cpu.c revision 1.187 1 /* $NetBSD: cpu.c,v 1.187 2020/04/25 15:26:18 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.187 2020/04/25 15:26:18 bouyer Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71 #include "opt_svs.h"
72
73 #include "lapic.h"
74 #include "ioapic.h"
75 #include "acpica.h"
76 #include "hpet.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/cpu.h>
83 #include <sys/cpufreq.h>
84 #include <sys/idle.h>
85 #include <sys/atomic.h>
86 #include <sys/reboot.h>
87 #include <sys/csan.h>
88
89 #include <uvm/uvm.h>
90
91 #include "acpica.h" /* for NACPICA, for mp_verbose */
92
93 #include <x86/machdep.h>
94 #include <machine/cpufunc.h>
95 #include <machine/cpuvar.h>
96 #include <machine/pmap.h>
97 #include <machine/vmparam.h>
98 #if defined(MULTIPROCESSOR)
99 #include <machine/mpbiosvar.h>
100 #endif
101 #include <machine/mpconfig.h> /* for mp_verbose */
102 #include <machine/pcb.h>
103 #include <machine/specialreg.h>
104 #include <machine/segments.h>
105 #include <machine/gdt.h>
106 #include <machine/mtrr.h>
107 #include <machine/pio.h>
108 #include <machine/cpu_counter.h>
109
110 #include <x86/fpu.h>
111
112 #if NACPICA > 0
113 #include <dev/acpi/acpi_srat.h>
114 #endif
115
116 #if NLAPIC > 0
117 #include <machine/apicvar.h>
118 #include <machine/i82489reg.h>
119 #include <machine/i82489var.h>
120 #endif
121
122 #include <dev/ic/mc146818reg.h>
123 #include <dev/ic/hpetvar.h>
124 #include <i386/isa/nvram.h>
125 #include <dev/isa/isareg.h>
126
127 #include "tsc.h"
128
129 #ifndef XENPV
130 #include "hyperv.h"
131 #if NHYPERV > 0
132 #include <x86/x86/hypervvar.h>
133 #endif
134 #endif
135
136 #ifdef XEN
137 #include <xen/hypervisor.h>
138 #endif
139
140 static int cpu_match(device_t, cfdata_t, void *);
141 static void cpu_attach(device_t, device_t, void *);
142 static void cpu_defer(device_t);
143 static int cpu_rescan(device_t, const char *, const int *);
144 static void cpu_childdetached(device_t, device_t);
145 static bool cpu_stop(device_t);
146 static bool cpu_suspend(device_t, const pmf_qual_t *);
147 static bool cpu_resume(device_t, const pmf_qual_t *);
148 static bool cpu_shutdown(device_t, int);
149
150 struct cpu_softc {
151 device_t sc_dev; /* device tree glue */
152 struct cpu_info *sc_info; /* pointer to CPU info */
153 bool sc_wasonline;
154 };
155
156 #ifdef MULTIPROCESSOR
157 int mp_cpu_start(struct cpu_info *, paddr_t);
158 void mp_cpu_start_cleanup(struct cpu_info *);
159 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
160 mp_cpu_start_cleanup };
161 #endif
162
163
164 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
165 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
166
167 /*
168 * Statically-allocated CPU info for the primary CPU (or the only
169 * CPU, on uniprocessors). The CPU info list is initialized to
170 * point at it.
171 */
172 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
173 .ci_dev = 0,
174 .ci_self = &cpu_info_primary,
175 .ci_idepth = -1,
176 .ci_curlwp = &lwp0,
177 .ci_curldt = -1,
178 };
179
180 struct cpu_info *cpu_info_list = &cpu_info_primary;
181
182 #ifdef i386
183 void cpu_set_tss_gates(struct cpu_info *);
184 #endif
185
186 static void cpu_init_idle_lwp(struct cpu_info *);
187
188 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
189 /* [0] basic features cpuid.1:%edx
190 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
191 * [2] extended features cpuid:80000001:%edx
192 * [3] extended features cpuid:80000001:%ecx
193 * [4] VIA padlock features
194 * [5] structured extended features cpuid.7:%ebx
195 * [6] structured extended features cpuid.7:%ecx
196 */
197
198 #ifdef MULTIPROCESSOR
199 bool x86_mp_online;
200 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
201 #endif
202 #if NLAPIC > 0
203 static vaddr_t cmos_data_mapping;
204 #endif
205 struct cpu_info *cpu_starting;
206
207 int (*cpu_nullop_ptr)(void *) = nullop;
208
209 #ifdef MULTIPROCESSOR
210 void cpu_hatch(void *);
211 static void cpu_boot_secondary(struct cpu_info *ci);
212 static void cpu_start_secondary(struct cpu_info *ci);
213 #if NLAPIC > 0
214 static void cpu_copy_trampoline(paddr_t);
215 #endif
216 #endif /* MULTIPROCESSOR */
217
218 /*
219 * Runs once per boot once multiprocessor goo has been detected and
220 * the local APIC on the boot processor has been mapped.
221 *
222 * Called from lapic_boot_init() (from mpbios_scan()).
223 */
224 #if NLAPIC > 0
225 void
226 cpu_init_first(void)
227 {
228
229 cpu_info_primary.ci_cpuid = lapic_cpu_number();
230
231 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
232 if (cmos_data_mapping == 0)
233 panic("No KVA for page 0");
234 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
235 pmap_update(pmap_kernel());
236 }
237 #endif
238
239 static int
240 cpu_match(device_t parent, cfdata_t match, void *aux)
241 {
242
243 return 1;
244 }
245
246 #ifdef __HAVE_PCPU_AREA
247 void
248 cpu_pcpuarea_init(struct cpu_info *ci)
249 {
250 struct vm_page *pg;
251 size_t i, npages;
252 vaddr_t base, va;
253 paddr_t pa;
254
255 CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
256
257 npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
258 base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
259
260 for (i = 0; i < npages; i++) {
261 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
262 if (pg == NULL) {
263 panic("failed to allocate pcpu PA");
264 }
265
266 va = base + i * PAGE_SIZE;
267 pa = VM_PAGE_TO_PHYS(pg);
268
269 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
270 }
271
272 pmap_update(pmap_kernel());
273 }
274 #endif
275
276 static void
277 cpu_vm_init(struct cpu_info *ci)
278 {
279 int ncolors = 2, i;
280
281 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
282 struct x86_cache_info *cai;
283 int tcolors;
284
285 cai = &ci->ci_cinfo[i];
286
287 tcolors = atop(cai->cai_totalsize);
288 switch (cai->cai_associativity) {
289 case 0xff:
290 tcolors = 1; /* fully associative */
291 break;
292 case 0:
293 case 1:
294 break;
295 default:
296 tcolors /= cai->cai_associativity;
297 }
298 ncolors = uimax(ncolors, tcolors);
299 /*
300 * If the desired number of colors is not a power of
301 * two, it won't be good. Find the greatest power of
302 * two which is an even divisor of the number of colors,
303 * to preserve even coloring of pages.
304 */
305 if (ncolors & (ncolors - 1) ) {
306 int try, picked = 1;
307 for (try = 1; try < ncolors; try *= 2) {
308 if (ncolors % try == 0) picked = try;
309 }
310 if (picked == 1) {
311 panic("desired number of cache colors %d is "
312 " > 1, but not even!", ncolors);
313 }
314 ncolors = picked;
315 }
316 }
317
318 /*
319 * Knowing the size of the largest cache on this CPU, potentially
320 * re-color our pages.
321 */
322 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
323 uvm_page_recolor(ncolors);
324
325 pmap_tlb_cpu_init(ci);
326 #ifndef __HAVE_DIRECT_MAP
327 pmap_vpage_cpu_init(ci);
328 #endif
329 }
330
331 static void
332 cpu_attach(device_t parent, device_t self, void *aux)
333 {
334 struct cpu_softc *sc = device_private(self);
335 struct cpu_attach_args *caa = aux;
336 struct cpu_info *ci;
337 uintptr_t ptr;
338 #if NLAPIC > 0
339 int cpunum = caa->cpu_number;
340 #endif
341 static bool again;
342
343 sc->sc_dev = self;
344
345 if (ncpu > maxcpus) {
346 #ifndef _LP64
347 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
348 #else
349 aprint_error(": too many CPUs\n");
350 #endif
351 return;
352 }
353
354 /*
355 * If we're an Application Processor, allocate a cpu_info
356 * structure, otherwise use the primary's.
357 */
358 if (caa->cpu_role == CPU_ROLE_AP) {
359 if ((boothowto & RB_MD1) != 0) {
360 aprint_error(": multiprocessor boot disabled\n");
361 if (!pmf_device_register(self, NULL, NULL))
362 aprint_error_dev(self,
363 "couldn't establish power handler\n");
364 return;
365 }
366 aprint_naive(": Application Processor\n");
367 ptr = (uintptr_t)uvm_km_alloc(kernel_map,
368 sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
369 UVM_KMF_WIRED|UVM_KMF_ZERO);
370 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
371 ci->ci_curldt = -1;
372 } else {
373 aprint_naive(": %s Processor\n",
374 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
375 ci = &cpu_info_primary;
376 #if NLAPIC > 0
377 if (cpunum != lapic_cpu_number()) {
378 /* XXX should be done earlier. */
379 uint32_t reg;
380 aprint_verbose("\n");
381 aprint_verbose_dev(self, "running CPU at apic %d"
382 " instead of at expected %d", lapic_cpu_number(),
383 cpunum);
384 reg = lapic_readreg(LAPIC_ID);
385 lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
386 (cpunum << LAPIC_ID_SHIFT));
387 }
388 if (cpunum != lapic_cpu_number()) {
389 aprint_error_dev(self, "unable to reset apic id\n");
390 }
391 #endif
392 }
393
394 ci->ci_self = ci;
395 sc->sc_info = ci;
396 ci->ci_dev = self;
397 ci->ci_acpiid = caa->cpu_id;
398 ci->ci_cpuid = caa->cpu_number;
399 ci->ci_func = caa->cpu_func;
400 ci->ci_kfpu_spl = -1;
401 aprint_normal("\n");
402
403 /* Must be before mi_cpu_attach(). */
404 cpu_vm_init(ci);
405
406 if (caa->cpu_role == CPU_ROLE_AP) {
407 int error;
408
409 error = mi_cpu_attach(ci);
410 if (error != 0) {
411 aprint_error_dev(self,
412 "mi_cpu_attach failed with %d\n", error);
413 return;
414 }
415 #ifdef __HAVE_PCPU_AREA
416 cpu_pcpuarea_init(ci);
417 #endif
418 cpu_init_tss(ci);
419 } else {
420 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
421 #if NACPICA > 0
422 /* Parse out NUMA info for cpu_identify(). */
423 acpisrat_init();
424 #endif
425 }
426
427 #ifdef SVS
428 cpu_svs_init(ci);
429 #endif
430
431 pmap_reference(pmap_kernel());
432 ci->ci_pmap = pmap_kernel();
433 ci->ci_tlbstate = TLBSTATE_STALE;
434
435 /*
436 * Boot processor may not be attached first, but the below
437 * must be done to allow booting other processors.
438 */
439 if (!again) {
440 /* Make sure DELAY() (likely i8254_delay()) is initialized. */
441 DELAY(1);
442
443 /* Basic init. */
444 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
445 cpu_intr_init(ci);
446 cpu_get_tsc_freq(ci);
447 cpu_init(ci);
448 #ifdef i386
449 cpu_set_tss_gates(ci);
450 #endif
451 pmap_cpu_init_late(ci);
452 #if NLAPIC > 0
453 if (caa->cpu_role != CPU_ROLE_SP) {
454 /* Enable lapic. */
455 lapic_enable();
456 lapic_set_lvt();
457 if (vm_guest != VM_GUEST_XENPVHVM)
458 lapic_calibrate_timer(ci);
459 }
460 #endif
461 kcsan_cpu_init(ci);
462 again = true;
463 }
464
465 /* further PCB init done later. */
466
467 switch (caa->cpu_role) {
468 case CPU_ROLE_SP:
469 atomic_or_32(&ci->ci_flags, CPUF_SP);
470 cpu_identify(ci);
471 x86_errata();
472 x86_cpu_idle_init();
473 (*x86_cpu_initclock_func)();
474 #ifdef XENPVHVM
475 xen_hvm_init_cpu(ci);
476 #endif
477 break;
478
479 case CPU_ROLE_BP:
480 atomic_or_32(&ci->ci_flags, CPUF_BSP);
481 cpu_identify(ci);
482 x86_errata();
483 x86_cpu_idle_init();
484 #ifdef XENPVHVM
485 xen_hvm_init_cpu(ci);
486 #endif
487 (*x86_cpu_initclock_func)();
488 break;
489
490 #ifdef MULTIPROCESSOR
491 case CPU_ROLE_AP:
492 /*
493 * report on an AP
494 */
495 cpu_intr_init(ci);
496 gdt_alloc_cpu(ci);
497 #ifdef i386
498 cpu_set_tss_gates(ci);
499 #endif
500 pmap_cpu_init_late(ci);
501 cpu_start_secondary(ci);
502 if (ci->ci_flags & CPUF_PRESENT) {
503 struct cpu_info *tmp;
504
505 cpu_identify(ci);
506 tmp = cpu_info_list;
507 while (tmp->ci_next)
508 tmp = tmp->ci_next;
509
510 tmp->ci_next = ci;
511 }
512 break;
513 #endif
514
515 default:
516 panic("unknown processor type??\n");
517 }
518
519 pat_init(ci);
520
521 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
522 aprint_error_dev(self, "couldn't establish power handler\n");
523
524 #ifdef MULTIPROCESSOR
525 if (mp_verbose) {
526 struct lwp *l = ci->ci_data.cpu_idlelwp;
527 struct pcb *pcb = lwp_getpcb(l);
528
529 aprint_verbose_dev(self,
530 "idle lwp at %p, idle sp at %p\n",
531 l,
532 #ifdef i386
533 (void *)pcb->pcb_esp
534 #else
535 (void *)pcb->pcb_rsp
536 #endif
537 );
538 }
539 #endif
540
541 /*
542 * Postpone the "cpufeaturebus" scan.
543 * It is safe to scan the pseudo-bus
544 * only after all CPUs have attached.
545 */
546 (void)config_defer(self, cpu_defer);
547 }
548
549 static void
550 cpu_defer(device_t self)
551 {
552 cpu_rescan(self, NULL, NULL);
553 }
554
555 static int
556 cpu_rescan(device_t self, const char *ifattr, const int *locators)
557 {
558 struct cpu_softc *sc = device_private(self);
559 struct cpufeature_attach_args cfaa;
560 struct cpu_info *ci = sc->sc_info;
561
562 /*
563 * If we booted with RB_MD1 to disable multiprocessor, the
564 * auto-configuration data still contains the additional
565 * CPUs. But their initialization was mostly bypassed
566 * during attach, so we have to make sure we don't look at
567 * their featurebus info, since it wasn't retrieved.
568 */
569 if (ci == NULL)
570 return 0;
571
572 memset(&cfaa, 0, sizeof(cfaa));
573 cfaa.ci = ci;
574
575 if (ifattr_match(ifattr, "cpufeaturebus")) {
576 if (ci->ci_frequency == NULL) {
577 cfaa.name = "frequency";
578 ci->ci_frequency = config_found_ia(self,
579 "cpufeaturebus", &cfaa, NULL);
580 }
581
582 if (ci->ci_padlock == NULL) {
583 cfaa.name = "padlock";
584 ci->ci_padlock = config_found_ia(self,
585 "cpufeaturebus", &cfaa, NULL);
586 }
587
588 if (ci->ci_temperature == NULL) {
589 cfaa.name = "temperature";
590 ci->ci_temperature = config_found_ia(self,
591 "cpufeaturebus", &cfaa, NULL);
592 }
593
594 if (ci->ci_vm == NULL) {
595 cfaa.name = "vm";
596 ci->ci_vm = config_found_ia(self,
597 "cpufeaturebus", &cfaa, NULL);
598 }
599 }
600
601 return 0;
602 }
603
604 static void
605 cpu_childdetached(device_t self, device_t child)
606 {
607 struct cpu_softc *sc = device_private(self);
608 struct cpu_info *ci = sc->sc_info;
609
610 if (ci->ci_frequency == child)
611 ci->ci_frequency = NULL;
612
613 if (ci->ci_padlock == child)
614 ci->ci_padlock = NULL;
615
616 if (ci->ci_temperature == child)
617 ci->ci_temperature = NULL;
618
619 if (ci->ci_vm == child)
620 ci->ci_vm = NULL;
621 }
622
623 /*
624 * Initialize the processor appropriately.
625 */
626
627 void
628 cpu_init(struct cpu_info *ci)
629 {
630 extern int x86_fpu_save;
631 uint32_t cr4 = 0;
632
633 lcr0(rcr0() | CR0_WP);
634
635 /* If global TLB caching is supported, enable it */
636 if (cpu_feature[0] & CPUID_PGE)
637 cr4 |= CR4_PGE;
638
639 /*
640 * If we have FXSAVE/FXRESTOR, use them.
641 */
642 if (cpu_feature[0] & CPUID_FXSR) {
643 cr4 |= CR4_OSFXSR;
644
645 /*
646 * If we have SSE/SSE2, enable XMM exceptions.
647 */
648 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
649 cr4 |= CR4_OSXMMEXCPT;
650 }
651
652 /* If xsave is supported, enable it */
653 if (cpu_feature[1] & CPUID2_XSAVE)
654 cr4 |= CR4_OSXSAVE;
655
656 /* If SMEP is supported, enable it */
657 if (cpu_feature[5] & CPUID_SEF_SMEP)
658 cr4 |= CR4_SMEP;
659
660 /* If SMAP is supported, enable it */
661 if (cpu_feature[5] & CPUID_SEF_SMAP)
662 cr4 |= CR4_SMAP;
663
664 #ifdef SVS
665 /* If PCID is supported, enable it */
666 if (svs_pcid)
667 cr4 |= CR4_PCIDE;
668 #endif
669
670 if (cr4) {
671 cr4 |= rcr4();
672 lcr4(cr4);
673 }
674
675 /*
676 * Changing CR4 register may change cpuid values. For example, setting
677 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
678 * ci_feat_val[1], so update it.
679 * XXX Other than ci_feat_val[1] might be changed.
680 */
681 if (cpuid_level >= 1) {
682 u_int descs[4];
683
684 x86_cpuid(1, descs);
685 ci->ci_feat_val[1] = descs[2];
686 }
687
688 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
689 fpuinit_mxcsr_mask();
690 }
691
692 /* If xsave is enabled, enable all fpu features */
693 if (cr4 & CR4_OSXSAVE)
694 wrxcr(0, x86_xsave_features & XCR0_FPU);
695
696 #ifdef MTRR
697 /*
698 * On a P6 or above, initialize MTRR's if the hardware supports them.
699 */
700 if (cpu_feature[0] & CPUID_MTRR) {
701 if ((ci->ci_flags & CPUF_AP) == 0)
702 i686_mtrr_init_first();
703 mtrr_init_cpu(ci);
704 }
705
706 #ifdef i386
707 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
708 /*
709 * Must be a K6-2 Step >= 7 or a K6-III.
710 */
711 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
712 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
713 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
714 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
715 mtrr_funcs = &k6_mtrr_funcs;
716 k6_mtrr_init_first();
717 mtrr_init_cpu(ci);
718 }
719 }
720 }
721 #endif /* i386 */
722 #endif /* MTRR */
723
724 if (ci != &cpu_info_primary) {
725 /* Synchronize TSC */
726 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
727 tsc_sync_ap(ci);
728 } else {
729 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
730 }
731 }
732
733 #ifdef MULTIPROCESSOR
734 void
735 cpu_boot_secondary_processors(void)
736 {
737 struct cpu_info *ci;
738 kcpuset_t *cpus;
739 u_long i;
740
741 #if NHPET > 0
742 /* Use HPET delay, and re-calibrate TSC on boot CPU using HPET. */
743 if (hpet_delay_p() && x86_delay == i8254_delay) {
744 delay_func = x86_delay = hpet_delay;
745 cpu_get_tsc_freq(curcpu());
746 }
747 #endif
748
749 /* Now that we know the number of CPUs, patch the text segment. */
750 x86_patch(false);
751
752 #if NACPICA > 0
753 /* Finished with NUMA info for now. */
754 acpisrat_exit();
755 #endif
756
757 kcpuset_create(&cpus, true);
758 kcpuset_set(cpus, cpu_index(curcpu()));
759 for (i = 0; i < maxcpus; i++) {
760 ci = cpu_lookup(i);
761 if (ci == NULL)
762 continue;
763 if (ci->ci_data.cpu_idlelwp == NULL)
764 continue;
765 if ((ci->ci_flags & CPUF_PRESENT) == 0)
766 continue;
767 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
768 continue;
769 cpu_boot_secondary(ci);
770 kcpuset_set(cpus, cpu_index(ci));
771 }
772 while (!kcpuset_match(cpus, kcpuset_running))
773 ;
774 kcpuset_destroy(cpus);
775
776 x86_mp_online = true;
777
778 /* Now that we know about the TSC, attach the timecounter. */
779 tsc_tc_init();
780
781 /* Enable zeroing of pages in the idle loop if we have SSE2. */
782 vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
783 }
784 #endif
785
786 static void
787 cpu_init_idle_lwp(struct cpu_info *ci)
788 {
789 struct lwp *l = ci->ci_data.cpu_idlelwp;
790 struct pcb *pcb = lwp_getpcb(l);
791
792 pcb->pcb_cr0 = rcr0();
793 }
794
795 void
796 cpu_init_idle_lwps(void)
797 {
798 struct cpu_info *ci;
799 u_long i;
800
801 for (i = 0; i < maxcpus; i++) {
802 ci = cpu_lookup(i);
803 if (ci == NULL)
804 continue;
805 if (ci->ci_data.cpu_idlelwp == NULL)
806 continue;
807 if ((ci->ci_flags & CPUF_PRESENT) == 0)
808 continue;
809 cpu_init_idle_lwp(ci);
810 }
811 }
812
813 #ifdef MULTIPROCESSOR
814 void
815 cpu_start_secondary(struct cpu_info *ci)
816 {
817 u_long psl;
818 int i;
819
820 #if NLAPIC > 0
821 paddr_t mp_pdirpa;
822 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
823 cpu_copy_trampoline(mp_pdirpa);
824 #endif
825
826 atomic_or_32(&ci->ci_flags, CPUF_AP);
827 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
828 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
829 return;
830 }
831
832 /*
833 * Wait for it to become ready. Setting cpu_starting opens the
834 * initial gate and allows the AP to start soft initialization.
835 */
836 KASSERT(cpu_starting == NULL);
837 cpu_starting = ci;
838 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
839 x86_delay(10);
840 }
841
842 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
843 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
844 #if defined(MPDEBUG) && defined(DDB)
845 printf("dropping into debugger; continue from here to resume boot\n");
846 Debugger();
847 #endif
848 } else {
849 /*
850 * Synchronize time stamp counters. Invalidate cache and do
851 * twice (in tsc_sync_bp) to minimize possible cache effects.
852 * Disable interrupts to try and rule out any external
853 * interference.
854 */
855 psl = x86_read_psl();
856 x86_disable_intr();
857 tsc_sync_bp(ci);
858 x86_write_psl(psl);
859 }
860
861 CPU_START_CLEANUP(ci);
862 cpu_starting = NULL;
863 }
864
865 void
866 cpu_boot_secondary(struct cpu_info *ci)
867 {
868 int64_t drift;
869 u_long psl;
870 int i;
871
872 atomic_or_32(&ci->ci_flags, CPUF_GO);
873 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
874 x86_delay(10);
875 }
876 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
877 aprint_error_dev(ci->ci_dev, "failed to start\n");
878 #if defined(MPDEBUG) && defined(DDB)
879 printf("dropping into debugger; continue from here to resume boot\n");
880 Debugger();
881 #endif
882 } else {
883 /* Synchronize TSC again, check for drift. */
884 drift = ci->ci_data.cpu_cc_skew;
885 psl = x86_read_psl();
886 x86_disable_intr();
887 tsc_sync_bp(ci);
888 x86_write_psl(psl);
889 drift -= ci->ci_data.cpu_cc_skew;
890 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
891 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
892 tsc_sync_drift(drift);
893 }
894 }
895
896 /*
897 * The CPU ends up here when it's ready to run.
898 * This is called from code in mptramp.s; at this point, we are running
899 * in the idle pcb/idle stack of the new CPU. When this function returns,
900 * this processor will enter the idle loop and start looking for work.
901 */
902 void
903 cpu_hatch(void *v)
904 {
905 struct cpu_info *ci = (struct cpu_info *)v;
906 struct pcb *pcb;
907 int s, i;
908
909 /* ------------------------------------------------------------- */
910
911 /*
912 * This section of code must be compiled with SSP disabled, to
913 * prevent a race against cpu0. See sys/conf/ssp.mk.
914 */
915
916 cpu_init_msrs(ci, true);
917 cpu_probe(ci);
918 cpu_speculation_init(ci);
919 #if NHYPERV > 0
920 hyperv_init_cpu(ci);
921 #endif
922
923 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
924 /* cpu_get_tsc_freq(ci); */
925
926 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
927
928 /*
929 * Synchronize the TSC for the first time. Note that interrupts are
930 * off at this point.
931 */
932 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
933 tsc_sync_ap(ci);
934
935 /* ------------------------------------------------------------- */
936
937 /*
938 * Wait to be brought online.
939 *
940 * Use MONITOR/MWAIT if available. These instructions put the CPU in
941 * a low consumption mode (C-state), and if the TSC is not invariant,
942 * this causes the TSC to drift. We want this to happen, so that we
943 * can later detect (in tsc_tc_init) any abnormal drift with invariant
944 * TSCs. That's just for safety; by definition such drifts should
945 * never occur with invariant TSCs.
946 *
947 * If not available, try PAUSE. We'd like to use HLT, but we have
948 * interrupts off.
949 */
950 while ((ci->ci_flags & CPUF_GO) == 0) {
951 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
952 x86_monitor(&ci->ci_flags, 0, 0);
953 if ((ci->ci_flags & CPUF_GO) != 0) {
954 continue;
955 }
956 x86_mwait(0, 0);
957 } else {
958 /*
959 * XXX The loop repetition count could be a lot higher, but
960 * XXX currently qemu emulator takes a _very_long_time_ to
961 * XXX execute the pause instruction. So for now, use a low
962 * XXX value to allow the cpu to hatch before timing out.
963 */
964 for (i = 50; i != 0; i--) {
965 x86_pause();
966 }
967 }
968 }
969
970 /* Because the text may have been patched in x86_patch(). */
971 wbinvd();
972 x86_flush();
973 tlbflushg();
974
975 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
976
977 #ifdef PAE
978 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
979 for (i = 0 ; i < PDP_SIZE; i++) {
980 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
981 }
982 lcr3(ci->ci_pae_l3_pdirpa);
983 #else
984 lcr3(pmap_pdirpa(pmap_kernel(), 0));
985 #endif
986
987 pcb = lwp_getpcb(curlwp);
988 pcb->pcb_cr3 = rcr3();
989 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
990 lcr0(pcb->pcb_cr0);
991
992 cpu_init_idt();
993 gdt_init_cpu(ci);
994 #if NLAPIC > 0
995 lapic_enable();
996 lapic_set_lvt();
997 #endif
998
999 fpuinit(ci);
1000 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
1001 ltr(ci->ci_tss_sel);
1002
1003 /*
1004 * cpu_init will re-synchronize the TSC, and will detect any abnormal
1005 * drift that would have been caused by the use of MONITOR/MWAIT
1006 * above.
1007 */
1008 cpu_init(ci);
1009 #ifdef XENPVHVM
1010 xen_hvm_init_cpu(ci);
1011 #endif
1012 (*x86_cpu_initclock_func)();
1013 cpu_get_tsc_freq(ci);
1014
1015 s = splhigh();
1016 #if NLAPIC > 0
1017 lapic_write_tpri(0);
1018 #endif
1019 x86_enable_intr();
1020 splx(s);
1021 x86_errata();
1022
1023 aprint_debug_dev(ci->ci_dev, "running\n");
1024
1025 kcsan_cpu_init(ci);
1026
1027 idle_loop(NULL);
1028 KASSERT(false);
1029 }
1030 #endif
1031
1032 #if defined(DDB)
1033
1034 #include <ddb/db_output.h>
1035 #include <machine/db_machdep.h>
1036
1037 /*
1038 * Dump CPU information from ddb.
1039 */
1040 void
1041 cpu_debug_dump(void)
1042 {
1043 struct cpu_info *ci;
1044 CPU_INFO_ITERATOR cii;
1045 const char sixtyfour64space[] =
1046 #ifdef _LP64
1047 " "
1048 #endif
1049 "";
1050
1051 db_printf("addr %sdev id flags ipis spl curlwp "
1052 "\n", sixtyfour64space);
1053 for (CPU_INFO_FOREACH(cii, ci)) {
1054 db_printf("%p %s %ld %x %x %d %10p\n",
1055 ci,
1056 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1057 (long)ci->ci_cpuid,
1058 ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1059 ci->ci_curlwp);
1060 }
1061 }
1062 #endif
1063
1064 #ifdef MULTIPROCESSOR
1065 #if NLAPIC > 0
1066 static void
1067 cpu_copy_trampoline(paddr_t pdir_pa)
1068 {
1069 extern uint32_t nox_flag;
1070 extern u_char cpu_spinup_trampoline[];
1071 extern u_char cpu_spinup_trampoline_end[];
1072 vaddr_t mp_trampoline_vaddr;
1073 struct {
1074 uint32_t large;
1075 uint32_t nox;
1076 uint32_t pdir;
1077 } smp_data;
1078 CTASSERT(sizeof(smp_data) == 3 * 4);
1079
1080 smp_data.large = (pmap_largepages != 0);
1081 smp_data.nox = nox_flag;
1082 smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1083
1084 /* Enter the physical address */
1085 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1086 UVM_KMF_VAONLY);
1087 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1088 VM_PROT_READ | VM_PROT_WRITE, 0);
1089 pmap_update(pmap_kernel());
1090
1091 /* Copy boot code */
1092 memcpy((void *)mp_trampoline_vaddr,
1093 cpu_spinup_trampoline,
1094 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1095
1096 /* Copy smp_data at the end */
1097 memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1098 &smp_data, sizeof(smp_data));
1099
1100 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1101 pmap_update(pmap_kernel());
1102 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1103 }
1104 #endif
1105
1106 int
1107 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1108 {
1109 int error;
1110
1111 /*
1112 * Bootstrap code must be addressable in real mode
1113 * and it must be page aligned.
1114 */
1115 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1116
1117 /*
1118 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1119 */
1120
1121 outb(IO_RTC, NVRAM_RESET);
1122 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1123
1124 #if NLAPIC > 0
1125 /*
1126 * "and the warm reset vector (DWORD based at 40:67) to point
1127 * to the AP startup code ..."
1128 */
1129 unsigned short dwordptr[2];
1130 dwordptr[0] = 0;
1131 dwordptr[1] = target >> 4;
1132
1133 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1134 #endif
1135
1136 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1137 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1138 return ENODEV;
1139 }
1140
1141 /*
1142 * ... prior to executing the following sequence:". We'll also add in
1143 * local cache flush, in case the BIOS has left the AP with its cache
1144 * disabled. It may not be able to cope with MP coherency.
1145 */
1146 wbinvd();
1147
1148 if (ci->ci_flags & CPUF_AP) {
1149 error = x86_ipi_init(ci->ci_cpuid);
1150 if (error != 0) {
1151 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1152 __func__);
1153 return error;
1154 }
1155 x86_delay(10000);
1156
1157 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1158 if (error != 0) {
1159 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1160 __func__);
1161 return error;
1162 }
1163 x86_delay(200);
1164
1165 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1166 if (error != 0) {
1167 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1168 __func__);
1169 return error;
1170 }
1171 x86_delay(200);
1172 }
1173
1174 return 0;
1175 }
1176
1177 void
1178 mp_cpu_start_cleanup(struct cpu_info *ci)
1179 {
1180 /*
1181 * Ensure the NVRAM reset byte contains something vaguely sane.
1182 */
1183
1184 outb(IO_RTC, NVRAM_RESET);
1185 outb(IO_RTC+1, NVRAM_RESET_RST);
1186 }
1187 #endif
1188
1189 #ifdef __x86_64__
1190 typedef void (vector)(void);
1191 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1192 #endif
1193
1194 void
1195 cpu_init_msrs(struct cpu_info *ci, bool full)
1196 {
1197 #ifdef __x86_64__
1198 wrmsr(MSR_STAR,
1199 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1200 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1201 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1202 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1203 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1204
1205 #ifdef SVS
1206 if (svs_enabled)
1207 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1208 #endif
1209
1210 if (full) {
1211 wrmsr(MSR_FSBASE, 0);
1212 wrmsr(MSR_GSBASE, (uint64_t)ci);
1213 wrmsr(MSR_KERNELGSBASE, 0);
1214 }
1215 #endif /* __x86_64__ */
1216
1217 if (cpu_feature[2] & CPUID_NOX)
1218 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1219 }
1220
1221 void
1222 cpu_offline_md(void)
1223 {
1224 return;
1225 }
1226
1227 /* XXX joerg restructure and restart CPUs individually */
1228 static bool
1229 cpu_stop(device_t dv)
1230 {
1231 struct cpu_softc *sc = device_private(dv);
1232 struct cpu_info *ci = sc->sc_info;
1233 int err;
1234
1235 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1236
1237 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1238 return true;
1239
1240 if (ci->ci_data.cpu_idlelwp == NULL)
1241 return true;
1242
1243 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1244
1245 if (sc->sc_wasonline) {
1246 mutex_enter(&cpu_lock);
1247 err = cpu_setstate(ci, false);
1248 mutex_exit(&cpu_lock);
1249
1250 if (err != 0)
1251 return false;
1252 }
1253
1254 return true;
1255 }
1256
1257 static bool
1258 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1259 {
1260 struct cpu_softc *sc = device_private(dv);
1261 struct cpu_info *ci = sc->sc_info;
1262
1263 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1264 return true;
1265 else {
1266 cpufreq_suspend(ci);
1267 }
1268
1269 return cpu_stop(dv);
1270 }
1271
1272 static bool
1273 cpu_resume(device_t dv, const pmf_qual_t *qual)
1274 {
1275 struct cpu_softc *sc = device_private(dv);
1276 struct cpu_info *ci = sc->sc_info;
1277 int err = 0;
1278
1279 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1280 return true;
1281
1282 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1283 goto out;
1284
1285 if (ci->ci_data.cpu_idlelwp == NULL)
1286 goto out;
1287
1288 if (sc->sc_wasonline) {
1289 mutex_enter(&cpu_lock);
1290 err = cpu_setstate(ci, true);
1291 mutex_exit(&cpu_lock);
1292 }
1293
1294 out:
1295 if (err != 0)
1296 return false;
1297
1298 cpufreq_resume(ci);
1299
1300 return true;
1301 }
1302
1303 static bool
1304 cpu_shutdown(device_t dv, int how)
1305 {
1306 struct cpu_softc *sc = device_private(dv);
1307 struct cpu_info *ci = sc->sc_info;
1308
1309 if ((ci->ci_flags & CPUF_BSP) != 0)
1310 return false;
1311
1312 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1313 return true;
1314
1315 return cpu_stop(dv);
1316 }
1317
1318 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1319 void
1320 cpu_get_tsc_freq(struct cpu_info *ci)
1321 {
1322 uint64_t freq = 0, t0, t1;
1323 int64_t overhead;
1324
1325 if (cpu_hascounter())
1326 freq = cpu_tsc_freq_cpuid(ci);
1327
1328 if (freq != 0) {
1329 /* Use TSC frequency taken from CPUID. */
1330 ci->ci_data.cpu_cc_freq = freq;
1331 } else {
1332 /*
1333 * Work out the approximate overhead involved below.
1334 * Discard the result of the first go around the loop.
1335 */
1336 overhead = 0;
1337 for (int i = 0; i <= 8; i++) {
1338 __insn_barrier();
1339 t0 = cpu_counter_serializing();
1340 (*cpu_nullop_ptr)(NULL);
1341 t1 = cpu_counter_serializing();
1342 __insn_barrier();
1343 if (i > 0) {
1344 overhead += (t1 - t0);
1345 }
1346 }
1347 overhead >>= 3;
1348
1349 /* Now warm up x86_delay() and do the calibration. */
1350 x86_delay(1);
1351 __insn_barrier();
1352 t0 = cpu_counter_serializing();
1353 x86_delay(100000);
1354 t1 = cpu_counter_serializing();
1355 __insn_barrier();
1356 ci->ci_data.cpu_cc_freq = (t1 - t0 - overhead) * 10;
1357 }
1358 }
1359
1360 void
1361 x86_cpu_idle_mwait(void)
1362 {
1363 struct cpu_info *ci = curcpu();
1364
1365 KASSERT(ci->ci_ilevel == IPL_NONE);
1366
1367 x86_monitor(&ci->ci_want_resched, 0, 0);
1368 if (__predict_false(ci->ci_want_resched)) {
1369 return;
1370 }
1371 x86_mwait(0, 0);
1372 }
1373
1374 void
1375 x86_cpu_idle_halt(void)
1376 {
1377 struct cpu_info *ci = curcpu();
1378
1379 KASSERT(ci->ci_ilevel == IPL_NONE);
1380
1381 x86_disable_intr();
1382 if (!__predict_false(ci->ci_want_resched)) {
1383 x86_stihlt();
1384 } else {
1385 x86_enable_intr();
1386 }
1387 }
1388
1389 /*
1390 * Loads pmap for the current CPU.
1391 */
1392 void
1393 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1394 {
1395 #ifdef SVS
1396 if (svs_enabled) {
1397 svs_pdir_switch(pmap);
1398 }
1399 #endif
1400
1401 #ifdef PAE
1402 struct cpu_info *ci = curcpu();
1403 bool interrupts_enabled;
1404 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1405 int i;
1406
1407 /*
1408 * disable interrupts to block TLB shootdowns, which can reload cr3.
1409 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1410 * reload cr3.
1411 */
1412 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1413 if (interrupts_enabled)
1414 x86_disable_intr();
1415
1416 for (i = 0 ; i < PDP_SIZE; i++) {
1417 l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1418 }
1419
1420 if (interrupts_enabled)
1421 x86_enable_intr();
1422 tlbflush();
1423 #else
1424 lcr3(pmap_pdirpa(pmap, 0));
1425 #endif
1426 }
1427
1428 /*
1429 * Notify all other cpus to halt.
1430 */
1431
1432 void
1433 cpu_broadcast_halt(void)
1434 {
1435 x86_broadcast_ipi(X86_IPI_HALT);
1436 }
1437
1438 /*
1439 * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1440 * and trigger an AST on the running LWP.
1441 */
1442
1443 void
1444 cpu_kick(struct cpu_info *ci)
1445 {
1446 x86_send_ipi(ci, X86_IPI_AST);
1447 }
1448