Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.181
      1 /*	$NetBSD: cpu.c,v 1.181 2020/01/14 01:41:37 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.181 2020/01/14 01:41:37 pgoyette Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 #include "opt_svs.h"
     72 
     73 #include "lapic.h"
     74 #include "ioapic.h"
     75 #include "acpica.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/proc.h>
     79 #include <sys/systm.h>
     80 #include <sys/device.h>
     81 #include <sys/cpu.h>
     82 #include <sys/cpufreq.h>
     83 #include <sys/idle.h>
     84 #include <sys/atomic.h>
     85 #include <sys/reboot.h>
     86 #include <sys/csan.h>
     87 
     88 #include <uvm/uvm.h>
     89 
     90 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     91 
     92 #include <machine/cpufunc.h>
     93 #include <machine/cpuvar.h>
     94 #include <machine/pmap.h>
     95 #include <machine/vmparam.h>
     96 #if defined(MULTIPROCESSOR)
     97 #include <machine/mpbiosvar.h>
     98 #endif
     99 #include <machine/mpconfig.h>		/* for mp_verbose */
    100 #include <machine/pcb.h>
    101 #include <machine/specialreg.h>
    102 #include <machine/segments.h>
    103 #include <machine/gdt.h>
    104 #include <machine/mtrr.h>
    105 #include <machine/pio.h>
    106 #include <machine/cpu_counter.h>
    107 
    108 #include <x86/fpu.h>
    109 
    110 #if NACPICA > 0
    111 #include <dev/acpi/acpi_srat.h>
    112 #endif
    113 
    114 #if NLAPIC > 0
    115 #include <machine/apicvar.h>
    116 #include <machine/i82489reg.h>
    117 #include <machine/i82489var.h>
    118 #endif
    119 
    120 #include <dev/ic/mc146818reg.h>
    121 #include <i386/isa/nvram.h>
    122 #include <dev/isa/isareg.h>
    123 
    124 #include "tsc.h"
    125 
    126 #ifndef XEN
    127 #include "hyperv.h"
    128 #if NHYPERV > 0
    129 #include <x86/x86/hypervvar.h>
    130 #endif
    131 #endif
    132 
    133 static int	cpu_match(device_t, cfdata_t, void *);
    134 static void	cpu_attach(device_t, device_t, void *);
    135 static void	cpu_defer(device_t);
    136 static int	cpu_rescan(device_t, const char *, const int *);
    137 static void	cpu_childdetached(device_t, device_t);
    138 static bool	cpu_stop(device_t);
    139 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    140 static bool	cpu_resume(device_t, const pmf_qual_t *);
    141 static bool	cpu_shutdown(device_t, int);
    142 
    143 struct cpu_softc {
    144 	device_t sc_dev;		/* device tree glue */
    145 	struct cpu_info *sc_info;	/* pointer to CPU info */
    146 	bool sc_wasonline;
    147 };
    148 
    149 #ifdef MULTIPROCESSOR
    150 int mp_cpu_start(struct cpu_info *, paddr_t);
    151 void mp_cpu_start_cleanup(struct cpu_info *);
    152 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    153 					    mp_cpu_start_cleanup };
    154 #endif
    155 
    156 
    157 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    158     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    159 
    160 /*
    161  * Statically-allocated CPU info for the primary CPU (or the only
    162  * CPU, on uniprocessors).  The CPU info list is initialized to
    163  * point at it.
    164  */
    165 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    166 	.ci_dev = 0,
    167 	.ci_self = &cpu_info_primary,
    168 	.ci_idepth = -1,
    169 	.ci_curlwp = &lwp0,
    170 	.ci_curldt = -1,
    171 };
    172 
    173 struct cpu_info *cpu_info_list = &cpu_info_primary;
    174 
    175 #ifdef i386
    176 void		cpu_set_tss_gates(struct cpu_info *);
    177 #endif
    178 
    179 static void	cpu_init_idle_lwp(struct cpu_info *);
    180 
    181 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    182 			/* [0] basic features cpuid.1:%edx
    183 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    184 			 * [2] extended features cpuid:80000001:%edx
    185 			 * [3] extended features cpuid:80000001:%ecx
    186 			 * [4] VIA padlock features
    187 			 * [5] structured extended features cpuid.7:%ebx
    188 			 * [6] structured extended features cpuid.7:%ecx
    189 			 */
    190 
    191 #ifdef MULTIPROCESSOR
    192 bool x86_mp_online;
    193 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    194 #endif
    195 #if NLAPIC > 0
    196 static vaddr_t cmos_data_mapping;
    197 #endif
    198 struct cpu_info *cpu_starting;
    199 
    200 #ifdef MULTIPROCESSOR
    201 void    	cpu_hatch(void *);
    202 static void    	cpu_boot_secondary(struct cpu_info *ci);
    203 static void    	cpu_start_secondary(struct cpu_info *ci);
    204 #if NLAPIC > 0
    205 static void	cpu_copy_trampoline(paddr_t);
    206 #endif
    207 #endif /* MULTIPROCESSOR */
    208 
    209 /*
    210  * Runs once per boot once multiprocessor goo has been detected and
    211  * the local APIC on the boot processor has been mapped.
    212  *
    213  * Called from lapic_boot_init() (from mpbios_scan()).
    214  */
    215 #if NLAPIC > 0
    216 void
    217 cpu_init_first(void)
    218 {
    219 
    220 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    221 
    222 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    223 	if (cmos_data_mapping == 0)
    224 		panic("No KVA for page 0");
    225 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    226 	pmap_update(pmap_kernel());
    227 }
    228 #endif
    229 
    230 static int
    231 cpu_match(device_t parent, cfdata_t match, void *aux)
    232 {
    233 
    234 	return 1;
    235 }
    236 
    237 #ifdef __HAVE_PCPU_AREA
    238 void
    239 cpu_pcpuarea_init(struct cpu_info *ci)
    240 {
    241 	struct vm_page *pg;
    242 	size_t i, npages;
    243 	vaddr_t base, va;
    244 	paddr_t pa;
    245 
    246 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    247 
    248 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    249 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    250 
    251 	for (i = 0; i < npages; i++) {
    252 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    253 		if (pg == NULL) {
    254 			panic("failed to allocate pcpu PA");
    255 		}
    256 
    257 		va = base + i * PAGE_SIZE;
    258 		pa = VM_PAGE_TO_PHYS(pg);
    259 
    260 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    261 	}
    262 
    263 	pmap_update(pmap_kernel());
    264 }
    265 #endif
    266 
    267 static void
    268 cpu_vm_init(struct cpu_info *ci)
    269 {
    270 	int ncolors = 2, i;
    271 
    272 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    273 		struct x86_cache_info *cai;
    274 		int tcolors;
    275 
    276 		cai = &ci->ci_cinfo[i];
    277 
    278 		tcolors = atop(cai->cai_totalsize);
    279 		switch(cai->cai_associativity) {
    280 		case 0xff:
    281 			tcolors = 1; /* fully associative */
    282 			break;
    283 		case 0:
    284 		case 1:
    285 			break;
    286 		default:
    287 			tcolors /= cai->cai_associativity;
    288 		}
    289 		ncolors = uimax(ncolors, tcolors);
    290 		/*
    291 		 * If the desired number of colors is not a power of
    292 		 * two, it won't be good.  Find the greatest power of
    293 		 * two which is an even divisor of the number of colors,
    294 		 * to preserve even coloring of pages.
    295 		 */
    296 		if (ncolors & (ncolors - 1) ) {
    297 			int try, picked = 1;
    298 			for (try = 1; try < ncolors; try *= 2) {
    299 				if (ncolors % try == 0) picked = try;
    300 			}
    301 			if (picked == 1) {
    302 				panic("desired number of cache colors %d is "
    303 			      	" > 1, but not even!", ncolors);
    304 			}
    305 			ncolors = picked;
    306 		}
    307 	}
    308 
    309 	/*
    310 	 * Knowing the size of the largest cache on this CPU, potentially
    311 	 * re-color our pages.
    312 	 */
    313 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    314 	uvm_page_recolor(ncolors);
    315 
    316 	pmap_tlb_cpu_init(ci);
    317 #ifndef __HAVE_DIRECT_MAP
    318 	pmap_vpage_cpu_init(ci);
    319 #endif
    320 }
    321 
    322 static void
    323 cpu_attach(device_t parent, device_t self, void *aux)
    324 {
    325 	struct cpu_softc *sc = device_private(self);
    326 	struct cpu_attach_args *caa = aux;
    327 	struct cpu_info *ci;
    328 	uintptr_t ptr;
    329 #if NLAPIC > 0
    330 	int cpunum = caa->cpu_number;
    331 #endif
    332 	static bool again;
    333 
    334 	sc->sc_dev = self;
    335 
    336 	if (ncpu > maxcpus) {
    337 #ifndef _LP64
    338 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    339 #else
    340 		aprint_error(": too many CPUs\n");
    341 #endif
    342 		return;
    343 	}
    344 
    345 	/*
    346 	 * If we're an Application Processor, allocate a cpu_info
    347 	 * structure, otherwise use the primary's.
    348 	 */
    349 	if (caa->cpu_role == CPU_ROLE_AP) {
    350 		if ((boothowto & RB_MD1) != 0) {
    351 			aprint_error(": multiprocessor boot disabled\n");
    352 			if (!pmf_device_register(self, NULL, NULL))
    353 				aprint_error_dev(self,
    354 				    "couldn't establish power handler\n");
    355 			return;
    356 		}
    357 		aprint_naive(": Application Processor\n");
    358 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    359 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    360 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    361 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    362 		ci->ci_curldt = -1;
    363 	} else {
    364 		aprint_naive(": %s Processor\n",
    365 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    366 		ci = &cpu_info_primary;
    367 #if NLAPIC > 0
    368 		if (cpunum != lapic_cpu_number()) {
    369 			/* XXX should be done earlier. */
    370 			uint32_t reg;
    371 			aprint_verbose("\n");
    372 			aprint_verbose_dev(self, "running CPU at apic %d"
    373 			    " instead of at expected %d", lapic_cpu_number(),
    374 			    cpunum);
    375 			reg = lapic_readreg(LAPIC_ID);
    376 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    377 			    (cpunum << LAPIC_ID_SHIFT));
    378 		}
    379 		if (cpunum != lapic_cpu_number()) {
    380 			aprint_error_dev(self, "unable to reset apic id\n");
    381 		}
    382 #endif
    383 	}
    384 
    385 	ci->ci_self = ci;
    386 	sc->sc_info = ci;
    387 	ci->ci_dev = self;
    388 	ci->ci_acpiid = caa->cpu_id;
    389 	ci->ci_cpuid = caa->cpu_number;
    390 	ci->ci_func = caa->cpu_func;
    391 	ci->ci_kfpu_spl = -1;
    392 	aprint_normal("\n");
    393 
    394 	/* Must be before mi_cpu_attach(). */
    395 	cpu_vm_init(ci);
    396 
    397 	if (caa->cpu_role == CPU_ROLE_AP) {
    398 		int error;
    399 
    400 		error = mi_cpu_attach(ci);
    401 		if (error != 0) {
    402 			aprint_error_dev(self,
    403 			    "mi_cpu_attach failed with %d\n", error);
    404 			return;
    405 		}
    406 #ifdef __HAVE_PCPU_AREA
    407 		cpu_pcpuarea_init(ci);
    408 #endif
    409 		cpu_init_tss(ci);
    410 	} else {
    411 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    412 #if NACPICA > 0
    413 		/* Parse out NUMA info for cpu_identify(). */
    414 		acpisrat_init();
    415 #endif
    416 	}
    417 
    418 #ifdef SVS
    419 	cpu_svs_init(ci);
    420 #endif
    421 
    422 	pmap_reference(pmap_kernel());
    423 	ci->ci_pmap = pmap_kernel();
    424 	ci->ci_tlbstate = TLBSTATE_STALE;
    425 
    426 	/*
    427 	 * Boot processor may not be attached first, but the below
    428 	 * must be done to allow booting other processors.
    429 	 */
    430 	if (!again) {
    431 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    432 		/* Basic init. */
    433 		cpu_intr_init(ci);
    434 		cpu_get_tsc_freq(ci);
    435 		cpu_init(ci);
    436 #ifdef i386
    437 		cpu_set_tss_gates(ci);
    438 #endif
    439 		pmap_cpu_init_late(ci);
    440 #if NLAPIC > 0
    441 		if (caa->cpu_role != CPU_ROLE_SP) {
    442 			/* Enable lapic. */
    443 			lapic_enable();
    444 			lapic_set_lvt();
    445 			lapic_calibrate_timer(ci);
    446 		}
    447 #endif
    448 		/* Make sure DELAY() is initialized. */
    449 		DELAY(1);
    450 		kcsan_cpu_init(ci);
    451 		again = true;
    452 	}
    453 
    454 	/* further PCB init done later. */
    455 
    456 	switch (caa->cpu_role) {
    457 	case CPU_ROLE_SP:
    458 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    459 		cpu_identify(ci);
    460 		x86_errata();
    461 		x86_cpu_idle_init();
    462 		break;
    463 
    464 	case CPU_ROLE_BP:
    465 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    466 		cpu_identify(ci);
    467 		x86_errata();
    468 		x86_cpu_idle_init();
    469 		break;
    470 
    471 #ifdef MULTIPROCESSOR
    472 	case CPU_ROLE_AP:
    473 		/*
    474 		 * report on an AP
    475 		 */
    476 		cpu_intr_init(ci);
    477 		gdt_alloc_cpu(ci);
    478 #ifdef i386
    479 		cpu_set_tss_gates(ci);
    480 #endif
    481 		pmap_cpu_init_late(ci);
    482 		cpu_start_secondary(ci);
    483 		if (ci->ci_flags & CPUF_PRESENT) {
    484 			struct cpu_info *tmp;
    485 
    486 			cpu_identify(ci);
    487 			tmp = cpu_info_list;
    488 			while (tmp->ci_next)
    489 				tmp = tmp->ci_next;
    490 
    491 			tmp->ci_next = ci;
    492 		}
    493 		break;
    494 #endif
    495 
    496 	default:
    497 		panic("unknown processor type??\n");
    498 	}
    499 
    500 	pat_init(ci);
    501 
    502 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    503 		aprint_error_dev(self, "couldn't establish power handler\n");
    504 
    505 #ifdef MULTIPROCESSOR
    506 	if (mp_verbose) {
    507 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    508 		struct pcb *pcb = lwp_getpcb(l);
    509 
    510 		aprint_verbose_dev(self,
    511 		    "idle lwp at %p, idle sp at %p\n",
    512 		    l,
    513 #ifdef i386
    514 		    (void *)pcb->pcb_esp
    515 #else
    516 		    (void *)pcb->pcb_rsp
    517 #endif
    518 		);
    519 	}
    520 #endif
    521 
    522 	/*
    523 	 * Postpone the "cpufeaturebus" scan.
    524 	 * It is safe to scan the pseudo-bus
    525 	 * only after all CPUs have attached.
    526 	 */
    527 	(void)config_defer(self, cpu_defer);
    528 }
    529 
    530 static void
    531 cpu_defer(device_t self)
    532 {
    533 	cpu_rescan(self, NULL, NULL);
    534 }
    535 
    536 static int
    537 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    538 {
    539 	struct cpu_softc *sc = device_private(self);
    540 	struct cpufeature_attach_args cfaa;
    541 	struct cpu_info *ci = sc->sc_info;
    542 
    543 	/*
    544 	 * If we booted with RB_MD1 to disable multiprocessor, the
    545 	 * auto-configuration data still contains the additional
    546 	 * CPUs.   But their initialization was mostly bypassed
    547 	 * during attach, so we have to make sure we don't look at
    548 	 * their featurebus info, since it wasn't retrieved.
    549 	 */
    550 	if (ci == NULL)
    551 		return 0;
    552 
    553 	memset(&cfaa, 0, sizeof(cfaa));
    554 	cfaa.ci = ci;
    555 
    556 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    557 		if (ci->ci_frequency == NULL) {
    558 			cfaa.name = "frequency";
    559 			ci->ci_frequency = config_found_ia(self,
    560 			    "cpufeaturebus", &cfaa, NULL);
    561 		}
    562 
    563 		if (ci->ci_padlock == NULL) {
    564 			cfaa.name = "padlock";
    565 			ci->ci_padlock = config_found_ia(self,
    566 			    "cpufeaturebus", &cfaa, NULL);
    567 		}
    568 
    569 		if (ci->ci_temperature == NULL) {
    570 			cfaa.name = "temperature";
    571 			ci->ci_temperature = config_found_ia(self,
    572 			    "cpufeaturebus", &cfaa, NULL);
    573 		}
    574 
    575 		if (ci->ci_vm == NULL) {
    576 			cfaa.name = "vm";
    577 			ci->ci_vm = config_found_ia(self,
    578 			    "cpufeaturebus", &cfaa, NULL);
    579 		}
    580 	}
    581 
    582 	return 0;
    583 }
    584 
    585 static void
    586 cpu_childdetached(device_t self, device_t child)
    587 {
    588 	struct cpu_softc *sc = device_private(self);
    589 	struct cpu_info *ci = sc->sc_info;
    590 
    591 	if (ci->ci_frequency == child)
    592 		ci->ci_frequency = NULL;
    593 
    594 	if (ci->ci_padlock == child)
    595 		ci->ci_padlock = NULL;
    596 
    597 	if (ci->ci_temperature == child)
    598 		ci->ci_temperature = NULL;
    599 
    600 	if (ci->ci_vm == child)
    601 		ci->ci_vm = NULL;
    602 }
    603 
    604 /*
    605  * Initialize the processor appropriately.
    606  */
    607 
    608 void
    609 cpu_init(struct cpu_info *ci)
    610 {
    611 	extern int x86_fpu_save;
    612 	uint32_t cr4 = 0;
    613 
    614 	lcr0(rcr0() | CR0_WP);
    615 
    616 	/* If global TLB caching is supported, enable it */
    617 	if (cpu_feature[0] & CPUID_PGE)
    618 		cr4 |= CR4_PGE;
    619 
    620 	/*
    621 	 * If we have FXSAVE/FXRESTOR, use them.
    622 	 */
    623 	if (cpu_feature[0] & CPUID_FXSR) {
    624 		cr4 |= CR4_OSFXSR;
    625 
    626 		/*
    627 		 * If we have SSE/SSE2, enable XMM exceptions.
    628 		 */
    629 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    630 			cr4 |= CR4_OSXMMEXCPT;
    631 	}
    632 
    633 	/* If xsave is supported, enable it */
    634 	if (cpu_feature[1] & CPUID2_XSAVE)
    635 		cr4 |= CR4_OSXSAVE;
    636 
    637 	/* If SMEP is supported, enable it */
    638 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    639 		cr4 |= CR4_SMEP;
    640 
    641 	/* If SMAP is supported, enable it */
    642 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    643 		cr4 |= CR4_SMAP;
    644 
    645 #ifdef SVS
    646 	/* If PCID is supported, enable it */
    647 	if (svs_pcid)
    648 		cr4 |= CR4_PCIDE;
    649 #endif
    650 
    651 	if (cr4) {
    652 		cr4 |= rcr4();
    653 		lcr4(cr4);
    654 	}
    655 
    656 	/*
    657 	 * Changing CR4 register may change cpuid values. For example, setting
    658 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    659 	 * ci_feat_val[1], so update it.
    660 	 * XXX Other than ci_feat_val[1] might be changed.
    661 	 */
    662 	if (cpuid_level >= 1) {
    663 		u_int descs[4];
    664 
    665 		x86_cpuid(1, descs);
    666 		ci->ci_feat_val[1] = descs[2];
    667 	}
    668 
    669 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    670 		fpuinit_mxcsr_mask();
    671 	}
    672 
    673 	/* If xsave is enabled, enable all fpu features */
    674 	if (cr4 & CR4_OSXSAVE)
    675 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    676 
    677 #ifdef MTRR
    678 	/*
    679 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    680 	 */
    681 	if (cpu_feature[0] & CPUID_MTRR) {
    682 		if ((ci->ci_flags & CPUF_AP) == 0)
    683 			i686_mtrr_init_first();
    684 		mtrr_init_cpu(ci);
    685 	}
    686 
    687 #ifdef i386
    688 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    689 		/*
    690 		 * Must be a K6-2 Step >= 7 or a K6-III.
    691 		 */
    692 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    693 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    694 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    695 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    696 				mtrr_funcs = &k6_mtrr_funcs;
    697 				k6_mtrr_init_first();
    698 				mtrr_init_cpu(ci);
    699 			}
    700 		}
    701 	}
    702 #endif	/* i386 */
    703 #endif /* MTRR */
    704 
    705 	if (ci != &cpu_info_primary) {
    706 		/* Synchronize TSC */
    707 		wbinvd();
    708 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    709 		tsc_sync_ap(ci);
    710 	} else {
    711 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    712 	}
    713 }
    714 
    715 #ifdef MULTIPROCESSOR
    716 void
    717 cpu_boot_secondary_processors(void)
    718 {
    719 	struct cpu_info *ci;
    720 	kcpuset_t *cpus;
    721 	u_long i;
    722 
    723 #ifndef XEN
    724 	/* Now that we know the number of CPUs, patch the text segment. */
    725 	x86_patch(false);
    726 #endif
    727 
    728 #if NACPICA > 0
    729 	/* Finished with NUMA info for now. */
    730 	acpisrat_exit();
    731 #endif
    732 
    733 	kcpuset_create(&cpus, true);
    734 	kcpuset_set(cpus, cpu_index(curcpu()));
    735 	for (i = 0; i < maxcpus; i++) {
    736 		ci = cpu_lookup(i);
    737 		if (ci == NULL)
    738 			continue;
    739 		if (ci->ci_data.cpu_idlelwp == NULL)
    740 			continue;
    741 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    742 			continue;
    743 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    744 			continue;
    745 		cpu_boot_secondary(ci);
    746 		kcpuset_set(cpus, cpu_index(ci));
    747 	}
    748 	while (!kcpuset_match(cpus, kcpuset_running))
    749 		;
    750 	kcpuset_destroy(cpus);
    751 
    752 	x86_mp_online = true;
    753 
    754 	/* Now that we know about the TSC, attach the timecounter. */
    755 	tsc_tc_init();
    756 
    757 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    758 	vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
    759 }
    760 #endif
    761 
    762 static void
    763 cpu_init_idle_lwp(struct cpu_info *ci)
    764 {
    765 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    766 	struct pcb *pcb = lwp_getpcb(l);
    767 
    768 	pcb->pcb_cr0 = rcr0();
    769 }
    770 
    771 void
    772 cpu_init_idle_lwps(void)
    773 {
    774 	struct cpu_info *ci;
    775 	u_long i;
    776 
    777 	for (i = 0; i < maxcpus; i++) {
    778 		ci = cpu_lookup(i);
    779 		if (ci == NULL)
    780 			continue;
    781 		if (ci->ci_data.cpu_idlelwp == NULL)
    782 			continue;
    783 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    784 			continue;
    785 		cpu_init_idle_lwp(ci);
    786 	}
    787 }
    788 
    789 #ifdef MULTIPROCESSOR
    790 void
    791 cpu_start_secondary(struct cpu_info *ci)
    792 {
    793 	u_long psl;
    794 	int i;
    795 
    796 #if NLAPIC > 0
    797 	paddr_t mp_pdirpa;
    798 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    799 	cpu_copy_trampoline(mp_pdirpa);
    800 #endif
    801 
    802 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    803 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    804 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    805 		return;
    806 	}
    807 
    808 	/*
    809 	 * Wait for it to become ready.   Setting cpu_starting opens the
    810 	 * initial gate and allows the AP to start soft initialization.
    811 	 */
    812 	KASSERT(cpu_starting == NULL);
    813 	cpu_starting = ci;
    814 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    815 		x86_delay(10);
    816 	}
    817 
    818 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    819 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    820 #if defined(MPDEBUG) && defined(DDB)
    821 		printf("dropping into debugger; continue from here to resume boot\n");
    822 		Debugger();
    823 #endif
    824 	} else {
    825 		/*
    826 		 * Synchronize time stamp counters. Invalidate cache and do
    827 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    828 		 * Disable interrupts to try and rule out any external
    829 		 * interference.
    830 		 */
    831 		psl = x86_read_psl();
    832 		x86_disable_intr();
    833 		wbinvd();
    834 		tsc_sync_bp(ci);
    835 		x86_write_psl(psl);
    836 	}
    837 
    838 	CPU_START_CLEANUP(ci);
    839 	cpu_starting = NULL;
    840 }
    841 
    842 void
    843 cpu_boot_secondary(struct cpu_info *ci)
    844 {
    845 	int64_t drift;
    846 	u_long psl;
    847 	int i;
    848 
    849 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    850 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    851 		x86_delay(10);
    852 	}
    853 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    854 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    855 #if defined(MPDEBUG) && defined(DDB)
    856 		printf("dropping into debugger; continue from here to resume boot\n");
    857 		Debugger();
    858 #endif
    859 	} else {
    860 		/* Synchronize TSC again, check for drift. */
    861 		drift = ci->ci_data.cpu_cc_skew;
    862 		psl = x86_read_psl();
    863 		x86_disable_intr();
    864 		wbinvd();
    865 		tsc_sync_bp(ci);
    866 		x86_write_psl(psl);
    867 		drift -= ci->ci_data.cpu_cc_skew;
    868 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    869 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    870 		tsc_sync_drift(drift);
    871 	}
    872 }
    873 
    874 /*
    875  * The CPU ends up here when it's ready to run.
    876  * This is called from code in mptramp.s; at this point, we are running
    877  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    878  * this processor will enter the idle loop and start looking for work.
    879  */
    880 void
    881 cpu_hatch(void *v)
    882 {
    883 	struct cpu_info *ci = (struct cpu_info *)v;
    884 	struct pcb *pcb;
    885 	int s, i;
    886 
    887 	/* ------------------------------------------------------------- */
    888 
    889 	/*
    890 	 * This section of code must be compiled with SSP disabled, to
    891 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    892 	 */
    893 
    894 	cpu_init_msrs(ci, true);
    895 	cpu_probe(ci);
    896 	cpu_speculation_init(ci);
    897 #if NHYPERV > 0
    898 	hyperv_init_cpu(ci);
    899 #endif
    900 
    901 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    902 	/* cpu_get_tsc_freq(ci); */
    903 
    904 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    905 
    906 	/*
    907 	 * Synchronize the TSC for the first time. Note that interrupts are
    908 	 * off at this point.
    909 	 */
    910 	wbinvd();
    911 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    912 	tsc_sync_ap(ci);
    913 
    914 	/* ------------------------------------------------------------- */
    915 
    916 	/*
    917 	 * Wait to be brought online.
    918 	 *
    919 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    920 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    921 	 * this causes the TSC to drift. We want this to happen, so that we
    922 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    923 	 * TSCs. That's just for safety; by definition such drifts should
    924 	 * never occur with invariant TSCs.
    925 	 *
    926 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    927 	 * interrupts off.
    928 	 */
    929 	while ((ci->ci_flags & CPUF_GO) == 0) {
    930 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    931 			x86_monitor(&ci->ci_flags, 0, 0);
    932 			if ((ci->ci_flags & CPUF_GO) != 0) {
    933 				continue;
    934 			}
    935 			x86_mwait(0, 0);
    936 		} else {
    937 	/*
    938 	 * XXX The loop repetition count could be a lot higher, but
    939 	 * XXX currently qemu emulator takes a _very_long_time_ to
    940 	 * XXX execute the pause instruction.  So for now, use a low
    941 	 * XXX value to allow the cpu to hatch before timing out.
    942 	 */
    943 			for (i = 50; i != 0; i--) {
    944 				x86_pause();
    945 			}
    946 		}
    947 	}
    948 
    949 	/* Because the text may have been patched in x86_patch(). */
    950 	wbinvd();
    951 	x86_flush();
    952 	tlbflushg();
    953 
    954 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    955 
    956 #ifdef PAE
    957 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    958 	for (i = 0 ; i < PDP_SIZE; i++) {
    959 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
    960 	}
    961 	lcr3(ci->ci_pae_l3_pdirpa);
    962 #else
    963 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    964 #endif
    965 
    966 	pcb = lwp_getpcb(curlwp);
    967 	pcb->pcb_cr3 = rcr3();
    968 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    969 	lcr0(pcb->pcb_cr0);
    970 
    971 	cpu_init_idt();
    972 	gdt_init_cpu(ci);
    973 #if NLAPIC > 0
    974 	lapic_enable();
    975 	lapic_set_lvt();
    976 	lapic_initclocks();
    977 #endif
    978 
    979 	fpuinit(ci);
    980 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    981 	ltr(ci->ci_tss_sel);
    982 
    983 	/*
    984 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
    985 	 * drift that would have been caused by the use of MONITOR/MWAIT
    986 	 * above.
    987 	 */
    988 	cpu_init(ci);
    989 	cpu_get_tsc_freq(ci);
    990 
    991 	s = splhigh();
    992 #if NLAPIC > 0
    993 	lapic_write_tpri(0);
    994 #endif
    995 	x86_enable_intr();
    996 	splx(s);
    997 	x86_errata();
    998 
    999 	aprint_debug_dev(ci->ci_dev, "running\n");
   1000 
   1001 	kcsan_cpu_init(ci);
   1002 
   1003 	idle_loop(NULL);
   1004 	KASSERT(false);
   1005 }
   1006 #endif
   1007 
   1008 #if defined(DDB)
   1009 
   1010 #include <ddb/db_output.h>
   1011 #include <machine/db_machdep.h>
   1012 
   1013 /*
   1014  * Dump CPU information from ddb.
   1015  */
   1016 void
   1017 cpu_debug_dump(void)
   1018 {
   1019 	struct cpu_info *ci;
   1020 	CPU_INFO_ITERATOR cii;
   1021 	const char sixtyfour64space[] =
   1022 #ifdef _LP64
   1023 			   "        "
   1024 #endif
   1025 			   "";
   1026 
   1027 	db_printf("addr		%sdev	id	flags	ipis	spl curlwp 		"
   1028 		  "\n", sixtyfour64space);
   1029 	for (CPU_INFO_FOREACH(cii, ci)) {
   1030 		db_printf("%p	%s	%ld	%x	%x	%d  %10p\n",
   1031 		    ci,
   1032 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
   1033 		    (long)ci->ci_cpuid,
   1034 		    ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
   1035 		    ci->ci_curlwp);
   1036 	}
   1037 }
   1038 #endif
   1039 
   1040 #ifdef MULTIPROCESSOR
   1041 #if NLAPIC > 0
   1042 static void
   1043 cpu_copy_trampoline(paddr_t pdir_pa)
   1044 {
   1045 	extern uint32_t nox_flag;
   1046 	extern u_char cpu_spinup_trampoline[];
   1047 	extern u_char cpu_spinup_trampoline_end[];
   1048 	vaddr_t mp_trampoline_vaddr;
   1049 	struct {
   1050 		uint32_t large;
   1051 		uint32_t nox;
   1052 		uint32_t pdir;
   1053 	} smp_data;
   1054 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1055 
   1056 	smp_data.large = (pmap_largepages != 0);
   1057 	smp_data.nox = nox_flag;
   1058 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1059 
   1060 	/* Enter the physical address */
   1061 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1062 	    UVM_KMF_VAONLY);
   1063 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1064 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1065 	pmap_update(pmap_kernel());
   1066 
   1067 	/* Copy boot code */
   1068 	memcpy((void *)mp_trampoline_vaddr,
   1069 	    cpu_spinup_trampoline,
   1070 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1071 
   1072 	/* Copy smp_data at the end */
   1073 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1074 	    &smp_data, sizeof(smp_data));
   1075 
   1076 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1077 	pmap_update(pmap_kernel());
   1078 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1079 }
   1080 #endif
   1081 
   1082 int
   1083 mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1084 {
   1085 	int error;
   1086 
   1087 	/*
   1088 	 * Bootstrap code must be addressable in real mode
   1089 	 * and it must be page aligned.
   1090 	 */
   1091 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1092 
   1093 	/*
   1094 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1095 	 */
   1096 
   1097 	outb(IO_RTC, NVRAM_RESET);
   1098 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1099 
   1100 #if NLAPIC > 0
   1101 	/*
   1102 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1103 	 * to the AP startup code ..."
   1104 	 */
   1105 	unsigned short dwordptr[2];
   1106 	dwordptr[0] = 0;
   1107 	dwordptr[1] = target >> 4;
   1108 
   1109 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1110 #endif
   1111 
   1112 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1113 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1114 		return ENODEV;
   1115 	}
   1116 
   1117 	/*
   1118 	 * ... prior to executing the following sequence:".  We'll also add in
   1119 	 * local cache flush, in case the BIOS has left the AP with its cache
   1120 	 * disabled.  It may not be able to cope with MP coherency.
   1121 	 */
   1122 	wbinvd();
   1123 
   1124 	if (ci->ci_flags & CPUF_AP) {
   1125 		error = x86_ipi_init(ci->ci_cpuid);
   1126 		if (error != 0) {
   1127 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1128 			    __func__);
   1129 			return error;
   1130 		}
   1131 		x86_delay(10000);
   1132 
   1133 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1134 		if (error != 0) {
   1135 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1136 			    __func__);
   1137 			return error;
   1138 		}
   1139 		x86_delay(200);
   1140 
   1141 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1142 		if (error != 0) {
   1143 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1144 			    __func__);
   1145 			return error;
   1146 		}
   1147 		x86_delay(200);
   1148 	}
   1149 
   1150 	return 0;
   1151 }
   1152 
   1153 void
   1154 mp_cpu_start_cleanup(struct cpu_info *ci)
   1155 {
   1156 	/*
   1157 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1158 	 */
   1159 
   1160 	outb(IO_RTC, NVRAM_RESET);
   1161 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1162 }
   1163 #endif
   1164 
   1165 #ifdef __x86_64__
   1166 typedef void (vector)(void);
   1167 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1168 #endif
   1169 
   1170 void
   1171 cpu_init_msrs(struct cpu_info *ci, bool full)
   1172 {
   1173 #ifdef __x86_64__
   1174 	wrmsr(MSR_STAR,
   1175 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1176 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1177 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1178 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1179 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1180 
   1181 #ifdef SVS
   1182 	if (svs_enabled)
   1183 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1184 #endif
   1185 
   1186 	if (full) {
   1187 		wrmsr(MSR_FSBASE, 0);
   1188 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1189 		wrmsr(MSR_KERNELGSBASE, 0);
   1190 	}
   1191 #endif	/* __x86_64__ */
   1192 
   1193 	if (cpu_feature[2] & CPUID_NOX)
   1194 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1195 }
   1196 
   1197 void
   1198 cpu_offline_md(void)
   1199 {
   1200 	return;
   1201 }
   1202 
   1203 /* XXX joerg restructure and restart CPUs individually */
   1204 static bool
   1205 cpu_stop(device_t dv)
   1206 {
   1207 	struct cpu_softc *sc = device_private(dv);
   1208 	struct cpu_info *ci = sc->sc_info;
   1209 	int err;
   1210 
   1211 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1212 
   1213 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1214 		return true;
   1215 
   1216 	if (ci->ci_data.cpu_idlelwp == NULL)
   1217 		return true;
   1218 
   1219 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1220 
   1221 	if (sc->sc_wasonline) {
   1222 		mutex_enter(&cpu_lock);
   1223 		err = cpu_setstate(ci, false);
   1224 		mutex_exit(&cpu_lock);
   1225 
   1226 		if (err != 0)
   1227 			return false;
   1228 	}
   1229 
   1230 	return true;
   1231 }
   1232 
   1233 static bool
   1234 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1235 {
   1236 	struct cpu_softc *sc = device_private(dv);
   1237 	struct cpu_info *ci = sc->sc_info;
   1238 
   1239 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1240 		return true;
   1241 	else {
   1242 		cpufreq_suspend(ci);
   1243 	}
   1244 
   1245 	return cpu_stop(dv);
   1246 }
   1247 
   1248 static bool
   1249 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1250 {
   1251 	struct cpu_softc *sc = device_private(dv);
   1252 	struct cpu_info *ci = sc->sc_info;
   1253 	int err = 0;
   1254 
   1255 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1256 		return true;
   1257 
   1258 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1259 		goto out;
   1260 
   1261 	if (ci->ci_data.cpu_idlelwp == NULL)
   1262 		goto out;
   1263 
   1264 	if (sc->sc_wasonline) {
   1265 		mutex_enter(&cpu_lock);
   1266 		err = cpu_setstate(ci, true);
   1267 		mutex_exit(&cpu_lock);
   1268 	}
   1269 
   1270 out:
   1271 	if (err != 0)
   1272 		return false;
   1273 
   1274 	cpufreq_resume(ci);
   1275 
   1276 	return true;
   1277 }
   1278 
   1279 static bool
   1280 cpu_shutdown(device_t dv, int how)
   1281 {
   1282 	struct cpu_softc *sc = device_private(dv);
   1283 	struct cpu_info *ci = sc->sc_info;
   1284 
   1285 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1286 		return false;
   1287 
   1288 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1289 		return true;
   1290 
   1291 	return cpu_stop(dv);
   1292 }
   1293 
   1294 void
   1295 cpu_get_tsc_freq(struct cpu_info *ci)
   1296 {
   1297 	uint64_t last_tsc;
   1298 
   1299 	if (cpu_hascounter()) {
   1300 		last_tsc = cpu_counter_serializing();
   1301 		x86_delay(100000);
   1302 		ci->ci_data.cpu_cc_freq =
   1303 		    (cpu_counter_serializing() - last_tsc) * 10;
   1304 	}
   1305 }
   1306 
   1307 void
   1308 x86_cpu_idle_mwait(void)
   1309 {
   1310 	struct cpu_info *ci = curcpu();
   1311 
   1312 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1313 
   1314 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1315 	if (__predict_false(ci->ci_want_resched)) {
   1316 		return;
   1317 	}
   1318 	x86_mwait(0, 0);
   1319 }
   1320 
   1321 void
   1322 x86_cpu_idle_halt(void)
   1323 {
   1324 	struct cpu_info *ci = curcpu();
   1325 
   1326 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1327 
   1328 	x86_disable_intr();
   1329 	if (!__predict_false(ci->ci_want_resched)) {
   1330 		x86_stihlt();
   1331 	} else {
   1332 		x86_enable_intr();
   1333 	}
   1334 }
   1335 
   1336 /*
   1337  * Loads pmap for the current CPU.
   1338  */
   1339 void
   1340 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1341 {
   1342 #ifdef SVS
   1343 	if (svs_enabled) {
   1344 		svs_pdir_switch(pmap);
   1345 	}
   1346 #endif
   1347 
   1348 #ifdef PAE
   1349 	struct cpu_info *ci = curcpu();
   1350 	bool interrupts_enabled;
   1351 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1352 	int i;
   1353 
   1354 	/*
   1355 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1356 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1357 	 * reload cr3.
   1358 	 */
   1359 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1360 	if (interrupts_enabled)
   1361 		x86_disable_intr();
   1362 
   1363 	for (i = 0 ; i < PDP_SIZE; i++) {
   1364 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1365 	}
   1366 
   1367 	if (interrupts_enabled)
   1368 		x86_enable_intr();
   1369 	tlbflush();
   1370 #else
   1371 	lcr3(pmap_pdirpa(pmap, 0));
   1372 #endif
   1373 }
   1374 
   1375 /*
   1376  * Notify all other cpus to halt.
   1377  */
   1378 
   1379 void
   1380 cpu_broadcast_halt(void)
   1381 {
   1382 	x86_broadcast_ipi(X86_IPI_HALT);
   1383 }
   1384 
   1385 /*
   1386  * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
   1387  * and trigger an AST on the running LWP.
   1388  */
   1389 
   1390 void
   1391 cpu_kick(struct cpu_info *ci)
   1392 {
   1393 	x86_send_ipi(ci, X86_IPI_AST);
   1394 }
   1395