Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.191
      1 /*	$NetBSD: cpu.c,v 1.191 2020/05/12 06:32:05 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.191 2020/05/12 06:32:05 msaitoh Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 #include "opt_svs.h"
     72 
     73 #include "lapic.h"
     74 #include "ioapic.h"
     75 #include "acpica.h"
     76 #include "hpet.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/cpu.h>
     83 #include <sys/cpufreq.h>
     84 #include <sys/idle.h>
     85 #include <sys/atomic.h>
     86 #include <sys/reboot.h>
     87 #include <sys/csan.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     92 
     93 #include <x86/machdep.h>
     94 #include <machine/cpufunc.h>
     95 #include <machine/cpuvar.h>
     96 #include <machine/pmap.h>
     97 #include <machine/vmparam.h>
     98 #if defined(MULTIPROCESSOR)
     99 #include <machine/mpbiosvar.h>
    100 #endif
    101 #include <machine/mpconfig.h>		/* for mp_verbose */
    102 #include <machine/pcb.h>
    103 #include <machine/specialreg.h>
    104 #include <machine/segments.h>
    105 #include <machine/gdt.h>
    106 #include <machine/mtrr.h>
    107 #include <machine/pio.h>
    108 #include <machine/cpu_counter.h>
    109 
    110 #include <x86/fpu.h>
    111 
    112 #if NACPICA > 0
    113 #include <dev/acpi/acpi_srat.h>
    114 #endif
    115 
    116 #if NLAPIC > 0
    117 #include <machine/apicvar.h>
    118 #include <machine/i82489reg.h>
    119 #include <machine/i82489var.h>
    120 #endif
    121 
    122 #include <dev/ic/mc146818reg.h>
    123 #include <dev/ic/hpetvar.h>
    124 #include <i386/isa/nvram.h>
    125 #include <dev/isa/isareg.h>
    126 
    127 #include "tsc.h"
    128 
    129 #ifndef XENPV
    130 #include "hyperv.h"
    131 #if NHYPERV > 0
    132 #include <x86/x86/hypervvar.h>
    133 #endif
    134 #endif
    135 
    136 #ifdef XEN
    137 #include <xen/hypervisor.h>
    138 #endif
    139 
    140 static int	cpu_match(device_t, cfdata_t, void *);
    141 static void	cpu_attach(device_t, device_t, void *);
    142 static void	cpu_defer(device_t);
    143 static int	cpu_rescan(device_t, const char *, const int *);
    144 static void	cpu_childdetached(device_t, device_t);
    145 static bool	cpu_stop(device_t);
    146 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    147 static bool	cpu_resume(device_t, const pmf_qual_t *);
    148 static bool	cpu_shutdown(device_t, int);
    149 
    150 struct cpu_softc {
    151 	device_t sc_dev;		/* device tree glue */
    152 	struct cpu_info *sc_info;	/* pointer to CPU info */
    153 	bool sc_wasonline;
    154 };
    155 
    156 #ifdef MULTIPROCESSOR
    157 int mp_cpu_start(struct cpu_info *, paddr_t);
    158 void mp_cpu_start_cleanup(struct cpu_info *);
    159 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    160 					    mp_cpu_start_cleanup };
    161 #endif
    162 
    163 
    164 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    165     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    166 
    167 /*
    168  * Statically-allocated CPU info for the primary CPU (or the only
    169  * CPU, on uniprocessors).  The CPU info list is initialized to
    170  * point at it.
    171  */
    172 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    173 	.ci_dev = 0,
    174 	.ci_self = &cpu_info_primary,
    175 	.ci_idepth = -1,
    176 	.ci_curlwp = &lwp0,
    177 	.ci_curldt = -1,
    178 };
    179 
    180 struct cpu_info *cpu_info_list = &cpu_info_primary;
    181 
    182 #ifdef i386
    183 void		cpu_set_tss_gates(struct cpu_info *);
    184 #endif
    185 
    186 static void	cpu_init_idle_lwp(struct cpu_info *);
    187 
    188 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    189 			/* [0] basic features cpuid.1:%edx
    190 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    191 			 * [2] extended features cpuid:80000001:%edx
    192 			 * [3] extended features cpuid:80000001:%ecx
    193 			 * [4] VIA padlock features
    194 			 * [5] structured extended features cpuid.7:%ebx
    195 			 * [6] structured extended features cpuid.7:%ecx
    196 			 */
    197 
    198 #ifdef MULTIPROCESSOR
    199 bool x86_mp_online;
    200 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    201 #endif
    202 #if NLAPIC > 0
    203 static vaddr_t cmos_data_mapping;
    204 #endif
    205 struct cpu_info *cpu_starting;
    206 
    207 #ifdef MULTIPROCESSOR
    208 void		cpu_hatch(void *);
    209 static void	cpu_boot_secondary(struct cpu_info *ci);
    210 static void	cpu_start_secondary(struct cpu_info *ci);
    211 #if NLAPIC > 0
    212 static void	cpu_copy_trampoline(paddr_t);
    213 #endif
    214 #endif /* MULTIPROCESSOR */
    215 
    216 /*
    217  * Runs once per boot once multiprocessor goo has been detected and
    218  * the local APIC on the boot processor has been mapped.
    219  *
    220  * Called from lapic_boot_init() (from mpbios_scan()).
    221  */
    222 #if NLAPIC > 0
    223 void
    224 cpu_init_first(void)
    225 {
    226 
    227 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    228 
    229 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    230 	if (cmos_data_mapping == 0)
    231 		panic("No KVA for page 0");
    232 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    233 	pmap_update(pmap_kernel());
    234 }
    235 #endif
    236 
    237 static int
    238 cpu_match(device_t parent, cfdata_t match, void *aux)
    239 {
    240 
    241 	return 1;
    242 }
    243 
    244 #ifdef __HAVE_PCPU_AREA
    245 void
    246 cpu_pcpuarea_init(struct cpu_info *ci)
    247 {
    248 	struct vm_page *pg;
    249 	size_t i, npages;
    250 	vaddr_t base, va;
    251 	paddr_t pa;
    252 
    253 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    254 
    255 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    256 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    257 
    258 	for (i = 0; i < npages; i++) {
    259 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    260 		if (pg == NULL) {
    261 			panic("failed to allocate pcpu PA");
    262 		}
    263 
    264 		va = base + i * PAGE_SIZE;
    265 		pa = VM_PAGE_TO_PHYS(pg);
    266 
    267 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    268 	}
    269 
    270 	pmap_update(pmap_kernel());
    271 }
    272 #endif
    273 
    274 static void
    275 cpu_vm_init(struct cpu_info *ci)
    276 {
    277 	int ncolors = 2, i;
    278 
    279 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    280 		struct x86_cache_info *cai;
    281 		int tcolors;
    282 
    283 		cai = &ci->ci_cinfo[i];
    284 
    285 		tcolors = atop(cai->cai_totalsize);
    286 		switch (cai->cai_associativity) {
    287 		case 0xff:
    288 			tcolors = 1; /* fully associative */
    289 			break;
    290 		case 0:
    291 		case 1:
    292 			break;
    293 		default:
    294 			tcolors /= cai->cai_associativity;
    295 		}
    296 		ncolors = uimax(ncolors, tcolors);
    297 		/*
    298 		 * If the desired number of colors is not a power of
    299 		 * two, it won't be good.  Find the greatest power of
    300 		 * two which is an even divisor of the number of colors,
    301 		 * to preserve even coloring of pages.
    302 		 */
    303 		if (ncolors & (ncolors - 1) ) {
    304 			int try, picked = 1;
    305 			for (try = 1; try < ncolors; try *= 2) {
    306 				if (ncolors % try == 0) picked = try;
    307 			}
    308 			if (picked == 1) {
    309 				panic("desired number of cache colors %d is "
    310 				" > 1, but not even!", ncolors);
    311 			}
    312 			ncolors = picked;
    313 		}
    314 	}
    315 
    316 	/*
    317 	 * Knowing the size of the largest cache on this CPU, potentially
    318 	 * re-color our pages.
    319 	 */
    320 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    321 	uvm_page_recolor(ncolors);
    322 
    323 	pmap_tlb_cpu_init(ci);
    324 #ifndef __HAVE_DIRECT_MAP
    325 	pmap_vpage_cpu_init(ci);
    326 #endif
    327 }
    328 
    329 static void
    330 cpu_attach(device_t parent, device_t self, void *aux)
    331 {
    332 	struct cpu_softc *sc = device_private(self);
    333 	struct cpu_attach_args *caa = aux;
    334 	struct cpu_info *ci;
    335 	uintptr_t ptr;
    336 #if NLAPIC > 0
    337 	int cpunum = caa->cpu_number;
    338 #endif
    339 	static bool again;
    340 
    341 	sc->sc_dev = self;
    342 
    343 	if (ncpu > maxcpus) {
    344 #ifndef _LP64
    345 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    346 #else
    347 		aprint_error(": too many CPUs\n");
    348 #endif
    349 		return;
    350 	}
    351 
    352 	/*
    353 	 * If we're an Application Processor, allocate a cpu_info
    354 	 * structure, otherwise use the primary's.
    355 	 */
    356 	if (caa->cpu_role == CPU_ROLE_AP) {
    357 		if ((boothowto & RB_MD1) != 0) {
    358 			aprint_error(": multiprocessor boot disabled\n");
    359 			if (!pmf_device_register(self, NULL, NULL))
    360 				aprint_error_dev(self,
    361 				    "couldn't establish power handler\n");
    362 			return;
    363 		}
    364 		aprint_naive(": Application Processor\n");
    365 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    366 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    367 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    368 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    369 		ci->ci_curldt = -1;
    370 	} else {
    371 		aprint_naive(": %s Processor\n",
    372 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    373 		ci = &cpu_info_primary;
    374 #if NLAPIC > 0
    375 		if (cpunum != lapic_cpu_number()) {
    376 			/* XXX should be done earlier. */
    377 			uint32_t reg;
    378 			aprint_verbose("\n");
    379 			aprint_verbose_dev(self, "running CPU at apic %d"
    380 			    " instead of at expected %d", lapic_cpu_number(),
    381 			    cpunum);
    382 			reg = lapic_readreg(LAPIC_ID);
    383 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    384 			    (cpunum << LAPIC_ID_SHIFT));
    385 		}
    386 		if (cpunum != lapic_cpu_number()) {
    387 			aprint_error_dev(self, "unable to reset apic id\n");
    388 		}
    389 #endif
    390 	}
    391 
    392 	ci->ci_self = ci;
    393 	sc->sc_info = ci;
    394 	ci->ci_dev = self;
    395 	ci->ci_acpiid = caa->cpu_id;
    396 	ci->ci_cpuid = caa->cpu_number;
    397 	ci->ci_func = caa->cpu_func;
    398 	ci->ci_kfpu_spl = -1;
    399 	aprint_normal("\n");
    400 
    401 	/* Must be before mi_cpu_attach(). */
    402 	cpu_vm_init(ci);
    403 
    404 	if (caa->cpu_role == CPU_ROLE_AP) {
    405 		int error;
    406 
    407 		error = mi_cpu_attach(ci);
    408 		if (error != 0) {
    409 			aprint_error_dev(self,
    410 			    "mi_cpu_attach failed with %d\n", error);
    411 			return;
    412 		}
    413 #ifdef __HAVE_PCPU_AREA
    414 		cpu_pcpuarea_init(ci);
    415 #endif
    416 		cpu_init_tss(ci);
    417 	} else {
    418 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    419 #if NACPICA > 0
    420 		/* Parse out NUMA info for cpu_identify(). */
    421 		acpisrat_init();
    422 #endif
    423 	}
    424 
    425 #ifdef SVS
    426 	cpu_svs_init(ci);
    427 #endif
    428 
    429 	pmap_reference(pmap_kernel());
    430 	ci->ci_pmap = pmap_kernel();
    431 	ci->ci_tlbstate = TLBSTATE_STALE;
    432 
    433 	/*
    434 	 * Boot processor may not be attached first, but the below
    435 	 * must be done to allow booting other processors.
    436 	 */
    437 	if (!again) {
    438 		/* Make sure DELAY() (likely i8254_delay()) is initialized. */
    439 		DELAY(1);
    440 
    441 		/*
    442 		 * Basic init.  Compute an approximate frequency for the TSC
    443 		 * using the i8254.  If there's a HPET we'll redo it later.
    444 		 */
    445 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    446 		cpu_intr_init(ci);
    447 		cpu_get_tsc_freq(ci);
    448 		cpu_init(ci);
    449 #ifdef i386
    450 		cpu_set_tss_gates(ci);
    451 #endif
    452 		pmap_cpu_init_late(ci);
    453 #if NLAPIC > 0
    454 		if (caa->cpu_role != CPU_ROLE_SP) {
    455 			/* Enable lapic. */
    456 			lapic_enable();
    457 			lapic_set_lvt();
    458 			if (!vm_guest_is_xenpvh_or_pvhvm())
    459 				lapic_calibrate_timer(ci);
    460 		}
    461 #endif
    462 		kcsan_cpu_init(ci);
    463 		again = true;
    464 	}
    465 
    466 	/* further PCB init done later. */
    467 
    468 	switch (caa->cpu_role) {
    469 	case CPU_ROLE_SP:
    470 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    471 		cpu_identify(ci);
    472 		x86_errata();
    473 		x86_cpu_idle_init();
    474 		(*x86_cpu_initclock_func)();
    475 #ifdef XENPVHVM
    476 		xen_hvm_init_cpu(ci);
    477 #endif
    478 		break;
    479 
    480 	case CPU_ROLE_BP:
    481 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    482 		cpu_identify(ci);
    483 		x86_errata();
    484 		x86_cpu_idle_init();
    485 #ifdef XENPVHVM
    486 		xen_hvm_init_cpu(ci);
    487 #endif
    488 		(*x86_cpu_initclock_func)();
    489 		break;
    490 
    491 #ifdef MULTIPROCESSOR
    492 	case CPU_ROLE_AP:
    493 		/*
    494 		 * report on an AP
    495 		 */
    496 		cpu_intr_init(ci);
    497 		gdt_alloc_cpu(ci);
    498 #ifdef i386
    499 		cpu_set_tss_gates(ci);
    500 #endif
    501 		pmap_cpu_init_late(ci);
    502 		cpu_start_secondary(ci);
    503 		if (ci->ci_flags & CPUF_PRESENT) {
    504 			struct cpu_info *tmp;
    505 
    506 			cpu_identify(ci);
    507 			tmp = cpu_info_list;
    508 			while (tmp->ci_next)
    509 				tmp = tmp->ci_next;
    510 
    511 			tmp->ci_next = ci;
    512 		}
    513 		break;
    514 #endif
    515 
    516 	default:
    517 		panic("unknown processor type??\n");
    518 	}
    519 
    520 	pat_init(ci);
    521 
    522 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    523 		aprint_error_dev(self, "couldn't establish power handler\n");
    524 
    525 #ifdef MULTIPROCESSOR
    526 	if (mp_verbose) {
    527 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    528 		struct pcb *pcb = lwp_getpcb(l);
    529 
    530 		aprint_verbose_dev(self,
    531 		    "idle lwp at %p, idle sp at %p\n",
    532 		    l,
    533 #ifdef i386
    534 		    (void *)pcb->pcb_esp
    535 #else
    536 		    (void *)pcb->pcb_rsp
    537 #endif
    538 		);
    539 	}
    540 #endif
    541 
    542 	/*
    543 	 * Postpone the "cpufeaturebus" scan.
    544 	 * It is safe to scan the pseudo-bus
    545 	 * only after all CPUs have attached.
    546 	 */
    547 	(void)config_defer(self, cpu_defer);
    548 }
    549 
    550 static void
    551 cpu_defer(device_t self)
    552 {
    553 	cpu_rescan(self, NULL, NULL);
    554 }
    555 
    556 static int
    557 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    558 {
    559 	struct cpu_softc *sc = device_private(self);
    560 	struct cpufeature_attach_args cfaa;
    561 	struct cpu_info *ci = sc->sc_info;
    562 
    563 	/*
    564 	 * If we booted with RB_MD1 to disable multiprocessor, the
    565 	 * auto-configuration data still contains the additional
    566 	 * CPUs.   But their initialization was mostly bypassed
    567 	 * during attach, so we have to make sure we don't look at
    568 	 * their featurebus info, since it wasn't retrieved.
    569 	 */
    570 	if (ci == NULL)
    571 		return 0;
    572 
    573 	memset(&cfaa, 0, sizeof(cfaa));
    574 	cfaa.ci = ci;
    575 
    576 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    577 		if (ci->ci_frequency == NULL) {
    578 			cfaa.name = "frequency";
    579 			ci->ci_frequency = config_found_ia(self,
    580 			    "cpufeaturebus", &cfaa, NULL);
    581 		}
    582 
    583 		if (ci->ci_padlock == NULL) {
    584 			cfaa.name = "padlock";
    585 			ci->ci_padlock = config_found_ia(self,
    586 			    "cpufeaturebus", &cfaa, NULL);
    587 		}
    588 
    589 		if (ci->ci_temperature == NULL) {
    590 			cfaa.name = "temperature";
    591 			ci->ci_temperature = config_found_ia(self,
    592 			    "cpufeaturebus", &cfaa, NULL);
    593 		}
    594 
    595 		if (ci->ci_vm == NULL) {
    596 			cfaa.name = "vm";
    597 			ci->ci_vm = config_found_ia(self,
    598 			    "cpufeaturebus", &cfaa, NULL);
    599 		}
    600 	}
    601 
    602 	return 0;
    603 }
    604 
    605 static void
    606 cpu_childdetached(device_t self, device_t child)
    607 {
    608 	struct cpu_softc *sc = device_private(self);
    609 	struct cpu_info *ci = sc->sc_info;
    610 
    611 	if (ci->ci_frequency == child)
    612 		ci->ci_frequency = NULL;
    613 
    614 	if (ci->ci_padlock == child)
    615 		ci->ci_padlock = NULL;
    616 
    617 	if (ci->ci_temperature == child)
    618 		ci->ci_temperature = NULL;
    619 
    620 	if (ci->ci_vm == child)
    621 		ci->ci_vm = NULL;
    622 }
    623 
    624 /*
    625  * Initialize the processor appropriately.
    626  */
    627 
    628 void
    629 cpu_init(struct cpu_info *ci)
    630 {
    631 	extern int x86_fpu_save;
    632 	uint32_t cr4 = 0;
    633 
    634 	lcr0(rcr0() | CR0_WP);
    635 
    636 	/* If global TLB caching is supported, enable it */
    637 	if (cpu_feature[0] & CPUID_PGE)
    638 		cr4 |= CR4_PGE;
    639 
    640 	/*
    641 	 * If we have FXSAVE/FXRESTOR, use them.
    642 	 */
    643 	if (cpu_feature[0] & CPUID_FXSR) {
    644 		cr4 |= CR4_OSFXSR;
    645 
    646 		/*
    647 		 * If we have SSE/SSE2, enable XMM exceptions.
    648 		 */
    649 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    650 			cr4 |= CR4_OSXMMEXCPT;
    651 	}
    652 
    653 	/* If xsave is supported, enable it */
    654 	if (cpu_feature[1] & CPUID2_XSAVE)
    655 		cr4 |= CR4_OSXSAVE;
    656 
    657 	/* If SMEP is supported, enable it */
    658 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    659 		cr4 |= CR4_SMEP;
    660 
    661 	/* If SMAP is supported, enable it */
    662 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    663 		cr4 |= CR4_SMAP;
    664 
    665 #ifdef SVS
    666 	/* If PCID is supported, enable it */
    667 	if (svs_pcid)
    668 		cr4 |= CR4_PCIDE;
    669 #endif
    670 
    671 	if (cr4) {
    672 		cr4 |= rcr4();
    673 		lcr4(cr4);
    674 	}
    675 
    676 	/*
    677 	 * Changing CR4 register may change cpuid values. For example, setting
    678 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    679 	 * ci_feat_val[1], so update it.
    680 	 * XXX Other than ci_feat_val[1] might be changed.
    681 	 */
    682 	if (cpuid_level >= 1) {
    683 		u_int descs[4];
    684 
    685 		x86_cpuid(1, descs);
    686 		ci->ci_feat_val[1] = descs[2];
    687 	}
    688 
    689 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    690 		fpuinit_mxcsr_mask();
    691 	}
    692 
    693 	/* If xsave is enabled, enable all fpu features */
    694 	if (cr4 & CR4_OSXSAVE)
    695 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    696 
    697 #ifdef MTRR
    698 	/*
    699 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    700 	 */
    701 	if (cpu_feature[0] & CPUID_MTRR) {
    702 		if ((ci->ci_flags & CPUF_AP) == 0)
    703 			i686_mtrr_init_first();
    704 		mtrr_init_cpu(ci);
    705 	}
    706 
    707 #ifdef i386
    708 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    709 		/*
    710 		 * Must be a K6-2 Step >= 7 or a K6-III.
    711 		 */
    712 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    713 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    714 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    715 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    716 				mtrr_funcs = &k6_mtrr_funcs;
    717 				k6_mtrr_init_first();
    718 				mtrr_init_cpu(ci);
    719 			}
    720 		}
    721 	}
    722 #endif	/* i386 */
    723 #endif /* MTRR */
    724 
    725 	if (ci != &cpu_info_primary) {
    726 		/* Synchronize TSC */
    727 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    728 		tsc_sync_ap(ci);
    729 	} else {
    730 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    731 	}
    732 }
    733 
    734 #ifdef MULTIPROCESSOR
    735 void
    736 cpu_boot_secondary_processors(void)
    737 {
    738 	struct cpu_info *ci;
    739 	kcpuset_t *cpus;
    740 	u_long i;
    741 
    742 #if NHPET > 0
    743 	/* Use HPET delay, and re-calibrate TSC on boot CPU using HPET. */
    744 	if (hpet_delay_p() && x86_delay == i8254_delay) {
    745 		delay_func = x86_delay = hpet_delay;
    746 		cpu_get_tsc_freq(curcpu());
    747 	}
    748 #endif
    749 
    750 	/* Now that we know the number of CPUs, patch the text segment. */
    751 	x86_patch(false);
    752 
    753 #if NACPICA > 0
    754 	/* Finished with NUMA info for now. */
    755 	acpisrat_exit();
    756 #endif
    757 
    758 	kcpuset_create(&cpus, true);
    759 	kcpuset_set(cpus, cpu_index(curcpu()));
    760 	for (i = 0; i < maxcpus; i++) {
    761 		ci = cpu_lookup(i);
    762 		if (ci == NULL)
    763 			continue;
    764 		if (ci->ci_data.cpu_idlelwp == NULL)
    765 			continue;
    766 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    767 			continue;
    768 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    769 			continue;
    770 		cpu_boot_secondary(ci);
    771 		kcpuset_set(cpus, cpu_index(ci));
    772 	}
    773 	while (!kcpuset_match(cpus, kcpuset_running))
    774 		;
    775 	kcpuset_destroy(cpus);
    776 
    777 	x86_mp_online = true;
    778 
    779 	/* Now that we know about the TSC, attach the timecounter. */
    780 	tsc_tc_init();
    781 
    782 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    783 	vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
    784 }
    785 #endif
    786 
    787 static void
    788 cpu_init_idle_lwp(struct cpu_info *ci)
    789 {
    790 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    791 	struct pcb *pcb = lwp_getpcb(l);
    792 
    793 	pcb->pcb_cr0 = rcr0();
    794 }
    795 
    796 void
    797 cpu_init_idle_lwps(void)
    798 {
    799 	struct cpu_info *ci;
    800 	u_long i;
    801 
    802 	for (i = 0; i < maxcpus; i++) {
    803 		ci = cpu_lookup(i);
    804 		if (ci == NULL)
    805 			continue;
    806 		if (ci->ci_data.cpu_idlelwp == NULL)
    807 			continue;
    808 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    809 			continue;
    810 		cpu_init_idle_lwp(ci);
    811 	}
    812 }
    813 
    814 #ifdef MULTIPROCESSOR
    815 void
    816 cpu_start_secondary(struct cpu_info *ci)
    817 {
    818 	u_long psl;
    819 	int i;
    820 
    821 #if NLAPIC > 0
    822 	paddr_t mp_pdirpa;
    823 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    824 	cpu_copy_trampoline(mp_pdirpa);
    825 #endif
    826 
    827 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    828 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    829 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    830 		return;
    831 	}
    832 
    833 	/*
    834 	 * Wait for it to become ready.   Setting cpu_starting opens the
    835 	 * initial gate and allows the AP to start soft initialization.
    836 	 */
    837 	KASSERT(cpu_starting == NULL);
    838 	cpu_starting = ci;
    839 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    840 		delay_func(10);
    841 	}
    842 
    843 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    844 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    845 #if defined(MPDEBUG) && defined(DDB)
    846 		printf("dropping into debugger; continue from here to resume boot\n");
    847 		Debugger();
    848 #endif
    849 	} else {
    850 		/*
    851 		 * Synchronize time stamp counters. Invalidate cache and do
    852 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    853 		 * Disable interrupts to try and rule out any external
    854 		 * interference.
    855 		 */
    856 		psl = x86_read_psl();
    857 		x86_disable_intr();
    858 		tsc_sync_bp(ci);
    859 		x86_write_psl(psl);
    860 	}
    861 
    862 	CPU_START_CLEANUP(ci);
    863 	cpu_starting = NULL;
    864 }
    865 
    866 void
    867 cpu_boot_secondary(struct cpu_info *ci)
    868 {
    869 	int64_t drift;
    870 	u_long psl;
    871 	int i;
    872 
    873 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    874 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    875 		delay_func(10);
    876 	}
    877 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    878 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    879 #if defined(MPDEBUG) && defined(DDB)
    880 		printf("dropping into debugger; continue from here to resume boot\n");
    881 		Debugger();
    882 #endif
    883 	} else {
    884 		/* Synchronize TSC again, check for drift. */
    885 		drift = ci->ci_data.cpu_cc_skew;
    886 		psl = x86_read_psl();
    887 		x86_disable_intr();
    888 		tsc_sync_bp(ci);
    889 		x86_write_psl(psl);
    890 		drift -= ci->ci_data.cpu_cc_skew;
    891 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    892 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    893 		tsc_sync_drift(drift);
    894 	}
    895 }
    896 
    897 /*
    898  * The CPU ends up here when it's ready to run.
    899  * This is called from code in mptramp.s; at this point, we are running
    900  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    901  * this processor will enter the idle loop and start looking for work.
    902  */
    903 void
    904 cpu_hatch(void *v)
    905 {
    906 	struct cpu_info *ci = (struct cpu_info *)v;
    907 	struct pcb *pcb;
    908 	int s, i;
    909 
    910 	/* ------------------------------------------------------------- */
    911 
    912 	/*
    913 	 * This section of code must be compiled with SSP disabled, to
    914 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    915 	 */
    916 
    917 	cpu_init_msrs(ci, true);
    918 	cpu_probe(ci);
    919 	cpu_speculation_init(ci);
    920 #if NHYPERV > 0
    921 	hyperv_init_cpu(ci);
    922 #endif
    923 
    924 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    925 	/* cpu_get_tsc_freq(ci); */
    926 
    927 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    928 
    929 	/*
    930 	 * Synchronize the TSC for the first time. Note that interrupts are
    931 	 * off at this point.
    932 	 */
    933 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    934 	tsc_sync_ap(ci);
    935 
    936 	/* ------------------------------------------------------------- */
    937 
    938 	/*
    939 	 * Wait to be brought online.
    940 	 *
    941 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    942 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    943 	 * this causes the TSC to drift. We want this to happen, so that we
    944 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    945 	 * TSCs. That's just for safety; by definition such drifts should
    946 	 * never occur with invariant TSCs.
    947 	 *
    948 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    949 	 * interrupts off.
    950 	 */
    951 	while ((ci->ci_flags & CPUF_GO) == 0) {
    952 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    953 			x86_monitor(&ci->ci_flags, 0, 0);
    954 			if ((ci->ci_flags & CPUF_GO) != 0) {
    955 				continue;
    956 			}
    957 			x86_mwait(0, 0);
    958 		} else {
    959 	/*
    960 	 * XXX The loop repetition count could be a lot higher, but
    961 	 * XXX currently qemu emulator takes a _very_long_time_ to
    962 	 * XXX execute the pause instruction.  So for now, use a low
    963 	 * XXX value to allow the cpu to hatch before timing out.
    964 	 */
    965 			for (i = 50; i != 0; i--) {
    966 				x86_pause();
    967 			}
    968 		}
    969 	}
    970 
    971 	/* Because the text may have been patched in x86_patch(). */
    972 	wbinvd();
    973 	x86_flush();
    974 	tlbflushg();
    975 
    976 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    977 
    978 #ifdef PAE
    979 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    980 	for (i = 0 ; i < PDP_SIZE; i++) {
    981 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
    982 	}
    983 	lcr3(ci->ci_pae_l3_pdirpa);
    984 #else
    985 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    986 #endif
    987 
    988 	pcb = lwp_getpcb(curlwp);
    989 	pcb->pcb_cr3 = rcr3();
    990 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    991 	lcr0(pcb->pcb_cr0);
    992 
    993 	cpu_init_idt();
    994 	gdt_init_cpu(ci);
    995 #if NLAPIC > 0
    996 	lapic_enable();
    997 	lapic_set_lvt();
    998 #endif
    999 
   1000 	fpuinit(ci);
   1001 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
   1002 	ltr(ci->ci_tss_sel);
   1003 
   1004 	/*
   1005 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
   1006 	 * drift that would have been caused by the use of MONITOR/MWAIT
   1007 	 * above.
   1008 	 */
   1009 	cpu_init(ci);
   1010 #ifdef XENPVHVM
   1011 	xen_hvm_init_cpu(ci);
   1012 #endif
   1013 	(*x86_cpu_initclock_func)();
   1014 	cpu_get_tsc_freq(ci);
   1015 
   1016 	s = splhigh();
   1017 #if NLAPIC > 0
   1018 	lapic_write_tpri(0);
   1019 #endif
   1020 	x86_enable_intr();
   1021 	splx(s);
   1022 	x86_errata();
   1023 
   1024 	aprint_debug_dev(ci->ci_dev, "running\n");
   1025 
   1026 	kcsan_cpu_init(ci);
   1027 
   1028 	idle_loop(NULL);
   1029 	KASSERT(false);
   1030 }
   1031 #endif
   1032 
   1033 #if defined(DDB)
   1034 
   1035 #include <ddb/db_output.h>
   1036 #include <machine/db_machdep.h>
   1037 
   1038 /*
   1039  * Dump CPU information from ddb.
   1040  */
   1041 void
   1042 cpu_debug_dump(void)
   1043 {
   1044 	struct cpu_info *ci;
   1045 	CPU_INFO_ITERATOR cii;
   1046 	const char sixtyfour64space[] =
   1047 #ifdef _LP64
   1048 			   "        "
   1049 #endif
   1050 			   "";
   1051 
   1052 	db_printf("addr		%sdev	id	flags	ipis	spl curlwp 		"
   1053 		  "\n", sixtyfour64space);
   1054 	for (CPU_INFO_FOREACH(cii, ci)) {
   1055 		db_printf("%p	%s	%ld	%x	%x	%d  %10p\n",
   1056 		    ci,
   1057 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
   1058 		    (long)ci->ci_cpuid,
   1059 		    ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
   1060 		    ci->ci_curlwp);
   1061 	}
   1062 }
   1063 #endif
   1064 
   1065 #ifdef MULTIPROCESSOR
   1066 #if NLAPIC > 0
   1067 static void
   1068 cpu_copy_trampoline(paddr_t pdir_pa)
   1069 {
   1070 	extern uint32_t nox_flag;
   1071 	extern u_char cpu_spinup_trampoline[];
   1072 	extern u_char cpu_spinup_trampoline_end[];
   1073 	vaddr_t mp_trampoline_vaddr;
   1074 	struct {
   1075 		uint32_t large;
   1076 		uint32_t nox;
   1077 		uint32_t pdir;
   1078 	} smp_data;
   1079 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1080 
   1081 	smp_data.large = (pmap_largepages != 0);
   1082 	smp_data.nox = nox_flag;
   1083 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1084 
   1085 	/* Enter the physical address */
   1086 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1087 	    UVM_KMF_VAONLY);
   1088 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1089 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1090 	pmap_update(pmap_kernel());
   1091 
   1092 	/* Copy boot code */
   1093 	memcpy((void *)mp_trampoline_vaddr,
   1094 	    cpu_spinup_trampoline,
   1095 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1096 
   1097 	/* Copy smp_data at the end */
   1098 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1099 	    &smp_data, sizeof(smp_data));
   1100 
   1101 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1102 	pmap_update(pmap_kernel());
   1103 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1104 }
   1105 #endif
   1106 
   1107 int
   1108 mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1109 {
   1110 	int error;
   1111 
   1112 	/*
   1113 	 * Bootstrap code must be addressable in real mode
   1114 	 * and it must be page aligned.
   1115 	 */
   1116 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1117 
   1118 	/*
   1119 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1120 	 */
   1121 
   1122 	outb(IO_RTC, NVRAM_RESET);
   1123 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1124 
   1125 #if NLAPIC > 0
   1126 	/*
   1127 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1128 	 * to the AP startup code ..."
   1129 	 */
   1130 	unsigned short dwordptr[2];
   1131 	dwordptr[0] = 0;
   1132 	dwordptr[1] = target >> 4;
   1133 
   1134 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1135 #endif
   1136 
   1137 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1138 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1139 		return ENODEV;
   1140 	}
   1141 
   1142 	/*
   1143 	 * ... prior to executing the following sequence:".  We'll also add in
   1144 	 * local cache flush, in case the BIOS has left the AP with its cache
   1145 	 * disabled.  It may not be able to cope with MP coherency.
   1146 	 */
   1147 	wbinvd();
   1148 
   1149 	if (ci->ci_flags & CPUF_AP) {
   1150 		error = x86_ipi_init(ci->ci_cpuid);
   1151 		if (error != 0) {
   1152 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1153 			    __func__);
   1154 			return error;
   1155 		}
   1156 		delay_func(10000);
   1157 
   1158 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1159 		if (error != 0) {
   1160 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1161 			    __func__);
   1162 			return error;
   1163 		}
   1164 		delay_func(200);
   1165 
   1166 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1167 		if (error != 0) {
   1168 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1169 			    __func__);
   1170 			return error;
   1171 		}
   1172 		delay_func(200);
   1173 	}
   1174 
   1175 	return 0;
   1176 }
   1177 
   1178 void
   1179 mp_cpu_start_cleanup(struct cpu_info *ci)
   1180 {
   1181 	/*
   1182 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1183 	 */
   1184 
   1185 	outb(IO_RTC, NVRAM_RESET);
   1186 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1187 }
   1188 #endif
   1189 
   1190 #ifdef __x86_64__
   1191 typedef void (vector)(void);
   1192 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1193 #endif
   1194 
   1195 void
   1196 cpu_init_msrs(struct cpu_info *ci, bool full)
   1197 {
   1198 #ifdef __x86_64__
   1199 	wrmsr(MSR_STAR,
   1200 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1201 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1202 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1203 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1204 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1205 
   1206 #ifdef SVS
   1207 	if (svs_enabled)
   1208 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1209 #endif
   1210 
   1211 	if (full) {
   1212 		wrmsr(MSR_FSBASE, 0);
   1213 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1214 		wrmsr(MSR_KERNELGSBASE, 0);
   1215 	}
   1216 #endif	/* __x86_64__ */
   1217 
   1218 	if (cpu_feature[2] & CPUID_NOX)
   1219 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1220 }
   1221 
   1222 void
   1223 cpu_offline_md(void)
   1224 {
   1225 	return;
   1226 }
   1227 
   1228 /* XXX joerg restructure and restart CPUs individually */
   1229 static bool
   1230 cpu_stop(device_t dv)
   1231 {
   1232 	struct cpu_softc *sc = device_private(dv);
   1233 	struct cpu_info *ci = sc->sc_info;
   1234 	int err;
   1235 
   1236 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1237 
   1238 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1239 		return true;
   1240 
   1241 	if (ci->ci_data.cpu_idlelwp == NULL)
   1242 		return true;
   1243 
   1244 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1245 
   1246 	if (sc->sc_wasonline) {
   1247 		mutex_enter(&cpu_lock);
   1248 		err = cpu_setstate(ci, false);
   1249 		mutex_exit(&cpu_lock);
   1250 
   1251 		if (err != 0)
   1252 			return false;
   1253 	}
   1254 
   1255 	return true;
   1256 }
   1257 
   1258 static bool
   1259 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1260 {
   1261 	struct cpu_softc *sc = device_private(dv);
   1262 	struct cpu_info *ci = sc->sc_info;
   1263 
   1264 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1265 		return true;
   1266 	else {
   1267 		cpufreq_suspend(ci);
   1268 	}
   1269 
   1270 	return cpu_stop(dv);
   1271 }
   1272 
   1273 static bool
   1274 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1275 {
   1276 	struct cpu_softc *sc = device_private(dv);
   1277 	struct cpu_info *ci = sc->sc_info;
   1278 	int err = 0;
   1279 
   1280 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1281 		return true;
   1282 
   1283 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1284 		goto out;
   1285 
   1286 	if (ci->ci_data.cpu_idlelwp == NULL)
   1287 		goto out;
   1288 
   1289 	if (sc->sc_wasonline) {
   1290 		mutex_enter(&cpu_lock);
   1291 		err = cpu_setstate(ci, true);
   1292 		mutex_exit(&cpu_lock);
   1293 	}
   1294 
   1295 out:
   1296 	if (err != 0)
   1297 		return false;
   1298 
   1299 	cpufreq_resume(ci);
   1300 
   1301 	return true;
   1302 }
   1303 
   1304 static bool
   1305 cpu_shutdown(device_t dv, int how)
   1306 {
   1307 	struct cpu_softc *sc = device_private(dv);
   1308 	struct cpu_info *ci = sc->sc_info;
   1309 
   1310 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1311 		return false;
   1312 
   1313 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1314 		return true;
   1315 
   1316 	return cpu_stop(dv);
   1317 }
   1318 
   1319 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
   1320 void
   1321 cpu_get_tsc_freq(struct cpu_info *ci)
   1322 {
   1323 	uint64_t freq = 0, freq_from_cpuid, t0, t1;
   1324 	int64_t overhead;
   1325 
   1326 	if ((ci->ci_flags & CPUF_PRIMARY) != 0 && cpu_hascounter()) {
   1327 		/*
   1328 		 * If it's the first call of this function, try to get TSC
   1329 		 * freq from CPUID by calling cpu_tsc_freq_cpuid().
   1330 		 * The function also set lapic_per_second variable if it's
   1331 		 * known. This is required for Intel's Comet Lake and newer
   1332 		 * processors to set LAPIC timer correctly.
   1333 		 */
   1334 		if (ci->ci_data.cpu_cc_freq == 0)
   1335 			freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1336 #if NHPET > 0
   1337 		if (freq == 0)
   1338 			freq = hpet_tsc_freq();
   1339 #endif
   1340 		if (freq == 0) {
   1341 			/*
   1342 			 * Work out the approximate overhead involved below.
   1343 			 * Discard the result of the first go around the
   1344 			 * loop.
   1345 			 */
   1346 			overhead = 0;
   1347 			for (int i = 0; i <= 8; i++) {
   1348 				t0 = cpu_counter();
   1349 				x86_delay(0);
   1350 				t1 = cpu_counter();
   1351 				if (i > 0) {
   1352 					overhead += (t1 - t0);
   1353 				}
   1354 			}
   1355 			overhead >>= 3;
   1356 
   1357 			/* Now do the calibration. */
   1358 			t0 = cpu_counter();
   1359 			x86_delay(100000);
   1360 			t1 = cpu_counter();
   1361 			freq = (t1 - t0 - overhead) * 10;
   1362 		}
   1363 		if (ci->ci_data.cpu_cc_freq != 0) {
   1364 			freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1365 			if ((freq_from_cpuid != 0)
   1366 			    && (freq != freq_from_cpuid))
   1367 				aprint_verbose_dev(ci->ci_dev, "TSC freq "
   1368 				    "calibrated %" PRIu64 " Hz\n", freq);
   1369 		}
   1370 	} else {
   1371 		freq = cpu_info_primary.ci_data.cpu_cc_freq;
   1372 	}
   1373 
   1374 	ci->ci_data.cpu_cc_freq = freq;
   1375 }
   1376 
   1377 void
   1378 x86_cpu_idle_mwait(void)
   1379 {
   1380 	struct cpu_info *ci = curcpu();
   1381 
   1382 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1383 
   1384 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1385 	if (__predict_false(ci->ci_want_resched)) {
   1386 		return;
   1387 	}
   1388 	x86_mwait(0, 0);
   1389 }
   1390 
   1391 void
   1392 x86_cpu_idle_halt(void)
   1393 {
   1394 	struct cpu_info *ci = curcpu();
   1395 
   1396 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1397 
   1398 	x86_disable_intr();
   1399 	if (!__predict_false(ci->ci_want_resched)) {
   1400 		x86_stihlt();
   1401 	} else {
   1402 		x86_enable_intr();
   1403 	}
   1404 }
   1405 
   1406 /*
   1407  * Loads pmap for the current CPU.
   1408  */
   1409 void
   1410 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1411 {
   1412 #ifdef SVS
   1413 	if (svs_enabled) {
   1414 		svs_pdir_switch(pmap);
   1415 	}
   1416 #endif
   1417 
   1418 #ifdef PAE
   1419 	struct cpu_info *ci = curcpu();
   1420 	bool interrupts_enabled;
   1421 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1422 	int i;
   1423 
   1424 	/*
   1425 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1426 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1427 	 * reload cr3.
   1428 	 */
   1429 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1430 	if (interrupts_enabled)
   1431 		x86_disable_intr();
   1432 
   1433 	for (i = 0 ; i < PDP_SIZE; i++) {
   1434 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1435 	}
   1436 
   1437 	if (interrupts_enabled)
   1438 		x86_enable_intr();
   1439 	tlbflush();
   1440 #else
   1441 	lcr3(pmap_pdirpa(pmap, 0));
   1442 #endif
   1443 }
   1444 
   1445 /*
   1446  * Notify all other cpus to halt.
   1447  */
   1448 
   1449 void
   1450 cpu_broadcast_halt(void)
   1451 {
   1452 	x86_broadcast_ipi(X86_IPI_HALT);
   1453 }
   1454 
   1455 /*
   1456  * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
   1457  * and trigger an AST on the running LWP.
   1458  */
   1459 
   1460 void
   1461 cpu_kick(struct cpu_info *ci)
   1462 {
   1463 	x86_send_ipi(ci, X86_IPI_AST);
   1464 }
   1465