cpu.c revision 1.17 1 /* $NetBSD: cpu.c,v 1.17 2008/01/14 15:23:56 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1999 Stefan Grefen
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the NetBSD
53 * Foundation, Inc. and its contributors.
54 * 4. Neither the name of The NetBSD Foundation nor the names of its
55 * contributors may be used to endorse or promote products derived
56 * from this software without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
59 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.17 2008/01/14 15:23:56 joerg Exp $");
73
74 #include "opt_ddb.h"
75 #include "opt_multiprocessor.h"
76 #include "opt_mpbios.h" /* for MPDEBUG */
77 #include "opt_mtrr.h"
78
79 #include "lapic.h"
80 #include "ioapic.h"
81
82 #include <sys/param.h>
83 #include <sys/proc.h>
84 #include <sys/user.h>
85 #include <sys/systm.h>
86 #include <sys/device.h>
87 #include <sys/malloc.h>
88 #include <sys/cpu.h>
89 #include <sys/atomic.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/tlog.h>
107 #endif
108
109 #if NLAPIC > 0
110 #include <machine/apicvar.h>
111 #include <machine/i82489reg.h>
112 #include <machine/i82489var.h>
113 #endif
114
115 #if NIOAPIC > 0
116 #include <machine/i82093var.h>
117 #endif
118
119 #include <dev/ic/mc146818reg.h>
120 #include <i386/isa/nvram.h>
121 #include <dev/isa/isareg.h>
122
123 int cpu_match(struct device *, struct cfdata *, void *);
124 void cpu_attach(struct device *, struct device *, void *);
125
126 static bool cpu_suspend(device_t);
127 static bool cpu_resume(device_t);
128
129 struct cpu_softc {
130 struct device sc_dev; /* device tree glue */
131 struct cpu_info *sc_info; /* pointer to CPU info */
132 };
133
134 int mp_cpu_start(struct cpu_info *, paddr_t);
135 void mp_cpu_start_cleanup(struct cpu_info *);
136 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
137 mp_cpu_start_cleanup };
138
139
140 CFATTACH_DECL(cpu, sizeof(struct cpu_softc),
141 cpu_match, cpu_attach, NULL, NULL);
142
143 /*
144 * Statically-allocated CPU info for the primary CPU (or the only
145 * CPU, on uniprocessors). The CPU info list is initialized to
146 * point at it.
147 */
148 #ifdef TRAPLOG
149 struct tlog tlog_primary;
150 #endif
151 struct cpu_info cpu_info_primary = {
152 .ci_dev = 0,
153 .ci_self = &cpu_info_primary,
154 .ci_idepth = -1,
155 .ci_curlwp = &lwp0,
156 #ifdef TRAPLOG
157 .ci_tlog_base = &tlog_primary,
158 #endif /* !TRAPLOG */
159 };
160
161 struct cpu_info *cpu_info_list = &cpu_info_primary;
162
163 static void cpu_set_tss_gates(struct cpu_info *);
164
165 #ifdef i386
166 static void tss_init(struct i386tss *, void *, void *);
167 #endif
168
169 #ifdef MULTIPROCESSOR
170 static void cpu_init_idle_lwp(struct cpu_info *);
171 #endif
172
173 uint32_t cpus_attached = 0;
174 uint32_t cpus_running = 0;
175
176 extern char x86_64_doubleflt_stack[];
177
178 bool x86_mp_online;
179 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
180
181 static vaddr_t cmos_data_mapping;
182
183 #ifdef MULTIPROCESSOR
184 /*
185 * Array of CPU info structures. Must be statically-allocated because
186 * curproc, etc. are used early.
187 */
188 struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
189
190 void cpu_hatch(void *);
191 static void cpu_boot_secondary(struct cpu_info *ci);
192 static void cpu_start_secondary(struct cpu_info *ci);
193 static void cpu_copy_trampoline(void);
194
195 /*
196 * Runs once per boot once multiprocessor goo has been detected and
197 * the local APIC on the boot processor has been mapped.
198 *
199 * Called from lapic_boot_init() (from mpbios_scan()).
200 */
201 void
202 cpu_init_first(void)
203 {
204 int cpunum = lapic_cpu_number();
205
206 if (cpunum != 0) {
207 cpu_info[0] = NULL;
208 cpu_info[cpunum] = &cpu_info_primary;
209 }
210
211 cpu_info_primary.ci_cpuid = cpunum;
212 cpu_copy_trampoline();
213
214 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
215 if (cmos_data_mapping == 0)
216 panic("No KVA for page 0");
217 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
218 pmap_update(pmap_kernel());
219 }
220 #endif
221
222 int
223 cpu_match(struct device *parent, struct cfdata *match,
224 void *aux)
225 {
226
227 return 1;
228 }
229
230 static void
231 cpu_vm_init(struct cpu_info *ci)
232 {
233 int ncolors = 2, i;
234
235 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
236 struct x86_cache_info *cai;
237 int tcolors;
238
239 cai = &ci->ci_cinfo[i];
240
241 tcolors = atop(cai->cai_totalsize);
242 switch(cai->cai_associativity) {
243 case 0xff:
244 tcolors = 1; /* fully associative */
245 break;
246 case 0:
247 case 1:
248 break;
249 default:
250 tcolors /= cai->cai_associativity;
251 }
252 ncolors = max(ncolors, tcolors);
253 }
254
255 /*
256 * Knowing the size of the largest cache on this CPU, re-color
257 * our pages.
258 */
259 if (ncolors <= uvmexp.ncolors)
260 return;
261 aprint_verbose("%s: %d page colors\n", ci->ci_dev->dv_xname, ncolors);
262 uvm_page_recolor(ncolors);
263 }
264
265
266 void
267 cpu_attach(struct device *parent, struct device *self, void *aux)
268 {
269 struct cpu_softc *sc = (void *) self;
270 struct cpu_attach_args *caa = aux;
271 struct cpu_info *ci;
272 #if defined(MULTIPROCESSOR)
273 int cpunum = caa->cpu_number;
274 #endif
275
276 /*
277 * If we're an Application Processor, allocate a cpu_info
278 * structure, otherwise use the primary's.
279 */
280 if (caa->cpu_role == CPU_ROLE_AP) {
281 aprint_naive(": Application Processor\n");
282 ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK);
283 memset(ci, 0, sizeof(*ci));
284 #if defined(MULTIPROCESSOR)
285 if (cpu_info[cpunum] != NULL) {
286 printf("\n");
287 panic("cpu at apic id %d already attached?", cpunum);
288 }
289 cpu_info[cpunum] = ci;
290 #endif
291 #ifdef TRAPLOG
292 ci->ci_tlog_base = malloc(sizeof(struct tlog),
293 M_DEVBUF, M_WAITOK);
294 #endif
295 } else {
296 aprint_naive(": %s Processor\n",
297 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
298 ci = &cpu_info_primary;
299 #if defined(MULTIPROCESSOR)
300 if (cpunum != lapic_cpu_number()) {
301 printf("\n");
302 panic("%s: running CPU is at apic %d"
303 " instead of at expected %d",
304 sc->sc_dev.dv_xname, lapic_cpu_number(), cpunum);
305 }
306 #endif
307 }
308
309 ci->ci_self = ci;
310 sc->sc_info = ci;
311
312 ci->ci_dev = self;
313 ci->ci_apicid = caa->cpu_number;
314 #ifdef MULTIPROCESSOR
315 ci->ci_cpuid = ci->ci_apicid;
316 #else
317 ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
318 #endif
319 ci->ci_cpumask = (1 << ci->ci_cpuid);
320 ci->ci_func = caa->cpu_func;
321
322 if (caa->cpu_role == CPU_ROLE_AP) {
323 #ifdef MULTIPROCESSOR
324 int error;
325
326 error = mi_cpu_attach(ci);
327 if (error != 0) {
328 aprint_normal("\n");
329 aprint_error("%s: mi_cpu_attach failed with %d\n",
330 sc->sc_dev.dv_xname, error);
331 return;
332 }
333 #endif
334 cpu_init_tss(ci);
335 } else {
336 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
337 }
338
339 pmap_reference(pmap_kernel());
340 ci->ci_pmap = pmap_kernel();
341 ci->ci_tlbstate = TLBSTATE_STALE;
342
343 /* further PCB init done later. */
344
345 switch (caa->cpu_role) {
346 case CPU_ROLE_SP:
347 aprint_normal(": (uniprocessor)\n");
348 atomic_or_32(&ci->ci_flags,
349 CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
350 cpu_intr_init(ci);
351 identifycpu(ci);
352 cpu_init(ci);
353 cpu_set_tss_gates(ci);
354 pmap_cpu_init_late(ci);
355 x86_errata();
356 break;
357
358 case CPU_ROLE_BP:
359 aprint_normal(": (boot processor)\n");
360 atomic_or_32(&ci->ci_flags,
361 CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
362 cpu_intr_init(ci);
363 identifycpu(ci);
364 cpu_init(ci);
365 cpu_set_tss_gates(ci);
366 pmap_cpu_init_late(ci);
367 #if NLAPIC > 0
368 /*
369 * Enable local apic
370 */
371 lapic_enable();
372 lapic_calibrate_timer(ci);
373 #endif
374 #if NIOAPIC > 0
375 ioapic_bsp_id = caa->cpu_number;
376 #endif
377 x86_errata();
378 break;
379
380 case CPU_ROLE_AP:
381 /*
382 * report on an AP
383 */
384 aprint_normal(": (application processor)\n");
385
386 #if defined(MULTIPROCESSOR)
387 cpu_intr_init(ci);
388 gdt_alloc_cpu(ci);
389 cpu_set_tss_gates(ci);
390 pmap_cpu_init_early(ci);
391 pmap_cpu_init_late(ci);
392 cpu_start_secondary(ci);
393 if (ci->ci_flags & CPUF_PRESENT) {
394 identifycpu(ci);
395 ci->ci_next = cpu_info_list->ci_next;
396 cpu_info_list->ci_next = ci;
397 }
398 #else
399 aprint_normal("%s: not started\n", sc->sc_dev.dv_xname);
400 #endif
401 break;
402
403 default:
404 printf("\n");
405 panic("unknown processor type??\n");
406 }
407 cpu_vm_init(ci);
408
409 cpus_attached |= ci->ci_cpumask;
410
411 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
412 aprint_error_dev(self, "couldn't establish power handler\n");
413
414 #if defined(MULTIPROCESSOR)
415 if (mp_verbose) {
416 struct lwp *l = ci->ci_data.cpu_idlelwp;
417
418 aprint_verbose(
419 "%s: idle lwp at %p, idle sp at %p\n",
420 sc->sc_dev.dv_xname, l,
421 #ifdef i386
422 (void *)l->l_addr->u_pcb.pcb_esp
423 #else
424 (void *)l->l_addr->u_pcb.pcb_rsp
425 #endif
426 );
427 }
428 #endif
429 }
430
431 /*
432 * Initialize the processor appropriately.
433 */
434
435 void
436 cpu_init(struct cpu_info *ci)
437 {
438 /* configure the CPU if needed */
439 if (ci->cpu_setup != NULL)
440 (*ci->cpu_setup)(ci);
441
442 #ifdef i386
443 /*
444 * On a 486 or above, enable ring 0 write protection.
445 */
446 if (ci->ci_cpu_class >= CPUCLASS_486)
447 lcr0(rcr0() | CR0_WP);
448 #else
449 lcr0(rcr0() | CR0_WP);
450 #endif
451
452 /*
453 * On a P6 or above, enable global TLB caching if the
454 * hardware supports it.
455 */
456 if (cpu_feature & CPUID_PGE)
457 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
458
459 /*
460 * If we have FXSAVE/FXRESTOR, use them.
461 */
462 if (cpu_feature & CPUID_FXSR) {
463 lcr4(rcr4() | CR4_OSFXSR);
464
465 /*
466 * If we have SSE/SSE2, enable XMM exceptions.
467 */
468 if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
469 lcr4(rcr4() | CR4_OSXMMEXCPT);
470 }
471
472 #ifdef MTRR
473 /*
474 * On a P6 or above, initialize MTRR's if the hardware supports them.
475 */
476 if (cpu_feature & CPUID_MTRR) {
477 if ((ci->ci_flags & CPUF_AP) == 0)
478 i686_mtrr_init_first();
479 mtrr_init_cpu(ci);
480 }
481
482 #ifdef i386
483 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
484 /*
485 * Must be a K6-2 Step >= 7 or a K6-III.
486 */
487 if (CPUID2FAMILY(ci->ci_signature) == 5) {
488 if (CPUID2MODEL(ci->ci_signature) > 8 ||
489 (CPUID2MODEL(ci->ci_signature) == 8 &&
490 CPUID2STEPPING(ci->ci_signature) >= 7)) {
491 mtrr_funcs = &k6_mtrr_funcs;
492 k6_mtrr_init_first();
493 mtrr_init_cpu(ci);
494 }
495 }
496 }
497 #endif /* i386 */
498 #endif /* MTRR */
499
500 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
501 atomic_or_32(&cpus_running, ci->ci_cpumask);
502
503 #ifndef MULTIPROCESSOR
504 /* XXX */
505 x86_patch();
506 #endif
507 }
508
509 #ifdef MULTIPROCESSOR
510 void
511 cpu_boot_secondary_processors(void)
512 {
513 struct cpu_info *ci;
514 u_long i;
515
516 /* Now that we know the number of CPUs, patch the text segment. */
517 x86_patch();
518
519 for (i=0; i < X86_MAXPROCS; i++) {
520 ci = cpu_info[i];
521 if (ci == NULL)
522 continue;
523 if (ci->ci_data.cpu_idlelwp == NULL)
524 continue;
525 if ((ci->ci_flags & CPUF_PRESENT) == 0)
526 continue;
527 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
528 continue;
529 cpu_boot_secondary(ci);
530 }
531
532 x86_mp_online = true;
533 }
534
535 static void
536 cpu_init_idle_lwp(struct cpu_info *ci)
537 {
538 struct lwp *l = ci->ci_data.cpu_idlelwp;
539 struct pcb *pcb = &l->l_addr->u_pcb;
540
541 pcb->pcb_cr0 = rcr0();
542 }
543
544 void
545 cpu_init_idle_lwps(void)
546 {
547 struct cpu_info *ci;
548 u_long i;
549
550 for (i = 0; i < X86_MAXPROCS; i++) {
551 ci = cpu_info[i];
552 if (ci == NULL)
553 continue;
554 if (ci->ci_data.cpu_idlelwp == NULL)
555 continue;
556 if ((ci->ci_flags & CPUF_PRESENT) == 0)
557 continue;
558 cpu_init_idle_lwp(ci);
559 }
560 }
561
562 void
563 cpu_start_secondary(struct cpu_info *ci)
564 {
565 int i;
566 extern paddr_t mp_pdirpa;
567
568 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
569
570 atomic_or_32(&ci->ci_flags, CPUF_AP);
571
572 aprint_debug("%s: starting\n", ci->ci_dev->dv_xname);
573
574 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
575 CPU_STARTUP(ci, mp_trampoline_paddr);
576
577 /*
578 * wait for it to become ready
579 */
580 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i>0;i--) {
581 i8254_delay(10);
582 }
583 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
584 aprint_error("%s: failed to become ready\n",
585 ci->ci_dev->dv_xname);
586 #if defined(MPDEBUG) && defined(DDB)
587 printf("dropping into debugger; continue from here to resume boot\n");
588 Debugger();
589 #endif
590 }
591
592 CPU_START_CLEANUP(ci);
593 }
594
595 void
596 cpu_boot_secondary(struct cpu_info *ci)
597 {
598 int i;
599
600 atomic_or_32(&ci->ci_flags, CPUF_GO);
601 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i>0;i--) {
602 i8254_delay(10);
603 }
604 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
605 aprint_error("%s: failed to start\n", ci->ci_dev->dv_xname);
606 #if defined(MPDEBUG) && defined(DDB)
607 printf("dropping into debugger; continue from here to resume boot\n");
608 Debugger();
609 #endif
610 }
611 }
612
613 /*
614 * The CPU ends up here when its ready to run
615 * This is called from code in mptramp.s; at this point, we are running
616 * in the idle pcb/idle stack of the new CPU. When this function returns,
617 * this processor will enter the idle loop and start looking for work.
618 */
619 void
620 cpu_hatch(void *v)
621 {
622 struct cpu_info *ci = (struct cpu_info *)v;
623 int s, i;
624
625 #ifdef __x86_64__
626 cpu_init_msrs(ci, true);
627 #endif
628 cpu_probe_features(ci);
629 cpu_feature &= ci->ci_feature_flags;
630 cpu_feature2 &= ci->ci_feature2_flags;
631
632 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
633 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
634 while ((ci->ci_flags & CPUF_GO) == 0) {
635 /* Don't use delay, boot CPU may be patching the text. */
636 for (i = 10000; i != 0; i--)
637 x86_pause();
638 }
639
640 /* Beacuse the text may have been patched in x86_patch(). */
641 wbinvd();
642 x86_flush();
643
644 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
645
646 lcr3(pmap_kernel()->pm_pdirpa);
647 curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
648 lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
649 cpu_init_idt();
650 gdt_init_cpu(ci);
651 lapic_enable();
652 lapic_set_lvt();
653 lapic_initclocks();
654
655 #ifdef i386
656 npxinit(ci);
657 #else
658 fpuinit(ci);
659 #endif
660 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
661 ltr(ci->ci_tss_sel);
662
663 cpu_init(ci);
664 cpu_get_tsc_freq(ci);
665
666 s = splhigh();
667 #ifdef i386
668 lapic_tpr = 0;
669 #else
670 lcr8(0);
671 #endif
672 x86_enable_intr();
673 splx(s);
674 x86_errata();
675
676 aprint_debug("%s: CPU %ld running\n", ci->ci_dev->dv_xname,
677 (long)ci->ci_cpuid);
678 }
679
680 #if defined(DDB)
681
682 #include <ddb/db_output.h>
683 #include <machine/db_machdep.h>
684
685 /*
686 * Dump CPU information from ddb.
687 */
688 void
689 cpu_debug_dump(void)
690 {
691 struct cpu_info *ci;
692 CPU_INFO_ITERATOR cii;
693
694 db_printf("addr dev id flags ipis curproc fpcurproc\n");
695 for (CPU_INFO_FOREACH(cii, ci)) {
696 db_printf("%p %s %ld %x %x %10p %10p\n",
697 ci,
698 ci->ci_dev == NULL ? "BOOT" : ci->ci_dev->dv_xname,
699 (long)ci->ci_cpuid,
700 ci->ci_flags, ci->ci_ipis,
701 ci->ci_curlwp,
702 ci->ci_fpcurlwp);
703 }
704 }
705 #endif
706
707 static void
708 cpu_copy_trampoline(void)
709 {
710 /*
711 * Copy boot code.
712 */
713 extern u_char cpu_spinup_trampoline[];
714 extern u_char cpu_spinup_trampoline_end[];
715
716 vaddr_t mp_trampoline_vaddr;
717
718 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
719 UVM_KMF_VAONLY);
720
721 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
722 VM_PROT_READ | VM_PROT_WRITE);
723 pmap_update(pmap_kernel());
724 memcpy((void *)mp_trampoline_vaddr,
725 cpu_spinup_trampoline,
726 cpu_spinup_trampoline_end-cpu_spinup_trampoline);
727
728 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
729 pmap_update(pmap_kernel());
730 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
731 }
732
733 #endif
734
735 #ifdef i386
736 static void
737 tss_init(struct i386tss *tss, void *stack, void *func)
738 {
739 memset(tss, 0, sizeof *tss);
740 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
741 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
742 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
743 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
744 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
745 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
746 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
747 tss->tss_esp = (int)((char *)stack + USPACE - 16);
748 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
749 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
750 tss->__tss_eip = (int)func;
751 }
752
753 /* XXX */
754 #define IDTVEC(name) __CONCAT(X, name)
755 typedef void (vector)(void);
756 extern vector IDTVEC(tss_trap08);
757 #ifdef DDB
758 extern vector Xintrddbipi;
759 extern int ddb_vec;
760 #endif
761
762 static void
763 cpu_set_tss_gates(struct cpu_info *ci)
764 {
765 struct segment_descriptor sd;
766
767 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
768 UVM_KMF_WIRED);
769 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
770 IDTVEC(tss_trap08));
771 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
772 SDT_SYS386TSS, SEL_KPL, 0, 0);
773 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
774 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
775 GSEL(GTRAPTSS_SEL, SEL_KPL));
776
777 #if defined(DDB) && defined(MULTIPROCESSOR)
778 /*
779 * Set up separate handler for the DDB IPI, so that it doesn't
780 * stomp on a possibly corrupted stack.
781 *
782 * XXX overwriting the gate set in db_machine_init.
783 * Should rearrange the code so that it's set only once.
784 */
785 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
786 UVM_KMF_WIRED);
787 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
788
789 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
790 SDT_SYS386TSS, SEL_KPL, 0, 0);
791 ci->ci_gdt[GIPITSS_SEL].sd = sd;
792
793 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
794 GSEL(GIPITSS_SEL, SEL_KPL));
795 #endif
796 }
797 #else
798 static void
799 cpu_set_tss_gates(struct cpu_info *ci)
800 {
801
802 }
803 #endif /* i386 */
804
805 int
806 mp_cpu_start(struct cpu_info *ci, paddr_t target)
807 {
808 #if NLAPIC > 0
809 int error;
810 #endif
811 unsigned short dwordptr[2];
812
813 /*
814 * Bootstrap code must be addressable in real mode
815 * and it must be page aligned.
816 */
817 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
818
819 /*
820 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
821 */
822
823 outb(IO_RTC, NVRAM_RESET);
824 outb(IO_RTC+1, NVRAM_RESET_JUMP);
825
826 /*
827 * "and the warm reset vector (DWORD based at 40:67) to point
828 * to the AP startup code ..."
829 */
830
831 dwordptr[0] = 0;
832 dwordptr[1] = target >> 4;
833
834 memcpy((uint8_t *)(cmos_data_mapping + 0x467), dwordptr, 4);
835
836 #if NLAPIC > 0
837 /*
838 * ... prior to executing the following sequence:"
839 */
840
841 if (ci->ci_flags & CPUF_AP) {
842 if ((error = x86_ipi_init(ci->ci_apicid)) != 0)
843 return error;
844
845 i8254_delay(10000);
846
847 if (cpu_feature & CPUID_APIC) {
848
849 if ((error = x86_ipi(target / PAGE_SIZE,
850 ci->ci_apicid,
851 LAPIC_DLMODE_STARTUP)) != 0)
852 return error;
853 i8254_delay(200);
854
855 if ((error = x86_ipi(target / PAGE_SIZE,
856 ci->ci_apicid,
857 LAPIC_DLMODE_STARTUP)) != 0)
858 return error;
859 i8254_delay(200);
860 }
861 }
862 #endif
863 return 0;
864 }
865
866 void
867 mp_cpu_start_cleanup(struct cpu_info *ci)
868 {
869 /*
870 * Ensure the NVRAM reset byte contains something vaguely sane.
871 */
872
873 outb(IO_RTC, NVRAM_RESET);
874 outb(IO_RTC+1, NVRAM_RESET_RST);
875 }
876
877 #ifdef __x86_64__
878 typedef void (vector)(void);
879 extern vector Xsyscall, Xsyscall32;
880
881 void
882 cpu_init_msrs(struct cpu_info *ci, bool full)
883 {
884 wrmsr(MSR_STAR,
885 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
886 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
887 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
888 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
889 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
890
891 if (full) {
892 wrmsr(MSR_FSBASE, 0);
893 wrmsr(MSR_GSBASE, (u_int64_t)ci);
894 wrmsr(MSR_KERNELGSBASE, 0);
895 }
896
897 if (cpu_feature & CPUID_NOX)
898 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
899 }
900 #endif /* __x86_64__ */
901
902 /* XXX joerg restructure and restart CPUs individually */
903 static bool
904 cpu_suspend(device_t dv)
905 {
906 struct cpu_softc *sc = device_private(dv);
907 struct cpu_info *ci = sc->sc_info;
908 int err, s;
909
910 if (ci->ci_flags & CPUF_PRIMARY)
911 return true;
912 if (ci->ci_data.cpu_idlelwp == NULL)
913 return true;
914 if ((ci->ci_flags & CPUF_PRESENT) == 0)
915 return true;
916
917 mutex_enter(&cpu_lock);
918 err = cpu_setonline(ci, false);
919 mutex_exit(&cpu_lock);
920
921 if (err)
922 return false;
923
924 s = splhigh();
925 #ifdef __i386__
926 npxsave_cpu(ci, 1);
927 #else
928 fpusave_cpu(ci, 1);
929 #endif
930 splx(s);
931
932 return true;
933 }
934
935 static bool
936 cpu_resume(device_t dv)
937 {
938 struct cpu_softc *sc = device_private(dv);
939 struct cpu_info *ci = sc->sc_info;
940 int err;
941
942 if (ci->ci_flags & CPUF_PRIMARY)
943 return true;
944 if (ci->ci_data.cpu_idlelwp == NULL)
945 return true;
946 if ((ci->ci_flags & CPUF_PRESENT) == 0)
947 return true;
948
949 mutex_enter(&cpu_lock);
950 err = cpu_setonline(ci, true);
951 mutex_exit(&cpu_lock);
952
953 return err == 0;
954 }
955
956 void
957 cpu_get_tsc_freq(struct cpu_info *ci)
958 {
959 uint64_t last_tsc;
960 u_int junk[4];
961
962 if (ci->ci_feature_flags & CPUID_TSC) {
963 /* Serialize. */
964 x86_cpuid(0, junk);
965 last_tsc = rdtsc();
966 i8254_delay(100000);
967 ci->ci_tsc_freq = (rdtsc() - last_tsc) * 10;
968 }
969 }
970