif
939
940 fpuinit(ci);
941 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
942 ltr(ci->ci_tss_sel);
943
944 /*
945 * cpu_init will re-synchronize the TSC, and will detect any abnormal
946 * drift that would have been caused by the use of MONITOR/MWAIT
947 * above.
948 */
949 cpu_init(ci);
950 cpu_get_tsc_freq(ci);
951
952 s = splhigh();
953 #if NLAPIC > 0
954 lapic_write_tpri(0);
955 #endif
956 x86_enable_intr();
957 splx(s);
958 x86_errata();
959
960 aprint_debug_dev(ci->ci_dev, "running\n");
961
962 idle_loop(NULL);
963 KASSERT(false);
964 }
965 #endif
966
967 #if defined(DDB)
968
969 #include <ddb/db_output.h>
970 #include <machine/db_machdep.h>
971
972 /*
973 * Dump CPU information from ddb.
974 */
975 void
976 cpu_debug_dump(void)
977 {
978 struct cpu_info *ci;
979 CPU_INFO_ITERATOR cii;
980
981 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
982 for (CPU_INFO_FOREACH(cii, ci)) {
983 db_printf("%p %s %ld %x %x %10p %10p\n",
984 ci,
985 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
986 (long)ci->ci_cpuid,
987 ci->ci_flags, ci->ci_ipis,
988 ci->ci_curlwp,
989 ci->ci_fpcurlwp);
990 }
991 }
992 #endif
993
994 #ifdef MULTIPROCESSOR
995 #if NLAPIC > 0
996 static void
997 cpu_copy_trampoline(paddr_t pdir_pa)
998 {
999 extern uint32_t nox_flag;
1000 extern u_char cpu_spinup_trampoline[];
1001 extern u_char cpu_spinup_trampoline_end[];
1002 vaddr_t mp_trampoline_vaddr;
1003 struct {
1004 uint32_t large;
1005 uint32_t nox;
1006 uint32_t pdir;
1007 } smp_data;
1008 CTASSERT(sizeof(smp_data) == 3 * 4);
1009
1010 smp_data.large = (pmap_largepages != 0);
1011 smp_data.nox = nox_flag;
1012 smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1013
1014 /* Enter the physical address */
1015 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1016 UVM_KMF_VAONLY);
1017 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1018 VM_PROT_READ | VM_PROT_WRITE, 0);
1019 pmap_update(pmap_kernel());
1020
1021 /* Copy boot code */
1022 memcpy((void *)mp_trampoline_vaddr,
1023 cpu_spinup_trampoline,
1024 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1025
1026 /* Copy smp_data at the end */
1027 memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1028 &smp_data, sizeof(smp_data));
1029
1030 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1031 pmap_update(pmap_kernel());
1032 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1033 }
1034 #endif
1035
1036 int
1037 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1038 {
1039 int error;
1040
1041 /*
1042 * Bootstrap code must be addressable in real mode
1043 * and it must be page aligned.
1044 */
1045 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1046
1047 /*
1048 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1049 */
1050
1051 outb(IO_RTC, NVRAM_RESET);
1052 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1053
1054 #if NLAPIC > 0
1055 /*
1056 * "and the warm reset vector (DWORD based at 40:67) to point
1057 * to the AP startup code ..."
1058 */
1059 unsigned short dwordptr[2];
1060 dwordptr[0] = 0;
1061 dwordptr[1] = target >> 4;
1062
1063 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1064 #endif
1065
1066 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1067 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1068 return ENODEV;
1069 }
1070
1071 /*
1072 * ... prior to executing the following sequence:". We'll also add in
1073 * local cache flush, in case the BIOS has left the AP with its cache
1074 * disabled. It may not be able to cope with MP coherency.
1075 */
1076 wbinvd();
1077
1078 if (ci->ci_flags & CPUF_AP) {
1079 error = x86_ipi_init(ci->ci_cpuid);
1080 if (error != 0) {
1081 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1082 __func__);
1083 return error;
1084 }
1085 i8254_delay(10000);
1086
1087 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1088 if (error != 0) {
1089 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1090 __func__);
1091 return error;
1092 }
1093 i8254_delay(200);
1094
1095 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1096 if (error != 0) {
1097 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1098 __func__);
1099 return error;
1100 }
1101 i8254_delay(200);
1102 }
1103
1104 return 0;
1105 }
1106
1107 void
1108 mp_cpu_start_cleanup(struct cpu_info *ci)
1109 {
1110 /*
1111 * Ensure the NVRAM reset byte contains something vaguely sane.
1112 */
1113
1114 outb(IO_RTC, NVRAM_RESET);
1115 outb(IO_RTC+1, NVRAM_RESET_RST);
1116 }
1117 #endif
1118
1119 #ifdef __x86_64__
1120 typedef void (vector)(void);
1121 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1122 #endif
1123
1124 void
1125 cpu_init_msrs(struct cpu_info *ci, bool full)
1126 {
1127 #ifdef __x86_64__
1128 wrmsr(MSR_STAR,
1129 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1130 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1131 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1132 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1133 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1134
1135 #ifdef SVS
1136 if (svs_enabled)
1137 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1138 #endif
1139
1140 if (full) {
1141 wrmsr(MSR_FSBASE, 0);
1142 wrmsr(MSR_GSBASE, (uint64_t)ci);
1143 wrmsr(MSR_KERNELGSBASE, 0);
1144 }
1145 #endif /* __x86_64__ */
1146
1147 if (cpu_feature[2] & CPUID_NOX)
1148 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1149 }
1150
1151 void
1152 cpu_offline_md(void)
1153 {
1154 int s;
1155
1156 s = splhigh();
1157 fpusave_cpu(true);
1158 splx(s);
1159 }
1160
1161 /* XXX joerg restructure and restart CPUs individually */
1162 static bool
1163 cpu_stop(device_t dv)
1164 {
1165 struct cpu_softc *sc = device_private(dv);
1166 struct cpu_info *ci = sc->sc_info;
1167 int err;
1168
1169 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1170
1171 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1172 return true;
1173
1174 if (ci->ci_data.cpu_idlelwp == NULL)
1175 return true;
1176
1177 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1178
1179 if (sc->sc_wasonline) {
1180 mutex_enter(&cpu_lock);
1181 err = cpu_setstate(ci, false);
1182 mutex_exit(&cpu_lock);
1183
1184 if (err != 0)
1185 return false;
1186 }
1187
1188 return true;
1189 }
1190
1191 static bool
1192 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1193 {
1194 struct cpu_softc *sc = device_private(dv);
1195 struct cpu_info *ci = sc->sc_info;
1196
1197 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1198 return true;
1199 else {
1200 cpufreq_suspend(ci);
1201 }
1202
1203 return cpu_stop(dv);
1204 }
1205
1206 static bool
1207 cpu_resume(device_t dv, const pmf_qual_t *qual)
1208 {
1209 struct cpu_softc *sc = device_private(dv);
1210 struct cpu_info *ci = sc->sc_info;
1211 int err = 0;
1212
1213 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1214 return true;
1215
1216 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1217 goto out;
1218
1219 if (ci->ci_data.cpu_idlelwp == NULL)
1220 goto out;
1221
1222 if (sc->sc_wasonline) {
1223 mutex_enter(&cpu_lock);
1224 err = cpu_setstate(ci, true);
1225 mutex_exit(&cpu_lock);
1226 }
1227
1228 out:
1229 if (err != 0)
1230 return false;
1231
1232 cpufreq_resume(ci);
1233
1234 return true;
1235 }
1236
1237 static bool
1238 cpu_shutdown(device_t dv, int how)
1239 {
1240 struct cpu_softc *sc = device_private(dv);
1241 struct cpu_info *ci = sc->sc_info;
1242
1243 if ((ci->ci_flags & CPUF_BSP) != 0)
1244 return false;
1245
1246 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1247 return true;
1248
1249 return cpu_stop(dv);
1250 }
1251
1252 void
1253 cpu_get_tsc_freq(struct cpu_info *ci)
1254 {
1255 uint64_t last_tsc;
1256
1257 if (cpu_hascounter()) {
1258 last_tsc = cpu_counter_serializing();
1259 i8254_delay(100000);
1260 ci->ci_data.cpu_cc_freq =
1261 (cpu_counter_serializing() - last_tsc) * 10;
1262 }
1263 }
1264
1265 void
1266 x86_cpu_idle_mwait(void)
1267 {
1268 struct cpu_info *ci = curcpu();
1269
1270 KASSERT(ci->ci_ilevel == IPL_NONE);
1271
1272 x86_monitor(&ci->ci_want_resched, 0, 0);
1273 if (__predict_false(ci->ci_want_resched)) {
1274 return;
1275 }
1276 x86_mwait(0, 0);
1277 }
1278
1279 void
1280 x86_cpu_idle_halt(void)
1281 {
1282 struct cpu_info *ci = curcpu();
1283
1284 KASSERT(ci->ci_ilevel == IPL_NONE);
1285
1286 x86_disable_intr();
1287 if (!__predict_false(ci->ci_want_resched)) {
1288 x86_stihlt();
1289 } else {
1290 x86_enable_intr();
1291 }
1292 }
1293
1294 /*
1295 * Loads pmap for the current CPU.
1296 */
1297 void
1298 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1299 {
1300 #ifdef SVS
1301 if (svs_enabled) {
1302 svs_pdir_switch(pmap);
1303 }
1304 #endif
1305
1306 #ifdef PAE
1307 struct cpu_info *ci = curcpu();
1308 bool interrupts_enabled;
1309 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1310 int i;
1311
1312 /*
1313 * disable interrupts to block TLB shootdowns, which can reload cr3.
1314 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1315 * reload cr3.
1316 */
1317 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1318 if (interrupts_enabled)
1319 x86_disable_intr();
1320
1321 for (i = 0 ; i < PDP_SIZE; i++) {
1322 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1323 }
1324
1325 if (interrupts_enabled)
1326 x86_enable_intr();
1327 tlbflush();
1328 #else
1329 lcr3(pmap_pdirpa(pmap, 0));
1330 #endif
1331 }
1332
1333 /*
1334 * Notify all other cpus to halt.
1335 */
1336
1337 void
1338 cpu_broadcast_halt(void)
1339 {
1340 x86_broadcast_ipi(X86_IPI_HALT);
1341 }
1342
1343 /*
1344 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1345 */
1346
1347 void
1348 cpu_kick(struct cpu_info *ci)
1349 {
1350 x86_send_ipi(ci, 0);
1351 }
1352