Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.186
      1 /*	$NetBSD: cpu.c,v 1.186 2020/04/23 21:35:18 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.186 2020/04/23 21:35:18 ad Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 #include "opt_svs.h"
     72 
     73 #include "lapic.h"
     74 #include "ioapic.h"
     75 #include "acpica.h"
     76 #include "hpet.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/cpu.h>
     83 #include <sys/cpufreq.h>
     84 #include <sys/idle.h>
     85 #include <sys/atomic.h>
     86 #include <sys/reboot.h>
     87 #include <sys/csan.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     92 
     93 #include <machine/cpufunc.h>
     94 #include <machine/cpuvar.h>
     95 #include <machine/pmap.h>
     96 #include <machine/vmparam.h>
     97 #if defined(MULTIPROCESSOR)
     98 #include <machine/mpbiosvar.h>
     99 #endif
    100 #include <machine/mpconfig.h>		/* for mp_verbose */
    101 #include <machine/pcb.h>
    102 #include <machine/specialreg.h>
    103 #include <machine/segments.h>
    104 #include <machine/gdt.h>
    105 #include <machine/mtrr.h>
    106 #include <machine/pio.h>
    107 #include <machine/cpu_counter.h>
    108 
    109 #include <x86/fpu.h>
    110 
    111 #if NACPICA > 0
    112 #include <dev/acpi/acpi_srat.h>
    113 #endif
    114 
    115 #if NLAPIC > 0
    116 #include <machine/apicvar.h>
    117 #include <machine/i82489reg.h>
    118 #include <machine/i82489var.h>
    119 #endif
    120 
    121 #include <dev/ic/mc146818reg.h>
    122 #include <dev/ic/hpetvar.h>
    123 #include <i386/isa/nvram.h>
    124 #include <dev/isa/isareg.h>
    125 
    126 #include "tsc.h"
    127 
    128 #ifndef XEN
    129 #include "hyperv.h"
    130 #if NHYPERV > 0
    131 #include <x86/x86/hypervvar.h>
    132 #endif
    133 #endif
    134 
    135 static int	cpu_match(device_t, cfdata_t, void *);
    136 static void	cpu_attach(device_t, device_t, void *);
    137 static void	cpu_defer(device_t);
    138 static int	cpu_rescan(device_t, const char *, const int *);
    139 static void	cpu_childdetached(device_t, device_t);
    140 static bool	cpu_stop(device_t);
    141 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    142 static bool	cpu_resume(device_t, const pmf_qual_t *);
    143 static bool	cpu_shutdown(device_t, int);
    144 
    145 struct cpu_softc {
    146 	device_t sc_dev;		/* device tree glue */
    147 	struct cpu_info *sc_info;	/* pointer to CPU info */
    148 	bool sc_wasonline;
    149 };
    150 
    151 #ifdef MULTIPROCESSOR
    152 int mp_cpu_start(struct cpu_info *, paddr_t);
    153 void mp_cpu_start_cleanup(struct cpu_info *);
    154 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    155 					    mp_cpu_start_cleanup };
    156 #endif
    157 
    158 
    159 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    160     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    161 
    162 /*
    163  * Statically-allocated CPU info for the primary CPU (or the only
    164  * CPU, on uniprocessors).  The CPU info list is initialized to
    165  * point at it.
    166  */
    167 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    168 	.ci_dev = 0,
    169 	.ci_self = &cpu_info_primary,
    170 	.ci_idepth = -1,
    171 	.ci_curlwp = &lwp0,
    172 	.ci_curldt = -1,
    173 };
    174 
    175 struct cpu_info *cpu_info_list = &cpu_info_primary;
    176 
    177 #ifdef i386
    178 void		cpu_set_tss_gates(struct cpu_info *);
    179 #endif
    180 
    181 static void	cpu_init_idle_lwp(struct cpu_info *);
    182 
    183 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    184 			/* [0] basic features cpuid.1:%edx
    185 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    186 			 * [2] extended features cpuid:80000001:%edx
    187 			 * [3] extended features cpuid:80000001:%ecx
    188 			 * [4] VIA padlock features
    189 			 * [5] structured extended features cpuid.7:%ebx
    190 			 * [6] structured extended features cpuid.7:%ecx
    191 			 */
    192 
    193 #ifdef MULTIPROCESSOR
    194 bool x86_mp_online;
    195 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    196 #endif
    197 #if NLAPIC > 0
    198 static vaddr_t cmos_data_mapping;
    199 #endif
    200 struct cpu_info *cpu_starting;
    201 
    202 int (*cpu_nullop_ptr)(void *) = nullop;
    203 
    204 #ifdef MULTIPROCESSOR
    205 void		cpu_hatch(void *);
    206 static void	cpu_boot_secondary(struct cpu_info *ci);
    207 static void	cpu_start_secondary(struct cpu_info *ci);
    208 #if NLAPIC > 0
    209 static void	cpu_copy_trampoline(paddr_t);
    210 #endif
    211 #endif /* MULTIPROCESSOR */
    212 
    213 /*
    214  * Runs once per boot once multiprocessor goo has been detected and
    215  * the local APIC on the boot processor has been mapped.
    216  *
    217  * Called from lapic_boot_init() (from mpbios_scan()).
    218  */
    219 #if NLAPIC > 0
    220 void
    221 cpu_init_first(void)
    222 {
    223 
    224 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    225 
    226 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    227 	if (cmos_data_mapping == 0)
    228 		panic("No KVA for page 0");
    229 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    230 	pmap_update(pmap_kernel());
    231 }
    232 #endif
    233 
    234 static int
    235 cpu_match(device_t parent, cfdata_t match, void *aux)
    236 {
    237 
    238 	return 1;
    239 }
    240 
    241 #ifdef __HAVE_PCPU_AREA
    242 void
    243 cpu_pcpuarea_init(struct cpu_info *ci)
    244 {
    245 	struct vm_page *pg;
    246 	size_t i, npages;
    247 	vaddr_t base, va;
    248 	paddr_t pa;
    249 
    250 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    251 
    252 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    253 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    254 
    255 	for (i = 0; i < npages; i++) {
    256 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    257 		if (pg == NULL) {
    258 			panic("failed to allocate pcpu PA");
    259 		}
    260 
    261 		va = base + i * PAGE_SIZE;
    262 		pa = VM_PAGE_TO_PHYS(pg);
    263 
    264 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    265 	}
    266 
    267 	pmap_update(pmap_kernel());
    268 }
    269 #endif
    270 
    271 static void
    272 cpu_vm_init(struct cpu_info *ci)
    273 {
    274 	int ncolors = 2, i;
    275 
    276 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    277 		struct x86_cache_info *cai;
    278 		int tcolors;
    279 
    280 		cai = &ci->ci_cinfo[i];
    281 
    282 		tcolors = atop(cai->cai_totalsize);
    283 		switch (cai->cai_associativity) {
    284 		case 0xff:
    285 			tcolors = 1; /* fully associative */
    286 			break;
    287 		case 0:
    288 		case 1:
    289 			break;
    290 		default:
    291 			tcolors /= cai->cai_associativity;
    292 		}
    293 		ncolors = uimax(ncolors, tcolors);
    294 		/*
    295 		 * If the desired number of colors is not a power of
    296 		 * two, it won't be good.  Find the greatest power of
    297 		 * two which is an even divisor of the number of colors,
    298 		 * to preserve even coloring of pages.
    299 		 */
    300 		if (ncolors & (ncolors - 1) ) {
    301 			int try, picked = 1;
    302 			for (try = 1; try < ncolors; try *= 2) {
    303 				if (ncolors % try == 0) picked = try;
    304 			}
    305 			if (picked == 1) {
    306 				panic("desired number of cache colors %d is "
    307 				" > 1, but not even!", ncolors);
    308 			}
    309 			ncolors = picked;
    310 		}
    311 	}
    312 
    313 	/*
    314 	 * Knowing the size of the largest cache on this CPU, potentially
    315 	 * re-color our pages.
    316 	 */
    317 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    318 	uvm_page_recolor(ncolors);
    319 
    320 	pmap_tlb_cpu_init(ci);
    321 #ifndef __HAVE_DIRECT_MAP
    322 	pmap_vpage_cpu_init(ci);
    323 #endif
    324 }
    325 
    326 static void
    327 cpu_attach(device_t parent, device_t self, void *aux)
    328 {
    329 	struct cpu_softc *sc = device_private(self);
    330 	struct cpu_attach_args *caa = aux;
    331 	struct cpu_info *ci;
    332 	uintptr_t ptr;
    333 #if NLAPIC > 0
    334 	int cpunum = caa->cpu_number;
    335 #endif
    336 	static bool again;
    337 
    338 	sc->sc_dev = self;
    339 
    340 	if (ncpu > maxcpus) {
    341 #ifndef _LP64
    342 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    343 #else
    344 		aprint_error(": too many CPUs\n");
    345 #endif
    346 		return;
    347 	}
    348 
    349 	/*
    350 	 * If we're an Application Processor, allocate a cpu_info
    351 	 * structure, otherwise use the primary's.
    352 	 */
    353 	if (caa->cpu_role == CPU_ROLE_AP) {
    354 		if ((boothowto & RB_MD1) != 0) {
    355 			aprint_error(": multiprocessor boot disabled\n");
    356 			if (!pmf_device_register(self, NULL, NULL))
    357 				aprint_error_dev(self,
    358 				    "couldn't establish power handler\n");
    359 			return;
    360 		}
    361 		aprint_naive(": Application Processor\n");
    362 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    363 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    364 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    365 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    366 		ci->ci_curldt = -1;
    367 	} else {
    368 		aprint_naive(": %s Processor\n",
    369 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    370 		ci = &cpu_info_primary;
    371 #if NLAPIC > 0
    372 		if (cpunum != lapic_cpu_number()) {
    373 			/* XXX should be done earlier. */
    374 			uint32_t reg;
    375 			aprint_verbose("\n");
    376 			aprint_verbose_dev(self, "running CPU at apic %d"
    377 			    " instead of at expected %d", lapic_cpu_number(),
    378 			    cpunum);
    379 			reg = lapic_readreg(LAPIC_ID);
    380 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    381 			    (cpunum << LAPIC_ID_SHIFT));
    382 		}
    383 		if (cpunum != lapic_cpu_number()) {
    384 			aprint_error_dev(self, "unable to reset apic id\n");
    385 		}
    386 #endif
    387 	}
    388 
    389 	ci->ci_self = ci;
    390 	sc->sc_info = ci;
    391 	ci->ci_dev = self;
    392 	ci->ci_acpiid = caa->cpu_id;
    393 	ci->ci_cpuid = caa->cpu_number;
    394 	ci->ci_func = caa->cpu_func;
    395 	ci->ci_kfpu_spl = -1;
    396 	aprint_normal("\n");
    397 
    398 	/* Must be before mi_cpu_attach(). */
    399 	cpu_vm_init(ci);
    400 
    401 	if (caa->cpu_role == CPU_ROLE_AP) {
    402 		int error;
    403 
    404 		error = mi_cpu_attach(ci);
    405 		if (error != 0) {
    406 			aprint_error_dev(self,
    407 			    "mi_cpu_attach failed with %d\n", error);
    408 			return;
    409 		}
    410 #ifdef __HAVE_PCPU_AREA
    411 		cpu_pcpuarea_init(ci);
    412 #endif
    413 		cpu_init_tss(ci);
    414 	} else {
    415 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    416 #if NACPICA > 0
    417 		/* Parse out NUMA info for cpu_identify(). */
    418 		acpisrat_init();
    419 #endif
    420 	}
    421 
    422 #ifdef SVS
    423 	cpu_svs_init(ci);
    424 #endif
    425 
    426 	pmap_reference(pmap_kernel());
    427 	ci->ci_pmap = pmap_kernel();
    428 	ci->ci_tlbstate = TLBSTATE_STALE;
    429 
    430 	/*
    431 	 * Boot processor may not be attached first, but the below
    432 	 * must be done to allow booting other processors.
    433 	 */
    434 	if (!again) {
    435 		/* Make sure DELAY() (likely i8254_delay()) is initialized. */
    436 		DELAY(1);
    437 
    438 		/* Basic init. */
    439 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    440 		cpu_intr_init(ci);
    441 		cpu_get_tsc_freq(ci);
    442 		cpu_init(ci);
    443 #ifdef i386
    444 		cpu_set_tss_gates(ci);
    445 #endif
    446 		pmap_cpu_init_late(ci);
    447 #if NLAPIC > 0
    448 		if (caa->cpu_role != CPU_ROLE_SP) {
    449 			/* Enable lapic. */
    450 			lapic_enable();
    451 			lapic_set_lvt();
    452 			lapic_calibrate_timer(ci);
    453 		}
    454 #endif
    455 		kcsan_cpu_init(ci);
    456 		again = true;
    457 	}
    458 
    459 	/* further PCB init done later. */
    460 
    461 	switch (caa->cpu_role) {
    462 	case CPU_ROLE_SP:
    463 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    464 		cpu_identify(ci);
    465 		x86_errata();
    466 		x86_cpu_idle_init();
    467 		break;
    468 
    469 	case CPU_ROLE_BP:
    470 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    471 		cpu_identify(ci);
    472 		x86_errata();
    473 		x86_cpu_idle_init();
    474 		break;
    475 
    476 #ifdef MULTIPROCESSOR
    477 	case CPU_ROLE_AP:
    478 		/*
    479 		 * report on an AP
    480 		 */
    481 		cpu_intr_init(ci);
    482 		gdt_alloc_cpu(ci);
    483 #ifdef i386
    484 		cpu_set_tss_gates(ci);
    485 #endif
    486 		pmap_cpu_init_late(ci);
    487 		cpu_start_secondary(ci);
    488 		if (ci->ci_flags & CPUF_PRESENT) {
    489 			struct cpu_info *tmp;
    490 
    491 			cpu_identify(ci);
    492 			tmp = cpu_info_list;
    493 			while (tmp->ci_next)
    494 				tmp = tmp->ci_next;
    495 
    496 			tmp->ci_next = ci;
    497 		}
    498 		break;
    499 #endif
    500 
    501 	default:
    502 		panic("unknown processor type??\n");
    503 	}
    504 
    505 	pat_init(ci);
    506 
    507 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    508 		aprint_error_dev(self, "couldn't establish power handler\n");
    509 
    510 #ifdef MULTIPROCESSOR
    511 	if (mp_verbose) {
    512 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    513 		struct pcb *pcb = lwp_getpcb(l);
    514 
    515 		aprint_verbose_dev(self,
    516 		    "idle lwp at %p, idle sp at %p\n",
    517 		    l,
    518 #ifdef i386
    519 		    (void *)pcb->pcb_esp
    520 #else
    521 		    (void *)pcb->pcb_rsp
    522 #endif
    523 		);
    524 	}
    525 #endif
    526 
    527 	/*
    528 	 * Postpone the "cpufeaturebus" scan.
    529 	 * It is safe to scan the pseudo-bus
    530 	 * only after all CPUs have attached.
    531 	 */
    532 	(void)config_defer(self, cpu_defer);
    533 }
    534 
    535 static void
    536 cpu_defer(device_t self)
    537 {
    538 	cpu_rescan(self, NULL, NULL);
    539 }
    540 
    541 static int
    542 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    543 {
    544 	struct cpu_softc *sc = device_private(self);
    545 	struct cpufeature_attach_args cfaa;
    546 	struct cpu_info *ci = sc->sc_info;
    547 
    548 	/*
    549 	 * If we booted with RB_MD1 to disable multiprocessor, the
    550 	 * auto-configuration data still contains the additional
    551 	 * CPUs.   But their initialization was mostly bypassed
    552 	 * during attach, so we have to make sure we don't look at
    553 	 * their featurebus info, since it wasn't retrieved.
    554 	 */
    555 	if (ci == NULL)
    556 		return 0;
    557 
    558 	memset(&cfaa, 0, sizeof(cfaa));
    559 	cfaa.ci = ci;
    560 
    561 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    562 		if (ci->ci_frequency == NULL) {
    563 			cfaa.name = "frequency";
    564 			ci->ci_frequency = config_found_ia(self,
    565 			    "cpufeaturebus", &cfaa, NULL);
    566 		}
    567 
    568 		if (ci->ci_padlock == NULL) {
    569 			cfaa.name = "padlock";
    570 			ci->ci_padlock = config_found_ia(self,
    571 			    "cpufeaturebus", &cfaa, NULL);
    572 		}
    573 
    574 		if (ci->ci_temperature == NULL) {
    575 			cfaa.name = "temperature";
    576 			ci->ci_temperature = config_found_ia(self,
    577 			    "cpufeaturebus", &cfaa, NULL);
    578 		}
    579 
    580 		if (ci->ci_vm == NULL) {
    581 			cfaa.name = "vm";
    582 			ci->ci_vm = config_found_ia(self,
    583 			    "cpufeaturebus", &cfaa, NULL);
    584 		}
    585 	}
    586 
    587 	return 0;
    588 }
    589 
    590 static void
    591 cpu_childdetached(device_t self, device_t child)
    592 {
    593 	struct cpu_softc *sc = device_private(self);
    594 	struct cpu_info *ci = sc->sc_info;
    595 
    596 	if (ci->ci_frequency == child)
    597 		ci->ci_frequency = NULL;
    598 
    599 	if (ci->ci_padlock == child)
    600 		ci->ci_padlock = NULL;
    601 
    602 	if (ci->ci_temperature == child)
    603 		ci->ci_temperature = NULL;
    604 
    605 	if (ci->ci_vm == child)
    606 		ci->ci_vm = NULL;
    607 }
    608 
    609 /*
    610  * Initialize the processor appropriately.
    611  */
    612 
    613 void
    614 cpu_init(struct cpu_info *ci)
    615 {
    616 	extern int x86_fpu_save;
    617 	uint32_t cr4 = 0;
    618 
    619 	lcr0(rcr0() | CR0_WP);
    620 
    621 	/* If global TLB caching is supported, enable it */
    622 	if (cpu_feature[0] & CPUID_PGE)
    623 		cr4 |= CR4_PGE;
    624 
    625 	/*
    626 	 * If we have FXSAVE/FXRESTOR, use them.
    627 	 */
    628 	if (cpu_feature[0] & CPUID_FXSR) {
    629 		cr4 |= CR4_OSFXSR;
    630 
    631 		/*
    632 		 * If we have SSE/SSE2, enable XMM exceptions.
    633 		 */
    634 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    635 			cr4 |= CR4_OSXMMEXCPT;
    636 	}
    637 
    638 	/* If xsave is supported, enable it */
    639 	if (cpu_feature[1] & CPUID2_XSAVE)
    640 		cr4 |= CR4_OSXSAVE;
    641 
    642 	/* If SMEP is supported, enable it */
    643 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    644 		cr4 |= CR4_SMEP;
    645 
    646 	/* If SMAP is supported, enable it */
    647 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    648 		cr4 |= CR4_SMAP;
    649 
    650 #ifdef SVS
    651 	/* If PCID is supported, enable it */
    652 	if (svs_pcid)
    653 		cr4 |= CR4_PCIDE;
    654 #endif
    655 
    656 	if (cr4) {
    657 		cr4 |= rcr4();
    658 		lcr4(cr4);
    659 	}
    660 
    661 	/*
    662 	 * Changing CR4 register may change cpuid values. For example, setting
    663 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    664 	 * ci_feat_val[1], so update it.
    665 	 * XXX Other than ci_feat_val[1] might be changed.
    666 	 */
    667 	if (cpuid_level >= 1) {
    668 		u_int descs[4];
    669 
    670 		x86_cpuid(1, descs);
    671 		ci->ci_feat_val[1] = descs[2];
    672 	}
    673 
    674 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    675 		fpuinit_mxcsr_mask();
    676 	}
    677 
    678 	/* If xsave is enabled, enable all fpu features */
    679 	if (cr4 & CR4_OSXSAVE)
    680 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    681 
    682 #ifdef MTRR
    683 	/*
    684 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    685 	 */
    686 	if (cpu_feature[0] & CPUID_MTRR) {
    687 		if ((ci->ci_flags & CPUF_AP) == 0)
    688 			i686_mtrr_init_first();
    689 		mtrr_init_cpu(ci);
    690 	}
    691 
    692 #ifdef i386
    693 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    694 		/*
    695 		 * Must be a K6-2 Step >= 7 or a K6-III.
    696 		 */
    697 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    698 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    699 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    700 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    701 				mtrr_funcs = &k6_mtrr_funcs;
    702 				k6_mtrr_init_first();
    703 				mtrr_init_cpu(ci);
    704 			}
    705 		}
    706 	}
    707 #endif	/* i386 */
    708 #endif /* MTRR */
    709 
    710 	if (ci != &cpu_info_primary) {
    711 		/* Synchronize TSC */
    712 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    713 		tsc_sync_ap(ci);
    714 	} else {
    715 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    716 	}
    717 }
    718 
    719 #ifdef MULTIPROCESSOR
    720 void
    721 cpu_boot_secondary_processors(void)
    722 {
    723 	struct cpu_info *ci;
    724 	kcpuset_t *cpus;
    725 	u_long i;
    726 
    727 #if NHPET > 0
    728 	/* Use HPET delay, and re-calibrate TSC on boot CPU using HPET. */
    729 	if (hpet_delay_p() && x86_delay == i8254_delay) {
    730 		delay_func = x86_delay = hpet_delay;
    731 		cpu_get_tsc_freq(curcpu());
    732 	}
    733 #endif
    734 
    735 #ifndef XEN
    736 	/* Now that we know the number of CPUs, patch the text segment. */
    737 	x86_patch(false);
    738 #endif
    739 
    740 #if NACPICA > 0
    741 	/* Finished with NUMA info for now. */
    742 	acpisrat_exit();
    743 #endif
    744 
    745 	kcpuset_create(&cpus, true);
    746 	kcpuset_set(cpus, cpu_index(curcpu()));
    747 	for (i = 0; i < maxcpus; i++) {
    748 		ci = cpu_lookup(i);
    749 		if (ci == NULL)
    750 			continue;
    751 		if (ci->ci_data.cpu_idlelwp == NULL)
    752 			continue;
    753 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    754 			continue;
    755 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    756 			continue;
    757 		cpu_boot_secondary(ci);
    758 		kcpuset_set(cpus, cpu_index(ci));
    759 	}
    760 	while (!kcpuset_match(cpus, kcpuset_running))
    761 		;
    762 	kcpuset_destroy(cpus);
    763 
    764 	x86_mp_online = true;
    765 
    766 	/* Now that we know about the TSC, attach the timecounter. */
    767 	tsc_tc_init();
    768 
    769 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    770 	vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
    771 }
    772 #endif
    773 
    774 static void
    775 cpu_init_idle_lwp(struct cpu_info *ci)
    776 {
    777 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    778 	struct pcb *pcb = lwp_getpcb(l);
    779 
    780 	pcb->pcb_cr0 = rcr0();
    781 }
    782 
    783 void
    784 cpu_init_idle_lwps(void)
    785 {
    786 	struct cpu_info *ci;
    787 	u_long i;
    788 
    789 	for (i = 0; i < maxcpus; i++) {
    790 		ci = cpu_lookup(i);
    791 		if (ci == NULL)
    792 			continue;
    793 		if (ci->ci_data.cpu_idlelwp == NULL)
    794 			continue;
    795 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    796 			continue;
    797 		cpu_init_idle_lwp(ci);
    798 	}
    799 }
    800 
    801 #ifdef MULTIPROCESSOR
    802 void
    803 cpu_start_secondary(struct cpu_info *ci)
    804 {
    805 	u_long psl;
    806 	int i;
    807 
    808 #if NLAPIC > 0
    809 	paddr_t mp_pdirpa;
    810 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    811 	cpu_copy_trampoline(mp_pdirpa);
    812 #endif
    813 
    814 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    815 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    816 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    817 		return;
    818 	}
    819 
    820 	/*
    821 	 * Wait for it to become ready.   Setting cpu_starting opens the
    822 	 * initial gate and allows the AP to start soft initialization.
    823 	 */
    824 	KASSERT(cpu_starting == NULL);
    825 	cpu_starting = ci;
    826 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    827 		x86_delay(10);
    828 	}
    829 
    830 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    831 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    832 #if defined(MPDEBUG) && defined(DDB)
    833 		printf("dropping into debugger; continue from here to resume boot\n");
    834 		Debugger();
    835 #endif
    836 	} else {
    837 		/*
    838 		 * Synchronize time stamp counters. Invalidate cache and do
    839 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    840 		 * Disable interrupts to try and rule out any external
    841 		 * interference.
    842 		 */
    843 		psl = x86_read_psl();
    844 		x86_disable_intr();
    845 		tsc_sync_bp(ci);
    846 		x86_write_psl(psl);
    847 	}
    848 
    849 	CPU_START_CLEANUP(ci);
    850 	cpu_starting = NULL;
    851 }
    852 
    853 void
    854 cpu_boot_secondary(struct cpu_info *ci)
    855 {
    856 	int64_t drift;
    857 	u_long psl;
    858 	int i;
    859 
    860 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    861 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    862 		x86_delay(10);
    863 	}
    864 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    865 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    866 #if defined(MPDEBUG) && defined(DDB)
    867 		printf("dropping into debugger; continue from here to resume boot\n");
    868 		Debugger();
    869 #endif
    870 	} else {
    871 		/* Synchronize TSC again, check for drift. */
    872 		drift = ci->ci_data.cpu_cc_skew;
    873 		psl = x86_read_psl();
    874 		x86_disable_intr();
    875 		tsc_sync_bp(ci);
    876 		x86_write_psl(psl);
    877 		drift -= ci->ci_data.cpu_cc_skew;
    878 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    879 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    880 		tsc_sync_drift(drift);
    881 	}
    882 }
    883 
    884 /*
    885  * The CPU ends up here when it's ready to run.
    886  * This is called from code in mptramp.s; at this point, we are running
    887  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    888  * this processor will enter the idle loop and start looking for work.
    889  */
    890 void
    891 cpu_hatch(void *v)
    892 {
    893 	struct cpu_info *ci = (struct cpu_info *)v;
    894 	struct pcb *pcb;
    895 	int s, i;
    896 
    897 	/* ------------------------------------------------------------- */
    898 
    899 	/*
    900 	 * This section of code must be compiled with SSP disabled, to
    901 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    902 	 */
    903 
    904 	cpu_init_msrs(ci, true);
    905 	cpu_probe(ci);
    906 	cpu_speculation_init(ci);
    907 #if NHYPERV > 0
    908 	hyperv_init_cpu(ci);
    909 #endif
    910 
    911 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    912 	/* cpu_get_tsc_freq(ci); */
    913 
    914 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    915 
    916 	/*
    917 	 * Synchronize the TSC for the first time. Note that interrupts are
    918 	 * off at this point.
    919 	 */
    920 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    921 	tsc_sync_ap(ci);
    922 
    923 	/* ------------------------------------------------------------- */
    924 
    925 	/*
    926 	 * Wait to be brought online.
    927 	 *
    928 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    929 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    930 	 * this causes the TSC to drift. We want this to happen, so that we
    931 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    932 	 * TSCs. That's just for safety; by definition such drifts should
    933 	 * never occur with invariant TSCs.
    934 	 *
    935 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    936 	 * interrupts off.
    937 	 */
    938 	while ((ci->ci_flags & CPUF_GO) == 0) {
    939 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    940 			x86_monitor(&ci->ci_flags, 0, 0);
    941 			if ((ci->ci_flags & CPUF_GO) != 0) {
    942 				continue;
    943 			}
    944 			x86_mwait(0, 0);
    945 		} else {
    946 	/*
    947 	 * XXX The loop repetition count could be a lot higher, but
    948 	 * XXX currently qemu emulator takes a _very_long_time_ to
    949 	 * XXX execute the pause instruction.  So for now, use a low
    950 	 * XXX value to allow the cpu to hatch before timing out.
    951 	 */
    952 			for (i = 50; i != 0; i--) {
    953 				x86_pause();
    954 			}
    955 		}
    956 	}
    957 
    958 	/* Because the text may have been patched in x86_patch(). */
    959 	wbinvd();
    960 	x86_flush();
    961 	tlbflushg();
    962 
    963 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    964 
    965 #ifdef PAE
    966 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    967 	for (i = 0 ; i < PDP_SIZE; i++) {
    968 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
    969 	}
    970 	lcr3(ci->ci_pae_l3_pdirpa);
    971 #else
    972 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    973 #endif
    974 
    975 	pcb = lwp_getpcb(curlwp);
    976 	pcb->pcb_cr3 = rcr3();
    977 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    978 	lcr0(pcb->pcb_cr0);
    979 
    980 	cpu_init_idt();
    981 	gdt_init_cpu(ci);
    982 #if NLAPIC > 0
    983 	lapic_enable();
    984 	lapic_set_lvt();
    985 	lapic_initclocks();
    986 #endif
    987 
    988 	fpuinit(ci);
    989 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    990 	ltr(ci->ci_tss_sel);
    991 
    992 	/*
    993 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
    994 	 * drift that would have been caused by the use of MONITOR/MWAIT
    995 	 * above.
    996 	 */
    997 	cpu_init(ci);
    998 	cpu_get_tsc_freq(ci);
    999 
   1000 	s = splhigh();
   1001 #if NLAPIC > 0
   1002 	lapic_write_tpri(0);
   1003 #endif
   1004 	x86_enable_intr();
   1005 	splx(s);
   1006 	x86_errata();
   1007 
   1008 	aprint_debug_dev(ci->ci_dev, "running\n");
   1009 
   1010 	kcsan_cpu_init(ci);
   1011 
   1012 	idle_loop(NULL);
   1013 	KASSERT(false);
   1014 }
   1015 #endif
   1016 
   1017 #if defined(DDB)
   1018 
   1019 #include <ddb/db_output.h>
   1020 #include <machine/db_machdep.h>
   1021 
   1022 /*
   1023  * Dump CPU information from ddb.
   1024  */
   1025 void
   1026 cpu_debug_dump(void)
   1027 {
   1028 	struct cpu_info *ci;
   1029 	CPU_INFO_ITERATOR cii;
   1030 	const char sixtyfour64space[] =
   1031 #ifdef _LP64
   1032 			   "        "
   1033 #endif
   1034 			   "";
   1035 
   1036 	db_printf("addr		%sdev	id	flags	ipis	spl curlwp 		"
   1037 		  "\n", sixtyfour64space);
   1038 	for (CPU_INFO_FOREACH(cii, ci)) {
   1039 		db_printf("%p	%s	%ld	%x	%x	%d  %10p\n",
   1040 		    ci,
   1041 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
   1042 		    (long)ci->ci_cpuid,
   1043 		    ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
   1044 		    ci->ci_curlwp);
   1045 	}
   1046 }
   1047 #endif
   1048 
   1049 #ifdef MULTIPROCESSOR
   1050 #if NLAPIC > 0
   1051 static void
   1052 cpu_copy_trampoline(paddr_t pdir_pa)
   1053 {
   1054 	extern uint32_t nox_flag;
   1055 	extern u_char cpu_spinup_trampoline[];
   1056 	extern u_char cpu_spinup_trampoline_end[];
   1057 	vaddr_t mp_trampoline_vaddr;
   1058 	struct {
   1059 		uint32_t large;
   1060 		uint32_t nox;
   1061 		uint32_t pdir;
   1062 	} smp_data;
   1063 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1064 
   1065 	smp_data.large = (pmap_largepages != 0);
   1066 	smp_data.nox = nox_flag;
   1067 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1068 
   1069 	/* Enter the physical address */
   1070 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1071 	    UVM_KMF_VAONLY);
   1072 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1073 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1074 	pmap_update(pmap_kernel());
   1075 
   1076 	/* Copy boot code */
   1077 	memcpy((void *)mp_trampoline_vaddr,
   1078 	    cpu_spinup_trampoline,
   1079 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1080 
   1081 	/* Copy smp_data at the end */
   1082 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1083 	    &smp_data, sizeof(smp_data));
   1084 
   1085 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1086 	pmap_update(pmap_kernel());
   1087 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1088 }
   1089 #endif
   1090 
   1091 int
   1092 mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1093 {
   1094 	int error;
   1095 
   1096 	/*
   1097 	 * Bootstrap code must be addressable in real mode
   1098 	 * and it must be page aligned.
   1099 	 */
   1100 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1101 
   1102 	/*
   1103 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1104 	 */
   1105 
   1106 	outb(IO_RTC, NVRAM_RESET);
   1107 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1108 
   1109 #if NLAPIC > 0
   1110 	/*
   1111 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1112 	 * to the AP startup code ..."
   1113 	 */
   1114 	unsigned short dwordptr[2];
   1115 	dwordptr[0] = 0;
   1116 	dwordptr[1] = target >> 4;
   1117 
   1118 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1119 #endif
   1120 
   1121 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1122 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1123 		return ENODEV;
   1124 	}
   1125 
   1126 	/*
   1127 	 * ... prior to executing the following sequence:".  We'll also add in
   1128 	 * local cache flush, in case the BIOS has left the AP with its cache
   1129 	 * disabled.  It may not be able to cope with MP coherency.
   1130 	 */
   1131 	wbinvd();
   1132 
   1133 	if (ci->ci_flags & CPUF_AP) {
   1134 		error = x86_ipi_init(ci->ci_cpuid);
   1135 		if (error != 0) {
   1136 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1137 			    __func__);
   1138 			return error;
   1139 		}
   1140 		x86_delay(10000);
   1141 
   1142 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1143 		if (error != 0) {
   1144 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1145 			    __func__);
   1146 			return error;
   1147 		}
   1148 		x86_delay(200);
   1149 
   1150 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1151 		if (error != 0) {
   1152 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1153 			    __func__);
   1154 			return error;
   1155 		}
   1156 		x86_delay(200);
   1157 	}
   1158 
   1159 	return 0;
   1160 }
   1161 
   1162 void
   1163 mp_cpu_start_cleanup(struct cpu_info *ci)
   1164 {
   1165 	/*
   1166 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1167 	 */
   1168 
   1169 	outb(IO_RTC, NVRAM_RESET);
   1170 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1171 }
   1172 #endif
   1173 
   1174 #ifdef __x86_64__
   1175 typedef void (vector)(void);
   1176 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1177 #endif
   1178 
   1179 void
   1180 cpu_init_msrs(struct cpu_info *ci, bool full)
   1181 {
   1182 #ifdef __x86_64__
   1183 	wrmsr(MSR_STAR,
   1184 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1185 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1186 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1187 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1188 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1189 
   1190 #ifdef SVS
   1191 	if (svs_enabled)
   1192 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1193 #endif
   1194 
   1195 	if (full) {
   1196 		wrmsr(MSR_FSBASE, 0);
   1197 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1198 		wrmsr(MSR_KERNELGSBASE, 0);
   1199 	}
   1200 #endif	/* __x86_64__ */
   1201 
   1202 	if (cpu_feature[2] & CPUID_NOX)
   1203 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1204 }
   1205 
   1206 void
   1207 cpu_offline_md(void)
   1208 {
   1209 	return;
   1210 }
   1211 
   1212 /* XXX joerg restructure and restart CPUs individually */
   1213 static bool
   1214 cpu_stop(device_t dv)
   1215 {
   1216 	struct cpu_softc *sc = device_private(dv);
   1217 	struct cpu_info *ci = sc->sc_info;
   1218 	int err;
   1219 
   1220 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1221 
   1222 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1223 		return true;
   1224 
   1225 	if (ci->ci_data.cpu_idlelwp == NULL)
   1226 		return true;
   1227 
   1228 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1229 
   1230 	if (sc->sc_wasonline) {
   1231 		mutex_enter(&cpu_lock);
   1232 		err = cpu_setstate(ci, false);
   1233 		mutex_exit(&cpu_lock);
   1234 
   1235 		if (err != 0)
   1236 			return false;
   1237 	}
   1238 
   1239 	return true;
   1240 }
   1241 
   1242 static bool
   1243 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1244 {
   1245 	struct cpu_softc *sc = device_private(dv);
   1246 	struct cpu_info *ci = sc->sc_info;
   1247 
   1248 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1249 		return true;
   1250 	else {
   1251 		cpufreq_suspend(ci);
   1252 	}
   1253 
   1254 	return cpu_stop(dv);
   1255 }
   1256 
   1257 static bool
   1258 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1259 {
   1260 	struct cpu_softc *sc = device_private(dv);
   1261 	struct cpu_info *ci = sc->sc_info;
   1262 	int err = 0;
   1263 
   1264 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1265 		return true;
   1266 
   1267 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1268 		goto out;
   1269 
   1270 	if (ci->ci_data.cpu_idlelwp == NULL)
   1271 		goto out;
   1272 
   1273 	if (sc->sc_wasonline) {
   1274 		mutex_enter(&cpu_lock);
   1275 		err = cpu_setstate(ci, true);
   1276 		mutex_exit(&cpu_lock);
   1277 	}
   1278 
   1279 out:
   1280 	if (err != 0)
   1281 		return false;
   1282 
   1283 	cpufreq_resume(ci);
   1284 
   1285 	return true;
   1286 }
   1287 
   1288 static bool
   1289 cpu_shutdown(device_t dv, int how)
   1290 {
   1291 	struct cpu_softc *sc = device_private(dv);
   1292 	struct cpu_info *ci = sc->sc_info;
   1293 
   1294 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1295 		return false;
   1296 
   1297 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1298 		return true;
   1299 
   1300 	return cpu_stop(dv);
   1301 }
   1302 
   1303 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
   1304 void
   1305 cpu_get_tsc_freq(struct cpu_info *ci)
   1306 {
   1307 	uint64_t freq = 0, t0, t1;
   1308 	int64_t overhead;
   1309 
   1310 	if (cpu_hascounter())
   1311 		freq = cpu_tsc_freq_cpuid(ci);
   1312 
   1313 	if (freq != 0) {
   1314 		/* Use TSC frequency taken from CPUID. */
   1315 		ci->ci_data.cpu_cc_freq = freq;
   1316 	} else {
   1317 		/*
   1318 		 * Work out the approximate overhead involved below.
   1319 		 * Discard the result of the first go around the loop.
   1320 		 */
   1321 		overhead = 0;
   1322 		for (int i = 0; i <= 8; i++) {
   1323 			__insn_barrier();
   1324 			t0 = cpu_counter_serializing();
   1325 			(*cpu_nullop_ptr)(NULL);
   1326 			t1 = cpu_counter_serializing();
   1327 			__insn_barrier();
   1328 			if (i > 0) {
   1329 				overhead += (t1 - t0);
   1330 			}
   1331 		}
   1332 		overhead >>= 3;
   1333 
   1334 		/* Now warm up x86_delay() and do the calibration. */
   1335 		x86_delay(1);
   1336 		__insn_barrier();
   1337 		t0 = cpu_counter_serializing();
   1338 		x86_delay(100000);
   1339 		t1 = cpu_counter_serializing();
   1340 		__insn_barrier();
   1341 		ci->ci_data.cpu_cc_freq = (t1 - t0 - overhead) * 10;
   1342 	}
   1343 }
   1344 
   1345 void
   1346 x86_cpu_idle_mwait(void)
   1347 {
   1348 	struct cpu_info *ci = curcpu();
   1349 
   1350 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1351 
   1352 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1353 	if (__predict_false(ci->ci_want_resched)) {
   1354 		return;
   1355 	}
   1356 	x86_mwait(0, 0);
   1357 }
   1358 
   1359 void
   1360 x86_cpu_idle_halt(void)
   1361 {
   1362 	struct cpu_info *ci = curcpu();
   1363 
   1364 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1365 
   1366 	x86_disable_intr();
   1367 	if (!__predict_false(ci->ci_want_resched)) {
   1368 		x86_stihlt();
   1369 	} else {
   1370 		x86_enable_intr();
   1371 	}
   1372 }
   1373 
   1374 /*
   1375  * Loads pmap for the current CPU.
   1376  */
   1377 void
   1378 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1379 {
   1380 #ifdef SVS
   1381 	if (svs_enabled) {
   1382 		svs_pdir_switch(pmap);
   1383 	}
   1384 #endif
   1385 
   1386 #ifdef PAE
   1387 	struct cpu_info *ci = curcpu();
   1388 	bool interrupts_enabled;
   1389 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1390 	int i;
   1391 
   1392 	/*
   1393 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1394 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1395 	 * reload cr3.
   1396 	 */
   1397 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1398 	if (interrupts_enabled)
   1399 		x86_disable_intr();
   1400 
   1401 	for (i = 0 ; i < PDP_SIZE; i++) {
   1402 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1403 	}
   1404 
   1405 	if (interrupts_enabled)
   1406 		x86_enable_intr();
   1407 	tlbflush();
   1408 #else
   1409 	lcr3(pmap_pdirpa(pmap, 0));
   1410 #endif
   1411 }
   1412 
   1413 /*
   1414  * Notify all other cpus to halt.
   1415  */
   1416 
   1417 void
   1418 cpu_broadcast_halt(void)
   1419 {
   1420 	x86_broadcast_ipi(X86_IPI_HALT);
   1421 }
   1422 
   1423 /*
   1424  * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
   1425  * and trigger an AST on the running LWP.
   1426  */
   1427 
   1428 void
   1429 cpu_kick(struct cpu_info *ci)
   1430 {
   1431 	x86_send_ipi(ci, X86_IPI_AST);
   1432 }
   1433