cpu.c revision 1.20 1 /* $NetBSD: cpu.c,v 1.20 2008/01/30 01:10:21 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1999 Stefan Grefen
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the NetBSD
53 * Foundation, Inc. and its contributors.
54 * 4. Neither the name of The NetBSD Foundation nor the names of its
55 * contributors may be used to endorse or promote products derived
56 * from this software without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
59 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.20 2008/01/30 01:10:21 jmcneill Exp $");
73
74 #include "opt_ddb.h"
75 #include "opt_multiprocessor.h"
76 #include "opt_mpbios.h" /* for MPDEBUG */
77 #include "opt_mtrr.h"
78
79 #include "lapic.h"
80 #include "ioapic.h"
81
82 #include <sys/param.h>
83 #include <sys/proc.h>
84 #include <sys/user.h>
85 #include <sys/systm.h>
86 #include <sys/device.h>
87 #include <sys/malloc.h>
88 #include <sys/cpu.h>
89 #include <sys/atomic.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/tlog.h>
107 #endif
108
109 #if NLAPIC > 0
110 #include <machine/apicvar.h>
111 #include <machine/i82489reg.h>
112 #include <machine/i82489var.h>
113 #endif
114
115 #if NIOAPIC > 0
116 #include <machine/i82093var.h>
117 #endif
118
119 #include <dev/ic/mc146818reg.h>
120 #include <i386/isa/nvram.h>
121 #include <dev/isa/isareg.h>
122
123 int cpu_match(struct device *, struct cfdata *, void *);
124 void cpu_attach(struct device *, struct device *, void *);
125
126 static bool cpu_suspend(device_t);
127 static bool cpu_resume(device_t);
128
129 struct cpu_softc {
130 struct device sc_dev; /* device tree glue */
131 struct cpu_info *sc_info; /* pointer to CPU info */
132 bool sc_wasonline;
133 };
134
135 int mp_cpu_start(struct cpu_info *, paddr_t);
136 void mp_cpu_start_cleanup(struct cpu_info *);
137 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 mp_cpu_start_cleanup };
139
140
141 CFATTACH_DECL(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL);
143
144 /*
145 * Statically-allocated CPU info for the primary CPU (or the only
146 * CPU, on uniprocessors). The CPU info list is initialized to
147 * point at it.
148 */
149 #ifdef TRAPLOG
150 struct tlog tlog_primary;
151 #endif
152 struct cpu_info cpu_info_primary = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 #ifdef TRAPLOG
158 .ci_tlog_base = &tlog_primary,
159 #endif /* !TRAPLOG */
160 };
161
162 struct cpu_info *cpu_info_list = &cpu_info_primary;
163
164 static void cpu_set_tss_gates(struct cpu_info *);
165
166 #ifdef i386
167 static void tss_init(struct i386tss *, void *, void *);
168 #endif
169
170 #ifdef MULTIPROCESSOR
171 static void cpu_init_idle_lwp(struct cpu_info *);
172 #endif
173
174 uint32_t cpus_attached = 0;
175 uint32_t cpus_running = 0;
176
177 extern char x86_64_doubleflt_stack[];
178
179 bool x86_mp_online;
180 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
181
182 static vaddr_t cmos_data_mapping;
183
184 #ifdef MULTIPROCESSOR
185 /*
186 * Array of CPU info structures. Must be statically-allocated because
187 * curproc, etc. are used early.
188 */
189 struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
190
191 void cpu_hatch(void *);
192 static void cpu_boot_secondary(struct cpu_info *ci);
193 static void cpu_start_secondary(struct cpu_info *ci);
194 static void cpu_copy_trampoline(void);
195
196 /*
197 * Runs once per boot once multiprocessor goo has been detected and
198 * the local APIC on the boot processor has been mapped.
199 *
200 * Called from lapic_boot_init() (from mpbios_scan()).
201 */
202 void
203 cpu_init_first(void)
204 {
205 int cpunum = lapic_cpu_number();
206
207 if (cpunum != 0) {
208 cpu_info[0] = NULL;
209 cpu_info[cpunum] = &cpu_info_primary;
210 }
211
212 cpu_info_primary.ci_cpuid = cpunum;
213 cpu_copy_trampoline();
214
215 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
216 if (cmos_data_mapping == 0)
217 panic("No KVA for page 0");
218 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
219 pmap_update(pmap_kernel());
220 }
221 #endif
222
223 int
224 cpu_match(struct device *parent, struct cfdata *match,
225 void *aux)
226 {
227
228 return 1;
229 }
230
231 static void
232 cpu_vm_init(struct cpu_info *ci)
233 {
234 int ncolors = 2, i;
235
236 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
237 struct x86_cache_info *cai;
238 int tcolors;
239
240 cai = &ci->ci_cinfo[i];
241
242 tcolors = atop(cai->cai_totalsize);
243 switch(cai->cai_associativity) {
244 case 0xff:
245 tcolors = 1; /* fully associative */
246 break;
247 case 0:
248 case 1:
249 break;
250 default:
251 tcolors /= cai->cai_associativity;
252 }
253 ncolors = max(ncolors, tcolors);
254 }
255
256 /*
257 * Knowing the size of the largest cache on this CPU, re-color
258 * our pages.
259 */
260 if (ncolors <= uvmexp.ncolors)
261 return;
262 aprint_verbose("%s: %d page colors\n", ci->ci_dev->dv_xname, ncolors);
263 uvm_page_recolor(ncolors);
264 }
265
266
267 void
268 cpu_attach(struct device *parent, struct device *self, void *aux)
269 {
270 struct cpu_softc *sc = (void *) self;
271 struct cpu_attach_args *caa = aux;
272 struct cpu_info *ci;
273 #if defined(MULTIPROCESSOR)
274 int cpunum = caa->cpu_number;
275 #endif
276
277 /*
278 * If we're an Application Processor, allocate a cpu_info
279 * structure, otherwise use the primary's.
280 */
281 if (caa->cpu_role == CPU_ROLE_AP) {
282 aprint_naive(": Application Processor\n");
283 ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK);
284 memset(ci, 0, sizeof(*ci));
285 #if defined(MULTIPROCESSOR)
286 if (cpu_info[cpunum] != NULL) {
287 printf("\n");
288 panic("cpu at apic id %d already attached?", cpunum);
289 }
290 cpu_info[cpunum] = ci;
291 #endif
292 #ifdef TRAPLOG
293 ci->ci_tlog_base = malloc(sizeof(struct tlog),
294 M_DEVBUF, M_WAITOK);
295 #endif
296 } else {
297 aprint_naive(": %s Processor\n",
298 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
299 ci = &cpu_info_primary;
300 #if defined(MULTIPROCESSOR)
301 if (cpunum != lapic_cpu_number()) {
302 printf("\n");
303 panic("%s: running CPU is at apic %d"
304 " instead of at expected %d",
305 sc->sc_dev.dv_xname, lapic_cpu_number(), cpunum);
306 }
307 #endif
308 }
309
310 ci->ci_self = ci;
311 sc->sc_info = ci;
312
313 ci->ci_dev = self;
314 ci->ci_apicid = caa->cpu_number;
315 #ifdef MULTIPROCESSOR
316 ci->ci_cpuid = ci->ci_apicid;
317 #else
318 ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
319 #endif
320 ci->ci_cpumask = (1 << ci->ci_cpuid);
321 ci->ci_func = caa->cpu_func;
322
323 if (caa->cpu_role == CPU_ROLE_AP) {
324 #ifdef MULTIPROCESSOR
325 int error;
326
327 error = mi_cpu_attach(ci);
328 if (error != 0) {
329 aprint_normal("\n");
330 aprint_error("%s: mi_cpu_attach failed with %d\n",
331 sc->sc_dev.dv_xname, error);
332 return;
333 }
334 #endif
335 cpu_init_tss(ci);
336 } else {
337 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
338 }
339
340 pmap_reference(pmap_kernel());
341 ci->ci_pmap = pmap_kernel();
342 ci->ci_tlbstate = TLBSTATE_STALE;
343
344 /* further PCB init done later. */
345
346 switch (caa->cpu_role) {
347 case CPU_ROLE_SP:
348 aprint_normal(": (uniprocessor)\n");
349 atomic_or_32(&ci->ci_flags,
350 CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
351 cpu_intr_init(ci);
352 identifycpu(ci);
353 cpu_init(ci);
354 cpu_set_tss_gates(ci);
355 pmap_cpu_init_late(ci);
356 x86_errata();
357 break;
358
359 case CPU_ROLE_BP:
360 aprint_normal(": (boot processor)\n");
361 atomic_or_32(&ci->ci_flags,
362 CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
363 cpu_intr_init(ci);
364 identifycpu(ci);
365 cpu_init(ci);
366 cpu_set_tss_gates(ci);
367 pmap_cpu_init_late(ci);
368 #if NLAPIC > 0
369 /*
370 * Enable local apic
371 */
372 lapic_enable();
373 lapic_set_lvt();
374 lapic_calibrate_timer(ci);
375 #endif
376 #if NIOAPIC > 0
377 ioapic_bsp_id = caa->cpu_number;
378 #endif
379 x86_errata();
380 break;
381
382 case CPU_ROLE_AP:
383 /*
384 * report on an AP
385 */
386 aprint_normal(": (application processor)\n");
387
388 #if defined(MULTIPROCESSOR)
389 cpu_intr_init(ci);
390 gdt_alloc_cpu(ci);
391 cpu_set_tss_gates(ci);
392 pmap_cpu_init_early(ci);
393 pmap_cpu_init_late(ci);
394 cpu_start_secondary(ci);
395 if (ci->ci_flags & CPUF_PRESENT) {
396 identifycpu(ci);
397 ci->ci_next = cpu_info_list->ci_next;
398 cpu_info_list->ci_next = ci;
399 }
400 #else
401 aprint_normal("%s: not started\n", sc->sc_dev.dv_xname);
402 #endif
403 break;
404
405 default:
406 printf("\n");
407 panic("unknown processor type??\n");
408 }
409 cpu_vm_init(ci);
410
411 cpus_attached |= ci->ci_cpumask;
412
413 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
414 aprint_error_dev(self, "couldn't establish power handler\n");
415
416 #if defined(MULTIPROCESSOR)
417 if (mp_verbose) {
418 struct lwp *l = ci->ci_data.cpu_idlelwp;
419
420 aprint_verbose(
421 "%s: idle lwp at %p, idle sp at %p\n",
422 sc->sc_dev.dv_xname, l,
423 #ifdef i386
424 (void *)l->l_addr->u_pcb.pcb_esp
425 #else
426 (void *)l->l_addr->u_pcb.pcb_rsp
427 #endif
428 );
429 }
430 #endif
431 }
432
433 /*
434 * Initialize the processor appropriately.
435 */
436
437 void
438 cpu_init(struct cpu_info *ci)
439 {
440 /* configure the CPU if needed */
441 if (ci->cpu_setup != NULL)
442 (*ci->cpu_setup)(ci);
443
444 #ifdef i386
445 /*
446 * On a 486 or above, enable ring 0 write protection.
447 */
448 if (ci->ci_cpu_class >= CPUCLASS_486)
449 lcr0(rcr0() | CR0_WP);
450 #else
451 lcr0(rcr0() | CR0_WP);
452 #endif
453
454 /*
455 * On a P6 or above, enable global TLB caching if the
456 * hardware supports it.
457 */
458 if (cpu_feature & CPUID_PGE)
459 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
460
461 /*
462 * If we have FXSAVE/FXRESTOR, use them.
463 */
464 if (cpu_feature & CPUID_FXSR) {
465 lcr4(rcr4() | CR4_OSFXSR);
466
467 /*
468 * If we have SSE/SSE2, enable XMM exceptions.
469 */
470 if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
471 lcr4(rcr4() | CR4_OSXMMEXCPT);
472 }
473
474 #ifdef MTRR
475 /*
476 * On a P6 or above, initialize MTRR's if the hardware supports them.
477 */
478 if (cpu_feature & CPUID_MTRR) {
479 if ((ci->ci_flags & CPUF_AP) == 0)
480 i686_mtrr_init_first();
481 mtrr_init_cpu(ci);
482 }
483
484 #ifdef i386
485 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
486 /*
487 * Must be a K6-2 Step >= 7 or a K6-III.
488 */
489 if (CPUID2FAMILY(ci->ci_signature) == 5) {
490 if (CPUID2MODEL(ci->ci_signature) > 8 ||
491 (CPUID2MODEL(ci->ci_signature) == 8 &&
492 CPUID2STEPPING(ci->ci_signature) >= 7)) {
493 mtrr_funcs = &k6_mtrr_funcs;
494 k6_mtrr_init_first();
495 mtrr_init_cpu(ci);
496 }
497 }
498 }
499 #endif /* i386 */
500 #endif /* MTRR */
501
502 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
503 atomic_or_32(&cpus_running, ci->ci_cpumask);
504
505 #ifndef MULTIPROCESSOR
506 /* XXX */
507 x86_patch();
508 #endif
509 }
510
511 #ifdef MULTIPROCESSOR
512 void
513 cpu_boot_secondary_processors(void)
514 {
515 struct cpu_info *ci;
516 u_long i;
517
518 /* Now that we know the number of CPUs, patch the text segment. */
519 x86_patch();
520
521 for (i=0; i < X86_MAXPROCS; i++) {
522 ci = cpu_info[i];
523 if (ci == NULL)
524 continue;
525 if (ci->ci_data.cpu_idlelwp == NULL)
526 continue;
527 if ((ci->ci_flags & CPUF_PRESENT) == 0)
528 continue;
529 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
530 continue;
531 cpu_boot_secondary(ci);
532 }
533
534 x86_mp_online = true;
535 }
536
537 static void
538 cpu_init_idle_lwp(struct cpu_info *ci)
539 {
540 struct lwp *l = ci->ci_data.cpu_idlelwp;
541 struct pcb *pcb = &l->l_addr->u_pcb;
542
543 pcb->pcb_cr0 = rcr0();
544 }
545
546 void
547 cpu_init_idle_lwps(void)
548 {
549 struct cpu_info *ci;
550 u_long i;
551
552 for (i = 0; i < X86_MAXPROCS; i++) {
553 ci = cpu_info[i];
554 if (ci == NULL)
555 continue;
556 if (ci->ci_data.cpu_idlelwp == NULL)
557 continue;
558 if ((ci->ci_flags & CPUF_PRESENT) == 0)
559 continue;
560 cpu_init_idle_lwp(ci);
561 }
562 }
563
564 void
565 cpu_start_secondary(struct cpu_info *ci)
566 {
567 int i;
568 extern paddr_t mp_pdirpa;
569
570 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
571
572 atomic_or_32(&ci->ci_flags, CPUF_AP);
573
574 aprint_debug("%s: starting\n", ci->ci_dev->dv_xname);
575
576 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
577 CPU_STARTUP(ci, mp_trampoline_paddr);
578
579 /*
580 * wait for it to become ready
581 */
582 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i>0;i--) {
583 i8254_delay(10);
584 }
585 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
586 aprint_error("%s: failed to become ready\n",
587 ci->ci_dev->dv_xname);
588 #if defined(MPDEBUG) && defined(DDB)
589 printf("dropping into debugger; continue from here to resume boot\n");
590 Debugger();
591 #endif
592 }
593
594 CPU_START_CLEANUP(ci);
595 }
596
597 void
598 cpu_boot_secondary(struct cpu_info *ci)
599 {
600 int i;
601
602 atomic_or_32(&ci->ci_flags, CPUF_GO);
603 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i>0;i--) {
604 i8254_delay(10);
605 }
606 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
607 aprint_error("%s: failed to start\n", ci->ci_dev->dv_xname);
608 #if defined(MPDEBUG) && defined(DDB)
609 printf("dropping into debugger; continue from here to resume boot\n");
610 Debugger();
611 #endif
612 }
613 }
614
615 /*
616 * The CPU ends up here when its ready to run
617 * This is called from code in mptramp.s; at this point, we are running
618 * in the idle pcb/idle stack of the new CPU. When this function returns,
619 * this processor will enter the idle loop and start looking for work.
620 */
621 void
622 cpu_hatch(void *v)
623 {
624 struct cpu_info *ci = (struct cpu_info *)v;
625 int s, i;
626
627 #ifdef __x86_64__
628 cpu_init_msrs(ci, true);
629 #endif
630 cpu_probe_features(ci);
631 cpu_feature &= ci->ci_feature_flags;
632 cpu_feature2 &= ci->ci_feature2_flags;
633
634 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
635 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
636 while ((ci->ci_flags & CPUF_GO) == 0) {
637 /* Don't use delay, boot CPU may be patching the text. */
638 for (i = 10000; i != 0; i--)
639 x86_pause();
640 }
641
642 /* Beacuse the text may have been patched in x86_patch(). */
643 wbinvd();
644 x86_flush();
645
646 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
647
648 lcr3(pmap_kernel()->pm_pdirpa);
649 curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
650 lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
651 cpu_init_idt();
652 gdt_init_cpu(ci);
653 lapic_enable();
654 lapic_set_lvt();
655 lapic_initclocks();
656
657 #ifdef i386
658 npxinit(ci);
659 #else
660 fpuinit(ci);
661 #endif
662 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
663 ltr(ci->ci_tss_sel);
664
665 cpu_init(ci);
666 cpu_get_tsc_freq(ci);
667
668 s = splhigh();
669 #ifdef i386
670 lapic_tpr = 0;
671 #else
672 lcr8(0);
673 #endif
674 x86_enable_intr();
675 splx(s);
676 x86_errata();
677
678 aprint_debug("%s: CPU %ld running\n", ci->ci_dev->dv_xname,
679 (long)ci->ci_cpuid);
680 }
681
682 #if defined(DDB)
683
684 #include <ddb/db_output.h>
685 #include <machine/db_machdep.h>
686
687 /*
688 * Dump CPU information from ddb.
689 */
690 void
691 cpu_debug_dump(void)
692 {
693 struct cpu_info *ci;
694 CPU_INFO_ITERATOR cii;
695
696 db_printf("addr dev id flags ipis curproc fpcurproc\n");
697 for (CPU_INFO_FOREACH(cii, ci)) {
698 db_printf("%p %s %ld %x %x %10p %10p\n",
699 ci,
700 ci->ci_dev == NULL ? "BOOT" : ci->ci_dev->dv_xname,
701 (long)ci->ci_cpuid,
702 ci->ci_flags, ci->ci_ipis,
703 ci->ci_curlwp,
704 ci->ci_fpcurlwp);
705 }
706 }
707 #endif
708
709 static void
710 cpu_copy_trampoline(void)
711 {
712 /*
713 * Copy boot code.
714 */
715 extern u_char cpu_spinup_trampoline[];
716 extern u_char cpu_spinup_trampoline_end[];
717
718 vaddr_t mp_trampoline_vaddr;
719
720 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
721 UVM_KMF_VAONLY);
722
723 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
724 VM_PROT_READ | VM_PROT_WRITE);
725 pmap_update(pmap_kernel());
726 memcpy((void *)mp_trampoline_vaddr,
727 cpu_spinup_trampoline,
728 cpu_spinup_trampoline_end-cpu_spinup_trampoline);
729
730 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
731 pmap_update(pmap_kernel());
732 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
733 }
734
735 #endif
736
737 #ifdef i386
738 static void
739 tss_init(struct i386tss *tss, void *stack, void *func)
740 {
741 memset(tss, 0, sizeof *tss);
742 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
743 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
744 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
745 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
746 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
747 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
748 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
749 tss->tss_esp = (int)((char *)stack + USPACE - 16);
750 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
751 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
752 tss->__tss_eip = (int)func;
753 }
754
755 /* XXX */
756 #define IDTVEC(name) __CONCAT(X, name)
757 typedef void (vector)(void);
758 extern vector IDTVEC(tss_trap08);
759 #ifdef DDB
760 extern vector Xintrddbipi;
761 extern int ddb_vec;
762 #endif
763
764 static void
765 cpu_set_tss_gates(struct cpu_info *ci)
766 {
767 struct segment_descriptor sd;
768
769 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
770 UVM_KMF_WIRED);
771 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
772 IDTVEC(tss_trap08));
773 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
774 SDT_SYS386TSS, SEL_KPL, 0, 0);
775 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
776 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
777 GSEL(GTRAPTSS_SEL, SEL_KPL));
778
779 #if defined(DDB) && defined(MULTIPROCESSOR)
780 /*
781 * Set up separate handler for the DDB IPI, so that it doesn't
782 * stomp on a possibly corrupted stack.
783 *
784 * XXX overwriting the gate set in db_machine_init.
785 * Should rearrange the code so that it's set only once.
786 */
787 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
788 UVM_KMF_WIRED);
789 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
790
791 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
792 SDT_SYS386TSS, SEL_KPL, 0, 0);
793 ci->ci_gdt[GIPITSS_SEL].sd = sd;
794
795 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
796 GSEL(GIPITSS_SEL, SEL_KPL));
797 #endif
798 }
799 #else
800 static void
801 cpu_set_tss_gates(struct cpu_info *ci)
802 {
803
804 }
805 #endif /* i386 */
806
807 int
808 mp_cpu_start(struct cpu_info *ci, paddr_t target)
809 {
810 #if NLAPIC > 0
811 int error;
812 #endif
813 unsigned short dwordptr[2];
814
815 /*
816 * Bootstrap code must be addressable in real mode
817 * and it must be page aligned.
818 */
819 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
820
821 /*
822 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
823 */
824
825 outb(IO_RTC, NVRAM_RESET);
826 outb(IO_RTC+1, NVRAM_RESET_JUMP);
827
828 /*
829 * "and the warm reset vector (DWORD based at 40:67) to point
830 * to the AP startup code ..."
831 */
832
833 dwordptr[0] = 0;
834 dwordptr[1] = target >> 4;
835
836 memcpy((uint8_t *)(cmos_data_mapping + 0x467), dwordptr, 4);
837
838 #if NLAPIC > 0
839 /*
840 * ... prior to executing the following sequence:"
841 */
842
843 if (ci->ci_flags & CPUF_AP) {
844 if ((error = x86_ipi_init(ci->ci_apicid)) != 0)
845 return error;
846
847 i8254_delay(10000);
848
849 if (cpu_feature & CPUID_APIC) {
850
851 if ((error = x86_ipi(target / PAGE_SIZE,
852 ci->ci_apicid,
853 LAPIC_DLMODE_STARTUP)) != 0)
854 return error;
855 i8254_delay(200);
856
857 if ((error = x86_ipi(target / PAGE_SIZE,
858 ci->ci_apicid,
859 LAPIC_DLMODE_STARTUP)) != 0)
860 return error;
861 i8254_delay(200);
862 }
863 }
864 #endif
865 return 0;
866 }
867
868 void
869 mp_cpu_start_cleanup(struct cpu_info *ci)
870 {
871 /*
872 * Ensure the NVRAM reset byte contains something vaguely sane.
873 */
874
875 outb(IO_RTC, NVRAM_RESET);
876 outb(IO_RTC+1, NVRAM_RESET_RST);
877 }
878
879 #ifdef __x86_64__
880 typedef void (vector)(void);
881 extern vector Xsyscall, Xsyscall32;
882
883 void
884 cpu_init_msrs(struct cpu_info *ci, bool full)
885 {
886 wrmsr(MSR_STAR,
887 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
888 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
889 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
890 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
891 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
892
893 if (full) {
894 wrmsr(MSR_FSBASE, 0);
895 wrmsr(MSR_GSBASE, (u_int64_t)ci);
896 wrmsr(MSR_KERNELGSBASE, 0);
897 }
898
899 if (cpu_feature & CPUID_NOX)
900 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
901 }
902 #endif /* __x86_64__ */
903
904 void
905 cpu_offline_md(void)
906 {
907 int s;
908
909 s = splhigh();
910 #ifdef __i386__
911 npxsave_cpu(true);
912 #else
913 fpusave_cpu(true);
914 #endif
915 splx(s);
916 }
917
918 /* XXX joerg restructure and restart CPUs individually */
919 static bool
920 cpu_suspend(device_t dv)
921 {
922 struct cpu_softc *sc = device_private(dv);
923 struct cpu_info *ci = sc->sc_info;
924 int err;
925
926 if (ci->ci_flags & CPUF_PRIMARY)
927 return true;
928 if (ci->ci_data.cpu_idlelwp == NULL)
929 return true;
930 if ((ci->ci_flags & CPUF_PRESENT) == 0)
931 return true;
932
933 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
934
935 if (sc->sc_wasonline) {
936 mutex_enter(&cpu_lock);
937 err = cpu_setonline(ci, false);
938 mutex_exit(&cpu_lock);
939
940 if (err)
941 return false;
942 }
943
944 return true;
945 }
946
947 static bool
948 cpu_resume(device_t dv)
949 {
950 struct cpu_softc *sc = device_private(dv);
951 struct cpu_info *ci = sc->sc_info;
952 int err = 0;
953
954 if (ci->ci_flags & CPUF_PRIMARY)
955 return true;
956 if (ci->ci_data.cpu_idlelwp == NULL)
957 return true;
958 if ((ci->ci_flags & CPUF_PRESENT) == 0)
959 return true;
960
961 if (sc->sc_wasonline) {
962 mutex_enter(&cpu_lock);
963 err = cpu_setonline(ci, true);
964 mutex_exit(&cpu_lock);
965 }
966
967 return err == 0;
968 }
969
970 void
971 cpu_get_tsc_freq(struct cpu_info *ci)
972 {
973 uint64_t last_tsc;
974 u_int junk[4];
975
976 if (ci->ci_feature_flags & CPUID_TSC) {
977 /* Serialize. */
978 x86_cpuid(0, junk);
979 last_tsc = rdtsc();
980 i8254_delay(100000);
981 ci->ci_tsc_freq = (rdtsc() - last_tsc) * 10;
982 }
983 }
984