Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.175
      1 /*	$NetBSD: cpu.c,v 1.175 2019/11/22 23:36:25 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.175 2019/11/22 23:36:25 ad Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 #include "opt_svs.h"
     72 
     73 #include "lapic.h"
     74 #include "ioapic.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/proc.h>
     78 #include <sys/systm.h>
     79 #include <sys/device.h>
     80 #include <sys/cpu.h>
     81 #include <sys/cpufreq.h>
     82 #include <sys/idle.h>
     83 #include <sys/atomic.h>
     84 #include <sys/reboot.h>
     85 #include <sys/csan.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     90 
     91 #include <machine/cpufunc.h>
     92 #include <machine/cpuvar.h>
     93 #include <machine/pmap.h>
     94 #include <machine/vmparam.h>
     95 #if defined(MULTIPROCESSOR)
     96 #include <machine/mpbiosvar.h>
     97 #endif
     98 #include <machine/mpconfig.h>		/* for mp_verbose */
     99 #include <machine/pcb.h>
    100 #include <machine/specialreg.h>
    101 #include <machine/segments.h>
    102 #include <machine/gdt.h>
    103 #include <machine/mtrr.h>
    104 #include <machine/pio.h>
    105 #include <machine/cpu_counter.h>
    106 
    107 #include <x86/fpu.h>
    108 
    109 #if NLAPIC > 0
    110 #include <machine/apicvar.h>
    111 #include <machine/i82489reg.h>
    112 #include <machine/i82489var.h>
    113 #endif
    114 
    115 #include <dev/ic/mc146818reg.h>
    116 #include <i386/isa/nvram.h>
    117 #include <dev/isa/isareg.h>
    118 
    119 #include "tsc.h"
    120 
    121 static int	cpu_match(device_t, cfdata_t, void *);
    122 static void	cpu_attach(device_t, device_t, void *);
    123 static void	cpu_defer(device_t);
    124 static int	cpu_rescan(device_t, const char *, const int *);
    125 static void	cpu_childdetached(device_t, device_t);
    126 static bool	cpu_stop(device_t);
    127 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    128 static bool	cpu_resume(device_t, const pmf_qual_t *);
    129 static bool	cpu_shutdown(device_t, int);
    130 
    131 struct cpu_softc {
    132 	device_t sc_dev;		/* device tree glue */
    133 	struct cpu_info *sc_info;	/* pointer to CPU info */
    134 	bool sc_wasonline;
    135 };
    136 
    137 #ifdef MULTIPROCESSOR
    138 int mp_cpu_start(struct cpu_info *, paddr_t);
    139 void mp_cpu_start_cleanup(struct cpu_info *);
    140 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    141 					    mp_cpu_start_cleanup };
    142 #endif
    143 
    144 
    145 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    146     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    147 
    148 /*
    149  * Statically-allocated CPU info for the primary CPU (or the only
    150  * CPU, on uniprocessors).  The CPU info list is initialized to
    151  * point at it.
    152  */
    153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    154 	.ci_dev = 0,
    155 	.ci_self = &cpu_info_primary,
    156 	.ci_idepth = -1,
    157 	.ci_curlwp = &lwp0,
    158 	.ci_curldt = -1,
    159 };
    160 
    161 struct cpu_info *cpu_info_list = &cpu_info_primary;
    162 
    163 #ifdef i386
    164 void		cpu_set_tss_gates(struct cpu_info *);
    165 #endif
    166 
    167 static void	cpu_init_idle_lwp(struct cpu_info *);
    168 
    169 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    170 			/* [0] basic features cpuid.1:%edx
    171 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    172 			 * [2] extended features cpuid:80000001:%edx
    173 			 * [3] extended features cpuid:80000001:%ecx
    174 			 * [4] VIA padlock features
    175 			 * [5] structured extended features cpuid.7:%ebx
    176 			 * [6] structured extended features cpuid.7:%ecx
    177 			 */
    178 
    179 #ifdef MULTIPROCESSOR
    180 bool x86_mp_online;
    181 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    182 #endif
    183 #if NLAPIC > 0
    184 static vaddr_t cmos_data_mapping;
    185 #endif
    186 struct cpu_info *cpu_starting;
    187 
    188 #ifdef MULTIPROCESSOR
    189 void    	cpu_hatch(void *);
    190 static void    	cpu_boot_secondary(struct cpu_info *ci);
    191 static void    	cpu_start_secondary(struct cpu_info *ci);
    192 #if NLAPIC > 0
    193 static void	cpu_copy_trampoline(paddr_t);
    194 #endif
    195 #endif /* MULTIPROCESSOR */
    196 
    197 /*
    198  * Runs once per boot once multiprocessor goo has been detected and
    199  * the local APIC on the boot processor has been mapped.
    200  *
    201  * Called from lapic_boot_init() (from mpbios_scan()).
    202  */
    203 #if NLAPIC > 0
    204 void
    205 cpu_init_first(void)
    206 {
    207 
    208 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    209 
    210 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    211 	if (cmos_data_mapping == 0)
    212 		panic("No KVA for page 0");
    213 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    214 	pmap_update(pmap_kernel());
    215 }
    216 #endif
    217 
    218 static int
    219 cpu_match(device_t parent, cfdata_t match, void *aux)
    220 {
    221 
    222 	return 1;
    223 }
    224 
    225 #ifdef __HAVE_PCPU_AREA
    226 void
    227 cpu_pcpuarea_init(struct cpu_info *ci)
    228 {
    229 	struct vm_page *pg;
    230 	size_t i, npages;
    231 	vaddr_t base, va;
    232 	paddr_t pa;
    233 
    234 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    235 
    236 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    237 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    238 
    239 	for (i = 0; i < npages; i++) {
    240 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    241 		if (pg == NULL) {
    242 			panic("failed to allocate pcpu PA");
    243 		}
    244 
    245 		va = base + i * PAGE_SIZE;
    246 		pa = VM_PAGE_TO_PHYS(pg);
    247 
    248 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    249 	}
    250 
    251 	pmap_update(pmap_kernel());
    252 }
    253 #endif
    254 
    255 static void
    256 cpu_vm_init(struct cpu_info *ci)
    257 {
    258 	int ncolors = 2, i;
    259 
    260 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    261 		struct x86_cache_info *cai;
    262 		int tcolors;
    263 
    264 		cai = &ci->ci_cinfo[i];
    265 
    266 		tcolors = atop(cai->cai_totalsize);
    267 		switch(cai->cai_associativity) {
    268 		case 0xff:
    269 			tcolors = 1; /* fully associative */
    270 			break;
    271 		case 0:
    272 		case 1:
    273 			break;
    274 		default:
    275 			tcolors /= cai->cai_associativity;
    276 		}
    277 		ncolors = uimax(ncolors, tcolors);
    278 		/*
    279 		 * If the desired number of colors is not a power of
    280 		 * two, it won't be good.  Find the greatest power of
    281 		 * two which is an even divisor of the number of colors,
    282 		 * to preserve even coloring of pages.
    283 		 */
    284 		if (ncolors & (ncolors - 1) ) {
    285 			int try, picked = 1;
    286 			for (try = 1; try < ncolors; try *= 2) {
    287 				if (ncolors % try == 0) picked = try;
    288 			}
    289 			if (picked == 1) {
    290 				panic("desired number of cache colors %d is "
    291 			      	" > 1, but not even!", ncolors);
    292 			}
    293 			ncolors = picked;
    294 		}
    295 	}
    296 
    297 	/*
    298 	 * Knowing the size of the largest cache on this CPU, potentially
    299 	 * re-color our pages.
    300 	 */
    301 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    302 	uvm_page_recolor(ncolors);
    303 
    304 	pmap_tlb_cpu_init(ci);
    305 #ifndef __HAVE_DIRECT_MAP
    306 	pmap_vpage_cpu_init(ci);
    307 #endif
    308 }
    309 
    310 static void
    311 cpu_attach(device_t parent, device_t self, void *aux)
    312 {
    313 	struct cpu_softc *sc = device_private(self);
    314 	struct cpu_attach_args *caa = aux;
    315 	struct cpu_info *ci;
    316 	uintptr_t ptr;
    317 #if NLAPIC > 0
    318 	int cpunum = caa->cpu_number;
    319 #endif
    320 	static bool again;
    321 
    322 	sc->sc_dev = self;
    323 
    324 	if (ncpu > maxcpus) {
    325 #ifndef _LP64
    326 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    327 #else
    328 		aprint_error(": too many CPUs\n");
    329 #endif
    330 		return;
    331 	}
    332 
    333 	/*
    334 	 * If we're an Application Processor, allocate a cpu_info
    335 	 * structure, otherwise use the primary's.
    336 	 */
    337 	if (caa->cpu_role == CPU_ROLE_AP) {
    338 		if ((boothowto & RB_MD1) != 0) {
    339 			aprint_error(": multiprocessor boot disabled\n");
    340 			if (!pmf_device_register(self, NULL, NULL))
    341 				aprint_error_dev(self,
    342 				    "couldn't establish power handler\n");
    343 			return;
    344 		}
    345 		aprint_naive(": Application Processor\n");
    346 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    347 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    348 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    349 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    350 		ci->ci_curldt = -1;
    351 	} else {
    352 		aprint_naive(": %s Processor\n",
    353 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    354 		ci = &cpu_info_primary;
    355 #if NLAPIC > 0
    356 		if (cpunum != lapic_cpu_number()) {
    357 			/* XXX should be done earlier. */
    358 			uint32_t reg;
    359 			aprint_verbose("\n");
    360 			aprint_verbose_dev(self, "running CPU at apic %d"
    361 			    " instead of at expected %d", lapic_cpu_number(),
    362 			    cpunum);
    363 			reg = lapic_readreg(LAPIC_ID);
    364 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    365 			    (cpunum << LAPIC_ID_SHIFT));
    366 		}
    367 		if (cpunum != lapic_cpu_number()) {
    368 			aprint_error_dev(self, "unable to reset apic id\n");
    369 		}
    370 #endif
    371 	}
    372 
    373 	ci->ci_self = ci;
    374 	sc->sc_info = ci;
    375 	ci->ci_dev = self;
    376 	ci->ci_acpiid = caa->cpu_id;
    377 	ci->ci_cpuid = caa->cpu_number;
    378 	ci->ci_func = caa->cpu_func;
    379 	aprint_normal("\n");
    380 
    381 	/* Must be before mi_cpu_attach(). */
    382 	cpu_vm_init(ci);
    383 
    384 	if (caa->cpu_role == CPU_ROLE_AP) {
    385 		int error;
    386 
    387 		error = mi_cpu_attach(ci);
    388 		if (error != 0) {
    389 			aprint_error_dev(self,
    390 			    "mi_cpu_attach failed with %d\n", error);
    391 			return;
    392 		}
    393 #ifdef __HAVE_PCPU_AREA
    394 		cpu_pcpuarea_init(ci);
    395 #endif
    396 		cpu_init_tss(ci);
    397 	} else {
    398 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    399 	}
    400 
    401 #ifdef SVS
    402 	cpu_svs_init(ci);
    403 #endif
    404 
    405 	pmap_reference(pmap_kernel());
    406 	ci->ci_pmap = pmap_kernel();
    407 	ci->ci_tlbstate = TLBSTATE_STALE;
    408 
    409 	/*
    410 	 * Boot processor may not be attached first, but the below
    411 	 * must be done to allow booting other processors.
    412 	 */
    413 	if (!again) {
    414 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    415 		/* Basic init. */
    416 		cpu_intr_init(ci);
    417 		cpu_get_tsc_freq(ci);
    418 		cpu_init(ci);
    419 #ifdef i386
    420 		cpu_set_tss_gates(ci);
    421 #endif
    422 		pmap_cpu_init_late(ci);
    423 #if NLAPIC > 0
    424 		if (caa->cpu_role != CPU_ROLE_SP) {
    425 			/* Enable lapic. */
    426 			lapic_enable();
    427 			lapic_set_lvt();
    428 			lapic_calibrate_timer(ci);
    429 		}
    430 #endif
    431 		/* Make sure DELAY() is initialized. */
    432 		DELAY(1);
    433 		kcsan_cpu_init(ci);
    434 		again = true;
    435 	}
    436 
    437 	/* further PCB init done later. */
    438 
    439 	switch (caa->cpu_role) {
    440 	case CPU_ROLE_SP:
    441 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    442 		cpu_identify(ci);
    443 		x86_errata();
    444 		x86_cpu_idle_init();
    445 		break;
    446 
    447 	case CPU_ROLE_BP:
    448 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    449 		cpu_identify(ci);
    450 		x86_errata();
    451 		x86_cpu_idle_init();
    452 		break;
    453 
    454 #ifdef MULTIPROCESSOR
    455 	case CPU_ROLE_AP:
    456 		/*
    457 		 * report on an AP
    458 		 */
    459 		cpu_intr_init(ci);
    460 		gdt_alloc_cpu(ci);
    461 #ifdef i386
    462 		cpu_set_tss_gates(ci);
    463 #endif
    464 		pmap_cpu_init_late(ci);
    465 		cpu_start_secondary(ci);
    466 		if (ci->ci_flags & CPUF_PRESENT) {
    467 			struct cpu_info *tmp;
    468 
    469 			cpu_identify(ci);
    470 			tmp = cpu_info_list;
    471 			while (tmp->ci_next)
    472 				tmp = tmp->ci_next;
    473 
    474 			tmp->ci_next = ci;
    475 		}
    476 		break;
    477 #endif
    478 
    479 	default:
    480 		panic("unknown processor type??\n");
    481 	}
    482 
    483 	pat_init(ci);
    484 
    485 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    486 		aprint_error_dev(self, "couldn't establish power handler\n");
    487 
    488 #ifdef MULTIPROCESSOR
    489 	if (mp_verbose) {
    490 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    491 		struct pcb *pcb = lwp_getpcb(l);
    492 
    493 		aprint_verbose_dev(self,
    494 		    "idle lwp at %p, idle sp at %p\n",
    495 		    l,
    496 #ifdef i386
    497 		    (void *)pcb->pcb_esp
    498 #else
    499 		    (void *)pcb->pcb_rsp
    500 #endif
    501 		);
    502 	}
    503 #endif
    504 
    505 	/*
    506 	 * Postpone the "cpufeaturebus" scan.
    507 	 * It is safe to scan the pseudo-bus
    508 	 * only after all CPUs have attached.
    509 	 */
    510 	(void)config_defer(self, cpu_defer);
    511 }
    512 
    513 static void
    514 cpu_defer(device_t self)
    515 {
    516 	cpu_rescan(self, NULL, NULL);
    517 }
    518 
    519 static int
    520 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    521 {
    522 	struct cpu_softc *sc = device_private(self);
    523 	struct cpufeature_attach_args cfaa;
    524 	struct cpu_info *ci = sc->sc_info;
    525 
    526 	memset(&cfaa, 0, sizeof(cfaa));
    527 	cfaa.ci = ci;
    528 
    529 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    530 		if (ci->ci_frequency == NULL) {
    531 			cfaa.name = "frequency";
    532 			ci->ci_frequency = config_found_ia(self,
    533 			    "cpufeaturebus", &cfaa, NULL);
    534 		}
    535 
    536 		if (ci->ci_padlock == NULL) {
    537 			cfaa.name = "padlock";
    538 			ci->ci_padlock = config_found_ia(self,
    539 			    "cpufeaturebus", &cfaa, NULL);
    540 		}
    541 
    542 		if (ci->ci_temperature == NULL) {
    543 			cfaa.name = "temperature";
    544 			ci->ci_temperature = config_found_ia(self,
    545 			    "cpufeaturebus", &cfaa, NULL);
    546 		}
    547 
    548 		if (ci->ci_vm == NULL) {
    549 			cfaa.name = "vm";
    550 			ci->ci_vm = config_found_ia(self,
    551 			    "cpufeaturebus", &cfaa, NULL);
    552 		}
    553 	}
    554 
    555 	return 0;
    556 }
    557 
    558 static void
    559 cpu_childdetached(device_t self, device_t child)
    560 {
    561 	struct cpu_softc *sc = device_private(self);
    562 	struct cpu_info *ci = sc->sc_info;
    563 
    564 	if (ci->ci_frequency == child)
    565 		ci->ci_frequency = NULL;
    566 
    567 	if (ci->ci_padlock == child)
    568 		ci->ci_padlock = NULL;
    569 
    570 	if (ci->ci_temperature == child)
    571 		ci->ci_temperature = NULL;
    572 
    573 	if (ci->ci_vm == child)
    574 		ci->ci_vm = NULL;
    575 }
    576 
    577 /*
    578  * Initialize the processor appropriately.
    579  */
    580 
    581 void
    582 cpu_init(struct cpu_info *ci)
    583 {
    584 	extern int x86_fpu_save;
    585 	uint32_t cr4 = 0;
    586 
    587 	lcr0(rcr0() | CR0_WP);
    588 
    589 	/* If global TLB caching is supported, enable it */
    590 	if (cpu_feature[0] & CPUID_PGE)
    591 		cr4 |= CR4_PGE;
    592 
    593 	/*
    594 	 * If we have FXSAVE/FXRESTOR, use them.
    595 	 */
    596 	if (cpu_feature[0] & CPUID_FXSR) {
    597 		cr4 |= CR4_OSFXSR;
    598 
    599 		/*
    600 		 * If we have SSE/SSE2, enable XMM exceptions.
    601 		 */
    602 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    603 			cr4 |= CR4_OSXMMEXCPT;
    604 	}
    605 
    606 	/* If xsave is supported, enable it */
    607 	if (cpu_feature[1] & CPUID2_XSAVE)
    608 		cr4 |= CR4_OSXSAVE;
    609 
    610 	/* If SMEP is supported, enable it */
    611 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    612 		cr4 |= CR4_SMEP;
    613 
    614 	/* If SMAP is supported, enable it */
    615 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    616 		cr4 |= CR4_SMAP;
    617 
    618 #ifdef SVS
    619 	/* If PCID is supported, enable it */
    620 	if (svs_pcid)
    621 		cr4 |= CR4_PCIDE;
    622 #endif
    623 
    624 	if (cr4) {
    625 		cr4 |= rcr4();
    626 		lcr4(cr4);
    627 	}
    628 
    629 	/*
    630 	 * Changing CR4 register may change cpuid values. For example, setting
    631 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    632 	 * ci_feat_val[1], so update it.
    633 	 * XXX Other than ci_feat_val[1] might be changed.
    634 	 */
    635 	if (cpuid_level >= 1) {
    636 		u_int descs[4];
    637 
    638 		x86_cpuid(1, descs);
    639 		ci->ci_feat_val[1] = descs[2];
    640 	}
    641 
    642 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    643 		fpuinit_mxcsr_mask();
    644 	}
    645 
    646 	/* If xsave is enabled, enable all fpu features */
    647 	if (cr4 & CR4_OSXSAVE)
    648 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    649 
    650 #ifdef MTRR
    651 	/*
    652 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    653 	 */
    654 	if (cpu_feature[0] & CPUID_MTRR) {
    655 		if ((ci->ci_flags & CPUF_AP) == 0)
    656 			i686_mtrr_init_first();
    657 		mtrr_init_cpu(ci);
    658 	}
    659 
    660 #ifdef i386
    661 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    662 		/*
    663 		 * Must be a K6-2 Step >= 7 or a K6-III.
    664 		 */
    665 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    666 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    667 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    668 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    669 				mtrr_funcs = &k6_mtrr_funcs;
    670 				k6_mtrr_init_first();
    671 				mtrr_init_cpu(ci);
    672 			}
    673 		}
    674 	}
    675 #endif	/* i386 */
    676 #endif /* MTRR */
    677 
    678 	if (ci != &cpu_info_primary) {
    679 		/* Synchronize TSC */
    680 		wbinvd();
    681 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    682 		tsc_sync_ap(ci);
    683 	} else {
    684 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    685 	}
    686 }
    687 
    688 #ifdef MULTIPROCESSOR
    689 void
    690 cpu_boot_secondary_processors(void)
    691 {
    692 	struct cpu_info *ci;
    693 	kcpuset_t *cpus;
    694 	u_long i;
    695 
    696 #ifndef XEN
    697 	/* Now that we know the number of CPUs, patch the text segment. */
    698 	x86_patch(false);
    699 #endif
    700 
    701 	kcpuset_create(&cpus, true);
    702 	kcpuset_set(cpus, cpu_index(curcpu()));
    703 	for (i = 0; i < maxcpus; i++) {
    704 		ci = cpu_lookup(i);
    705 		if (ci == NULL)
    706 			continue;
    707 		if (ci->ci_data.cpu_idlelwp == NULL)
    708 			continue;
    709 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    710 			continue;
    711 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    712 			continue;
    713 		cpu_boot_secondary(ci);
    714 		kcpuset_set(cpus, cpu_index(ci));
    715 	}
    716 	while (!kcpuset_match(cpus, kcpuset_running))
    717 		;
    718 	kcpuset_destroy(cpus);
    719 
    720 	x86_mp_online = true;
    721 
    722 	/* Now that we know about the TSC, attach the timecounter. */
    723 	tsc_tc_init();
    724 
    725 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    726 	vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
    727 }
    728 #endif
    729 
    730 static void
    731 cpu_init_idle_lwp(struct cpu_info *ci)
    732 {
    733 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    734 	struct pcb *pcb = lwp_getpcb(l);
    735 
    736 	pcb->pcb_cr0 = rcr0();
    737 }
    738 
    739 void
    740 cpu_init_idle_lwps(void)
    741 {
    742 	struct cpu_info *ci;
    743 	u_long i;
    744 
    745 	for (i = 0; i < maxcpus; i++) {
    746 		ci = cpu_lookup(i);
    747 		if (ci == NULL)
    748 			continue;
    749 		if (ci->ci_data.cpu_idlelwp == NULL)
    750 			continue;
    751 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    752 			continue;
    753 		cpu_init_idle_lwp(ci);
    754 	}
    755 }
    756 
    757 #ifdef MULTIPROCESSOR
    758 void
    759 cpu_start_secondary(struct cpu_info *ci)
    760 {
    761 	u_long psl;
    762 	int i;
    763 
    764 #if NLAPIC > 0
    765 	paddr_t mp_pdirpa;
    766 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    767 	cpu_copy_trampoline(mp_pdirpa);
    768 #endif
    769 
    770 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    771 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    772 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    773 		return;
    774 	}
    775 
    776 	/*
    777 	 * Wait for it to become ready.   Setting cpu_starting opens the
    778 	 * initial gate and allows the AP to start soft initialization.
    779 	 */
    780 	KASSERT(cpu_starting == NULL);
    781 	cpu_starting = ci;
    782 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    783 		x86_delay(10);
    784 	}
    785 
    786 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    787 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    788 #if defined(MPDEBUG) && defined(DDB)
    789 		printf("dropping into debugger; continue from here to resume boot\n");
    790 		Debugger();
    791 #endif
    792 	} else {
    793 		/*
    794 		 * Synchronize time stamp counters. Invalidate cache and do
    795 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    796 		 * Disable interrupts to try and rule out any external
    797 		 * interference.
    798 		 */
    799 		psl = x86_read_psl();
    800 		x86_disable_intr();
    801 		wbinvd();
    802 		tsc_sync_bp(ci);
    803 		x86_write_psl(psl);
    804 	}
    805 
    806 	CPU_START_CLEANUP(ci);
    807 	cpu_starting = NULL;
    808 }
    809 
    810 void
    811 cpu_boot_secondary(struct cpu_info *ci)
    812 {
    813 	int64_t drift;
    814 	u_long psl;
    815 	int i;
    816 
    817 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    818 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    819 		x86_delay(10);
    820 	}
    821 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    822 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    823 #if defined(MPDEBUG) && defined(DDB)
    824 		printf("dropping into debugger; continue from here to resume boot\n");
    825 		Debugger();
    826 #endif
    827 	} else {
    828 		/* Synchronize TSC again, check for drift. */
    829 		drift = ci->ci_data.cpu_cc_skew;
    830 		psl = x86_read_psl();
    831 		x86_disable_intr();
    832 		wbinvd();
    833 		tsc_sync_bp(ci);
    834 		x86_write_psl(psl);
    835 		drift -= ci->ci_data.cpu_cc_skew;
    836 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    837 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    838 		tsc_sync_drift(drift);
    839 	}
    840 }
    841 
    842 /*
    843  * The CPU ends up here when it's ready to run.
    844  * This is called from code in mptramp.s; at this point, we are running
    845  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    846  * this processor will enter the idle loop and start looking for work.
    847  */
    848 void
    849 cpu_hatch(void *v)
    850 {
    851 	struct cpu_info *ci = (struct cpu_info *)v;
    852 	struct pcb *pcb;
    853 	int s, i;
    854 
    855 	/* ------------------------------------------------------------- */
    856 
    857 	/*
    858 	 * This section of code must be compiled with SSP disabled, to
    859 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    860 	 */
    861 
    862 	cpu_init_msrs(ci, true);
    863 	cpu_probe(ci);
    864 	cpu_speculation_init(ci);
    865 
    866 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    867 	/* cpu_get_tsc_freq(ci); */
    868 
    869 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    870 
    871 	/*
    872 	 * Synchronize the TSC for the first time. Note that interrupts are
    873 	 * off at this point.
    874 	 */
    875 	wbinvd();
    876 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    877 	tsc_sync_ap(ci);
    878 
    879 	/* ------------------------------------------------------------- */
    880 
    881 	/*
    882 	 * Wait to be brought online.
    883 	 *
    884 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    885 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    886 	 * this causes the TSC to drift. We want this to happen, so that we
    887 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    888 	 * TSCs. That's just for safety; by definition such drifts should
    889 	 * never occur with invariant TSCs.
    890 	 *
    891 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    892 	 * interrupts off.
    893 	 */
    894 	while ((ci->ci_flags & CPUF_GO) == 0) {
    895 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    896 			x86_monitor(&ci->ci_flags, 0, 0);
    897 			if ((ci->ci_flags & CPUF_GO) != 0) {
    898 				continue;
    899 			}
    900 			x86_mwait(0, 0);
    901 		} else {
    902 	/*
    903 	 * XXX The loop repetition count could be a lot higher, but
    904 	 * XXX currently qemu emulator takes a _very_long_time_ to
    905 	 * XXX execute the pause instruction.  So for now, use a low
    906 	 * XXX value to allow the cpu to hatch before timing out.
    907 	 */
    908 			for (i = 50; i != 0; i--) {
    909 				x86_pause();
    910 			}
    911 		}
    912 	}
    913 
    914 	/* Because the text may have been patched in x86_patch(). */
    915 	wbinvd();
    916 	x86_flush();
    917 	tlbflushg();
    918 
    919 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    920 
    921 #ifdef PAE
    922 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    923 	for (i = 0 ; i < PDP_SIZE; i++) {
    924 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
    925 	}
    926 	lcr3(ci->ci_pae_l3_pdirpa);
    927 #else
    928 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    929 #endif
    930 
    931 	pcb = lwp_getpcb(curlwp);
    932 	pcb->pcb_cr3 = rcr3();
    933 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    934 	lcr0(pcb->pcb_cr0);
    935 
    936 	cpu_init_idt();
    937 	gdt_init_cpu(ci);
    938 #if NLAPIC > 0
    939 	lapic_enable();
    940 	lapic_set_lvt();
    941 	lapic_initclocks();
    942 #endif
    943 
    944 	fpuinit(ci);
    945 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    946 	ltr(ci->ci_tss_sel);
    947 
    948 	/*
    949 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
    950 	 * drift that would have been caused by the use of MONITOR/MWAIT
    951 	 * above.
    952 	 */
    953 	cpu_init(ci);
    954 	cpu_get_tsc_freq(ci);
    955 
    956 	s = splhigh();
    957 #if NLAPIC > 0
    958 	lapic_write_tpri(0);
    959 #endif
    960 	x86_enable_intr();
    961 	splx(s);
    962 	x86_errata();
    963 
    964 	aprint_debug_dev(ci->ci_dev, "running\n");
    965 
    966 	kcsan_cpu_init(ci);
    967 
    968 	idle_loop(NULL);
    969 	KASSERT(false);
    970 }
    971 #endif
    972 
    973 #if defined(DDB)
    974 
    975 #include <ddb/db_output.h>
    976 #include <machine/db_machdep.h>
    977 
    978 /*
    979  * Dump CPU information from ddb.
    980  */
    981 void
    982 cpu_debug_dump(void)
    983 {
    984 	struct cpu_info *ci;
    985 	CPU_INFO_ITERATOR cii;
    986 	const char sixtyfour64space[] =
    987 #ifdef _LP64
    988 			   "        "
    989 #endif
    990 			   "";
    991 
    992 	db_printf("addr		%sdev	id	flags	ipis	curlwp 		"
    993 		  "\n", sixtyfour64space);
    994 	for (CPU_INFO_FOREACH(cii, ci)) {
    995 		db_printf("%p	%s	%ld	%x	%x	%10p\n",
    996 		    ci,
    997 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    998 		    (long)ci->ci_cpuid,
    999 		    ci->ci_flags, ci->ci_ipis,
   1000 		    ci->ci_curlwp);
   1001 	}
   1002 }
   1003 #endif
   1004 
   1005 #ifdef MULTIPROCESSOR
   1006 #if NLAPIC > 0
   1007 static void
   1008 cpu_copy_trampoline(paddr_t pdir_pa)
   1009 {
   1010 	extern uint32_t nox_flag;
   1011 	extern u_char cpu_spinup_trampoline[];
   1012 	extern u_char cpu_spinup_trampoline_end[];
   1013 	vaddr_t mp_trampoline_vaddr;
   1014 	struct {
   1015 		uint32_t large;
   1016 		uint32_t nox;
   1017 		uint32_t pdir;
   1018 	} smp_data;
   1019 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1020 
   1021 	smp_data.large = (pmap_largepages != 0);
   1022 	smp_data.nox = nox_flag;
   1023 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1024 
   1025 	/* Enter the physical address */
   1026 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1027 	    UVM_KMF_VAONLY);
   1028 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1029 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1030 	pmap_update(pmap_kernel());
   1031 
   1032 	/* Copy boot code */
   1033 	memcpy((void *)mp_trampoline_vaddr,
   1034 	    cpu_spinup_trampoline,
   1035 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1036 
   1037 	/* Copy smp_data at the end */
   1038 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1039 	    &smp_data, sizeof(smp_data));
   1040 
   1041 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1042 	pmap_update(pmap_kernel());
   1043 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1044 }
   1045 #endif
   1046 
   1047 int
   1048 mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1049 {
   1050 	int error;
   1051 
   1052 	/*
   1053 	 * Bootstrap code must be addressable in real mode
   1054 	 * and it must be page aligned.
   1055 	 */
   1056 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1057 
   1058 	/*
   1059 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1060 	 */
   1061 
   1062 	outb(IO_RTC, NVRAM_RESET);
   1063 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1064 
   1065 #if NLAPIC > 0
   1066 	/*
   1067 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1068 	 * to the AP startup code ..."
   1069 	 */
   1070 	unsigned short dwordptr[2];
   1071 	dwordptr[0] = 0;
   1072 	dwordptr[1] = target >> 4;
   1073 
   1074 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1075 #endif
   1076 
   1077 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1078 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1079 		return ENODEV;
   1080 	}
   1081 
   1082 	/*
   1083 	 * ... prior to executing the following sequence:".  We'll also add in
   1084 	 * local cache flush, in case the BIOS has left the AP with its cache
   1085 	 * disabled.  It may not be able to cope with MP coherency.
   1086 	 */
   1087 	wbinvd();
   1088 
   1089 	if (ci->ci_flags & CPUF_AP) {
   1090 		error = x86_ipi_init(ci->ci_cpuid);
   1091 		if (error != 0) {
   1092 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1093 			    __func__);
   1094 			return error;
   1095 		}
   1096 		x86_delay(10000);
   1097 
   1098 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1099 		if (error != 0) {
   1100 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1101 			    __func__);
   1102 			return error;
   1103 		}
   1104 		x86_delay(200);
   1105 
   1106 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1107 		if (error != 0) {
   1108 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1109 			    __func__);
   1110 			return error;
   1111 		}
   1112 		x86_delay(200);
   1113 	}
   1114 
   1115 	return 0;
   1116 }
   1117 
   1118 void
   1119 mp_cpu_start_cleanup(struct cpu_info *ci)
   1120 {
   1121 	/*
   1122 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1123 	 */
   1124 
   1125 	outb(IO_RTC, NVRAM_RESET);
   1126 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1127 }
   1128 #endif
   1129 
   1130 #ifdef __x86_64__
   1131 typedef void (vector)(void);
   1132 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1133 #endif
   1134 
   1135 void
   1136 cpu_init_msrs(struct cpu_info *ci, bool full)
   1137 {
   1138 #ifdef __x86_64__
   1139 	wrmsr(MSR_STAR,
   1140 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1141 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1142 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1143 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1144 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1145 
   1146 #ifdef SVS
   1147 	if (svs_enabled)
   1148 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1149 #endif
   1150 
   1151 	if (full) {
   1152 		wrmsr(MSR_FSBASE, 0);
   1153 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1154 		wrmsr(MSR_KERNELGSBASE, 0);
   1155 	}
   1156 #endif	/* __x86_64__ */
   1157 
   1158 	if (cpu_feature[2] & CPUID_NOX)
   1159 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1160 }
   1161 
   1162 void
   1163 cpu_offline_md(void)
   1164 {
   1165 	return;
   1166 }
   1167 
   1168 /* XXX joerg restructure and restart CPUs individually */
   1169 static bool
   1170 cpu_stop(device_t dv)
   1171 {
   1172 	struct cpu_softc *sc = device_private(dv);
   1173 	struct cpu_info *ci = sc->sc_info;
   1174 	int err;
   1175 
   1176 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1177 
   1178 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1179 		return true;
   1180 
   1181 	if (ci->ci_data.cpu_idlelwp == NULL)
   1182 		return true;
   1183 
   1184 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1185 
   1186 	if (sc->sc_wasonline) {
   1187 		mutex_enter(&cpu_lock);
   1188 		err = cpu_setstate(ci, false);
   1189 		mutex_exit(&cpu_lock);
   1190 
   1191 		if (err != 0)
   1192 			return false;
   1193 	}
   1194 
   1195 	return true;
   1196 }
   1197 
   1198 static bool
   1199 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1200 {
   1201 	struct cpu_softc *sc = device_private(dv);
   1202 	struct cpu_info *ci = sc->sc_info;
   1203 
   1204 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1205 		return true;
   1206 	else {
   1207 		cpufreq_suspend(ci);
   1208 	}
   1209 
   1210 	return cpu_stop(dv);
   1211 }
   1212 
   1213 static bool
   1214 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1215 {
   1216 	struct cpu_softc *sc = device_private(dv);
   1217 	struct cpu_info *ci = sc->sc_info;
   1218 	int err = 0;
   1219 
   1220 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1221 		return true;
   1222 
   1223 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1224 		goto out;
   1225 
   1226 	if (ci->ci_data.cpu_idlelwp == NULL)
   1227 		goto out;
   1228 
   1229 	if (sc->sc_wasonline) {
   1230 		mutex_enter(&cpu_lock);
   1231 		err = cpu_setstate(ci, true);
   1232 		mutex_exit(&cpu_lock);
   1233 	}
   1234 
   1235 out:
   1236 	if (err != 0)
   1237 		return false;
   1238 
   1239 	cpufreq_resume(ci);
   1240 
   1241 	return true;
   1242 }
   1243 
   1244 static bool
   1245 cpu_shutdown(device_t dv, int how)
   1246 {
   1247 	struct cpu_softc *sc = device_private(dv);
   1248 	struct cpu_info *ci = sc->sc_info;
   1249 
   1250 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1251 		return false;
   1252 
   1253 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1254 		return true;
   1255 
   1256 	return cpu_stop(dv);
   1257 }
   1258 
   1259 void
   1260 cpu_get_tsc_freq(struct cpu_info *ci)
   1261 {
   1262 	uint64_t last_tsc;
   1263 
   1264 	if (cpu_hascounter()) {
   1265 		last_tsc = cpu_counter_serializing();
   1266 		x86_delay(100000);
   1267 		ci->ci_data.cpu_cc_freq =
   1268 		    (cpu_counter_serializing() - last_tsc) * 10;
   1269 	}
   1270 }
   1271 
   1272 void
   1273 x86_cpu_idle_mwait(void)
   1274 {
   1275 	struct cpu_info *ci = curcpu();
   1276 
   1277 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1278 
   1279 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1280 	if (__predict_false(ci->ci_want_resched)) {
   1281 		return;
   1282 	}
   1283 	x86_mwait(0, 0);
   1284 }
   1285 
   1286 void
   1287 x86_cpu_idle_halt(void)
   1288 {
   1289 	struct cpu_info *ci = curcpu();
   1290 
   1291 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1292 
   1293 	x86_disable_intr();
   1294 	if (!__predict_false(ci->ci_want_resched)) {
   1295 		x86_stihlt();
   1296 	} else {
   1297 		x86_enable_intr();
   1298 	}
   1299 }
   1300 
   1301 /*
   1302  * Loads pmap for the current CPU.
   1303  */
   1304 void
   1305 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1306 {
   1307 #ifdef SVS
   1308 	if (svs_enabled) {
   1309 		svs_pdir_switch(pmap);
   1310 	}
   1311 #endif
   1312 
   1313 #ifdef PAE
   1314 	struct cpu_info *ci = curcpu();
   1315 	bool interrupts_enabled;
   1316 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1317 	int i;
   1318 
   1319 	/*
   1320 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1321 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1322 	 * reload cr3.
   1323 	 */
   1324 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1325 	if (interrupts_enabled)
   1326 		x86_disable_intr();
   1327 
   1328 	for (i = 0 ; i < PDP_SIZE; i++) {
   1329 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1330 	}
   1331 
   1332 	if (interrupts_enabled)
   1333 		x86_enable_intr();
   1334 	tlbflush();
   1335 #else
   1336 	lcr3(pmap_pdirpa(pmap, 0));
   1337 #endif
   1338 }
   1339 
   1340 /*
   1341  * Notify all other cpus to halt.
   1342  */
   1343 
   1344 void
   1345 cpu_broadcast_halt(void)
   1346 {
   1347 	x86_broadcast_ipi(X86_IPI_HALT);
   1348 }
   1349 
   1350 /*
   1351  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1352  */
   1353 
   1354 void
   1355 cpu_kick(struct cpu_info *ci)
   1356 {
   1357 	x86_send_ipi(ci, 0);
   1358 }
   1359