cpu.c revision 1.200 1 /* $NetBSD: cpu.c,v 1.200 2021/04/24 23:36:51 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.200 2021/04/24 23:36:51 thorpej Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71 #include "opt_svs.h"
72
73 #include "lapic.h"
74 #include "ioapic.h"
75 #include "acpica.h"
76 #include "hpet.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/cpu.h>
83 #include <sys/cpufreq.h>
84 #include <sys/idle.h>
85 #include <sys/atomic.h>
86 #include <sys/reboot.h>
87 #include <sys/csan.h>
88
89 #include <uvm/uvm.h>
90
91 #include "acpica.h" /* for NACPICA, for mp_verbose */
92
93 #include <x86/machdep.h>
94 #include <machine/cpufunc.h>
95 #include <machine/cpuvar.h>
96 #include <machine/pmap.h>
97 #include <machine/vmparam.h>
98 #if defined(MULTIPROCESSOR)
99 #include <machine/mpbiosvar.h>
100 #endif
101 #include <machine/mpconfig.h> /* for mp_verbose */
102 #include <machine/pcb.h>
103 #include <machine/specialreg.h>
104 #include <machine/segments.h>
105 #include <machine/gdt.h>
106 #include <machine/mtrr.h>
107 #include <machine/pio.h>
108 #include <machine/cpu_counter.h>
109
110 #include <x86/fpu.h>
111
112 #if NACPICA > 0
113 #include <dev/acpi/acpi_srat.h>
114 #endif
115
116 #if NLAPIC > 0
117 #include <machine/apicvar.h>
118 #include <machine/i82489reg.h>
119 #include <machine/i82489var.h>
120 #endif
121
122 #include <dev/ic/mc146818reg.h>
123 #include <dev/ic/hpetvar.h>
124 #include <i386/isa/nvram.h>
125 #include <dev/isa/isareg.h>
126
127 #include "tsc.h"
128
129 #ifndef XENPV
130 #include "hyperv.h"
131 #if NHYPERV > 0
132 #include <x86/x86/hypervvar.h>
133 #endif
134 #endif
135
136 #ifdef XEN
137 #include <xen/hypervisor.h>
138 #endif
139
140 static int cpu_match(device_t, cfdata_t, void *);
141 static void cpu_attach(device_t, device_t, void *);
142 static void cpu_defer(device_t);
143 static int cpu_rescan(device_t, const char *, const int *);
144 static void cpu_childdetached(device_t, device_t);
145 static bool cpu_stop(device_t);
146 static bool cpu_suspend(device_t, const pmf_qual_t *);
147 static bool cpu_resume(device_t, const pmf_qual_t *);
148 static bool cpu_shutdown(device_t, int);
149
150 struct cpu_softc {
151 device_t sc_dev; /* device tree glue */
152 struct cpu_info *sc_info; /* pointer to CPU info */
153 bool sc_wasonline;
154 };
155
156 #ifdef MULTIPROCESSOR
157 int mp_cpu_start(struct cpu_info *, paddr_t);
158 void mp_cpu_start_cleanup(struct cpu_info *);
159 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
160 mp_cpu_start_cleanup };
161 #endif
162
163
164 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
165 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
166
167 /*
168 * Statically-allocated CPU info for the primary CPU (or the only
169 * CPU, on uniprocessors). The CPU info list is initialized to
170 * point at it.
171 */
172 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
173 .ci_dev = 0,
174 .ci_self = &cpu_info_primary,
175 .ci_idepth = -1,
176 .ci_curlwp = &lwp0,
177 .ci_curldt = -1,
178 };
179
180 struct cpu_info *cpu_info_list = &cpu_info_primary;
181
182 #ifdef i386
183 void cpu_set_tss_gates(struct cpu_info *);
184 #endif
185
186 static void cpu_init_idle_lwp(struct cpu_info *);
187
188 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
189 /* [0] basic features cpuid.1:%edx
190 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
191 * [2] extended features cpuid:80000001:%edx
192 * [3] extended features cpuid:80000001:%ecx
193 * [4] VIA padlock features
194 * [5] structured extended features cpuid.7:%ebx
195 * [6] structured extended features cpuid.7:%ecx
196 */
197
198 #ifdef MULTIPROCESSOR
199 bool x86_mp_online;
200 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
201 #endif
202 #if NLAPIC > 0
203 static vaddr_t cmos_data_mapping;
204 #endif
205 struct cpu_info *cpu_starting;
206
207 #ifdef MULTIPROCESSOR
208 void cpu_hatch(void *);
209 static void cpu_boot_secondary(struct cpu_info *ci);
210 static void cpu_start_secondary(struct cpu_info *ci);
211 #if NLAPIC > 0
212 static void cpu_copy_trampoline(paddr_t);
213 #endif
214 #endif /* MULTIPROCESSOR */
215
216 /*
217 * Runs once per boot once multiprocessor goo has been detected and
218 * the local APIC on the boot processor has been mapped.
219 *
220 * Called from lapic_boot_init() (from mpbios_scan()).
221 */
222 #if NLAPIC > 0
223 void
224 cpu_init_first(void)
225 {
226
227 cpu_info_primary.ci_cpuid = lapic_cpu_number();
228
229 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
230 if (cmos_data_mapping == 0)
231 panic("No KVA for page 0");
232 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
233 pmap_update(pmap_kernel());
234 }
235 #endif
236
237 static int
238 cpu_match(device_t parent, cfdata_t match, void *aux)
239 {
240
241 return 1;
242 }
243
244 #ifdef __HAVE_PCPU_AREA
245 void
246 cpu_pcpuarea_init(struct cpu_info *ci)
247 {
248 struct vm_page *pg;
249 size_t i, npages;
250 vaddr_t base, va;
251 paddr_t pa;
252
253 CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
254
255 npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
256 base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
257
258 for (i = 0; i < npages; i++) {
259 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
260 if (pg == NULL) {
261 panic("failed to allocate pcpu PA");
262 }
263
264 va = base + i * PAGE_SIZE;
265 pa = VM_PAGE_TO_PHYS(pg);
266
267 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
268 }
269
270 pmap_update(pmap_kernel());
271 }
272 #endif
273
274 static void
275 cpu_vm_init(struct cpu_info *ci)
276 {
277 unsigned int ncolors = 2;
278
279 /*
280 * XXX: for AP's the cache info has not been initialized yet
281 * but that does not matter because uvm only pays attention at
282 * the maximum only. We should fix it once cpus have different
283 * cache sizes.
284 */
285 for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
286 struct x86_cache_info *cai;
287 unsigned int tcolors;
288
289 cai = &ci->ci_cinfo[i];
290
291 tcolors = atop(cai->cai_totalsize);
292 switch (cai->cai_associativity) {
293 case 0xff:
294 tcolors = 1; /* fully associative */
295 break;
296 case 0:
297 case 1:
298 break;
299 default:
300 tcolors /= cai->cai_associativity;
301 }
302 if (tcolors <= ncolors)
303 continue;
304 ncolors = tcolors;
305 }
306
307 /*
308 * If the desired number of colors is not a power of
309 * two, it won't be good. Find the greatest power of
310 * two which is an even divisor of the number of colors,
311 * to preserve even coloring of pages.
312 */
313 if (ncolors & (ncolors - 1) ) {
314 unsigned int try, picked = 1;
315 for (try = 1; try < ncolors; try *= 2) {
316 if (ncolors % try == 0) picked = try;
317 }
318 if (picked == 1) {
319 panic("desired number of cache colors %u is "
320 " > 1, but not even!", ncolors);
321 }
322 ncolors = picked;
323 }
324
325 /*
326 * Knowing the size of the largest cache on this CPU, potentially
327 * re-color our pages.
328 */
329 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
330 uvm_page_recolor(ncolors);
331
332 pmap_tlb_cpu_init(ci);
333 #ifndef __HAVE_DIRECT_MAP
334 pmap_vpage_cpu_init(ci);
335 #endif
336 }
337
338 static void
339 cpu_attach(device_t parent, device_t self, void *aux)
340 {
341 struct cpu_softc *sc = device_private(self);
342 struct cpu_attach_args *caa = aux;
343 struct cpu_info *ci;
344 uintptr_t ptr;
345 #if NLAPIC > 0
346 int cpunum = caa->cpu_number;
347 #endif
348 static bool again;
349
350 sc->sc_dev = self;
351
352 if (ncpu > maxcpus) {
353 #ifndef _LP64
354 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
355 #else
356 aprint_error(": too many CPUs\n");
357 #endif
358 return;
359 }
360
361 /*
362 * If we're an Application Processor, allocate a cpu_info
363 * structure, otherwise use the primary's.
364 */
365 if (caa->cpu_role == CPU_ROLE_AP) {
366 if ((boothowto & RB_MD1) != 0) {
367 aprint_error(": multiprocessor boot disabled\n");
368 if (!pmf_device_register(self, NULL, NULL))
369 aprint_error_dev(self,
370 "couldn't establish power handler\n");
371 return;
372 }
373 aprint_naive(": Application Processor\n");
374 ptr = (uintptr_t)uvm_km_alloc(kernel_map,
375 sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
376 UVM_KMF_WIRED|UVM_KMF_ZERO);
377 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
378 ci->ci_curldt = -1;
379 } else {
380 aprint_naive(": %s Processor\n",
381 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
382 ci = &cpu_info_primary;
383 #if NLAPIC > 0
384 if (cpunum != lapic_cpu_number()) {
385 /* XXX should be done earlier. */
386 uint32_t reg;
387 aprint_verbose("\n");
388 aprint_verbose_dev(self, "running CPU at apic %d"
389 " instead of at expected %d", lapic_cpu_number(),
390 cpunum);
391 reg = lapic_readreg(LAPIC_ID);
392 lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
393 (cpunum << LAPIC_ID_SHIFT));
394 }
395 if (cpunum != lapic_cpu_number()) {
396 aprint_error_dev(self, "unable to reset apic id\n");
397 }
398 #endif
399 }
400
401 ci->ci_self = ci;
402 sc->sc_info = ci;
403 ci->ci_dev = self;
404 ci->ci_acpiid = caa->cpu_id;
405 ci->ci_cpuid = caa->cpu_number;
406 ci->ci_func = caa->cpu_func;
407 ci->ci_kfpu_spl = -1;
408 aprint_normal("\n");
409
410 /* Must be before mi_cpu_attach(). */
411 cpu_vm_init(ci);
412
413 if (caa->cpu_role == CPU_ROLE_AP) {
414 int error;
415
416 error = mi_cpu_attach(ci);
417 if (error != 0) {
418 aprint_error_dev(self,
419 "mi_cpu_attach failed with %d\n", error);
420 return;
421 }
422 #ifdef __HAVE_PCPU_AREA
423 cpu_pcpuarea_init(ci);
424 #endif
425 cpu_init_tss(ci);
426 } else {
427 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
428 #if NACPICA > 0
429 /* Parse out NUMA info for cpu_identify(). */
430 acpisrat_init();
431 #endif
432 }
433
434 #ifdef SVS
435 cpu_svs_init(ci);
436 #endif
437
438 pmap_reference(pmap_kernel());
439 ci->ci_pmap = pmap_kernel();
440 ci->ci_tlbstate = TLBSTATE_STALE;
441
442 /*
443 * Boot processor may not be attached first, but the below
444 * must be done to allow booting other processors.
445 */
446 if (!again) {
447 /* Make sure DELAY() (likely i8254_delay()) is initialized. */
448 DELAY(1);
449
450 /*
451 * Basic init. Compute an approximate frequency for the TSC
452 * using the i8254. If there's a HPET we'll redo it later.
453 */
454 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
455 cpu_intr_init(ci);
456 tsc_setfunc(ci);
457 cpu_get_tsc_freq(ci);
458 cpu_init(ci);
459 #ifdef i386
460 cpu_set_tss_gates(ci);
461 #endif
462 pmap_cpu_init_late(ci);
463 #if NLAPIC > 0
464 if (caa->cpu_role != CPU_ROLE_SP) {
465 /* Enable lapic. */
466 lapic_enable();
467 lapic_set_lvt();
468 if (!vm_guest_is_xenpvh_or_pvhvm())
469 lapic_calibrate_timer(false);
470 }
471 #endif
472 kcsan_cpu_init(ci);
473 again = true;
474 }
475
476 /* further PCB init done later. */
477
478 switch (caa->cpu_role) {
479 case CPU_ROLE_SP:
480 atomic_or_32(&ci->ci_flags, CPUF_SP);
481 cpu_identify(ci);
482 x86_errata();
483 x86_cpu_idle_init();
484 #ifdef XENPVHVM
485 xen_hvm_init_cpu(ci);
486 #endif
487 break;
488
489 case CPU_ROLE_BP:
490 atomic_or_32(&ci->ci_flags, CPUF_BSP);
491 cpu_identify(ci);
492 x86_errata();
493 x86_cpu_idle_init();
494 #ifdef XENPVHVM
495 xen_hvm_init_cpu(ci);
496 #endif
497 break;
498
499 #ifdef MULTIPROCESSOR
500 case CPU_ROLE_AP:
501 /*
502 * report on an AP
503 */
504 cpu_intr_init(ci);
505 idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
506 gdt_alloc_cpu(ci);
507 #ifdef i386
508 cpu_set_tss_gates(ci);
509 #endif
510 pmap_cpu_init_late(ci);
511 cpu_start_secondary(ci);
512 if (ci->ci_flags & CPUF_PRESENT) {
513 struct cpu_info *tmp;
514
515 cpu_identify(ci);
516 tmp = cpu_info_list;
517 while (tmp->ci_next)
518 tmp = tmp->ci_next;
519
520 tmp->ci_next = ci;
521 }
522 break;
523 #endif
524
525 default:
526 panic("unknown processor type??\n");
527 }
528
529 pat_init(ci);
530
531 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
532 aprint_error_dev(self, "couldn't establish power handler\n");
533
534 #ifdef MULTIPROCESSOR
535 if (mp_verbose) {
536 struct lwp *l = ci->ci_data.cpu_idlelwp;
537 struct pcb *pcb = lwp_getpcb(l);
538
539 aprint_verbose_dev(self,
540 "idle lwp at %p, idle sp at %p\n",
541 l,
542 #ifdef i386
543 (void *)pcb->pcb_esp
544 #else
545 (void *)pcb->pcb_rsp
546 #endif
547 );
548 }
549 #endif
550
551 /*
552 * Postpone the "cpufeaturebus" scan.
553 * It is safe to scan the pseudo-bus
554 * only after all CPUs have attached.
555 */
556 (void)config_defer(self, cpu_defer);
557 }
558
559 static void
560 cpu_defer(device_t self)
561 {
562 cpu_rescan(self, NULL, NULL);
563 }
564
565 static int
566 cpu_rescan(device_t self, const char *ifattr, const int *locators)
567 {
568 struct cpu_softc *sc = device_private(self);
569 struct cpufeature_attach_args cfaa;
570 struct cpu_info *ci = sc->sc_info;
571
572 /*
573 * If we booted with RB_MD1 to disable multiprocessor, the
574 * auto-configuration data still contains the additional
575 * CPUs. But their initialization was mostly bypassed
576 * during attach, so we have to make sure we don't look at
577 * their featurebus info, since it wasn't retrieved.
578 */
579 if (ci == NULL)
580 return 0;
581
582 memset(&cfaa, 0, sizeof(cfaa));
583 cfaa.ci = ci;
584
585 if (ifattr_match(ifattr, "cpufeaturebus")) {
586 if (ci->ci_frequency == NULL) {
587 cfaa.name = "frequency";
588 ci->ci_frequency =
589 config_found(self, &cfaa, NULL,
590 CFARG_IATTR, "cpufeaturebus",
591 CFARG_EOL);
592 }
593
594 if (ci->ci_padlock == NULL) {
595 cfaa.name = "padlock";
596 ci->ci_padlock =
597 config_found(self, &cfaa, NULL,
598 CFARG_IATTR, "cpufeaturebus",
599 CFARG_EOL);
600 }
601
602 if (ci->ci_temperature == NULL) {
603 cfaa.name = "temperature";
604 ci->ci_temperature =
605 config_found(self, &cfaa, NULL,
606 CFARG_IATTR, "cpufeaturebus",
607 CFARG_EOL);
608 }
609
610 if (ci->ci_vm == NULL) {
611 cfaa.name = "vm";
612 ci->ci_vm =
613 config_found(self, &cfaa, NULL,
614 CFARG_IATTR, "cpufeaturebus",
615 CFARG_EOL);
616 }
617 }
618
619 return 0;
620 }
621
622 static void
623 cpu_childdetached(device_t self, device_t child)
624 {
625 struct cpu_softc *sc = device_private(self);
626 struct cpu_info *ci = sc->sc_info;
627
628 if (ci->ci_frequency == child)
629 ci->ci_frequency = NULL;
630
631 if (ci->ci_padlock == child)
632 ci->ci_padlock = NULL;
633
634 if (ci->ci_temperature == child)
635 ci->ci_temperature = NULL;
636
637 if (ci->ci_vm == child)
638 ci->ci_vm = NULL;
639 }
640
641 /*
642 * Initialize the processor appropriately.
643 */
644
645 void
646 cpu_init(struct cpu_info *ci)
647 {
648 extern int x86_fpu_save;
649 uint32_t cr4 = 0;
650
651 lcr0(rcr0() | CR0_WP);
652
653 /* If global TLB caching is supported, enable it */
654 if (cpu_feature[0] & CPUID_PGE)
655 cr4 |= CR4_PGE;
656
657 /*
658 * If we have FXSAVE/FXRESTOR, use them.
659 */
660 if (cpu_feature[0] & CPUID_FXSR) {
661 cr4 |= CR4_OSFXSR;
662
663 /*
664 * If we have SSE/SSE2, enable XMM exceptions.
665 */
666 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
667 cr4 |= CR4_OSXMMEXCPT;
668 }
669
670 /* If xsave is supported, enable it */
671 if (cpu_feature[1] & CPUID2_XSAVE)
672 cr4 |= CR4_OSXSAVE;
673
674 /* If SMEP is supported, enable it */
675 if (cpu_feature[5] & CPUID_SEF_SMEP)
676 cr4 |= CR4_SMEP;
677
678 /* If SMAP is supported, enable it */
679 if (cpu_feature[5] & CPUID_SEF_SMAP)
680 cr4 |= CR4_SMAP;
681
682 #ifdef SVS
683 /* If PCID is supported, enable it */
684 if (svs_pcid)
685 cr4 |= CR4_PCIDE;
686 #endif
687
688 if (cr4) {
689 cr4 |= rcr4();
690 lcr4(cr4);
691 }
692
693 /*
694 * Changing CR4 register may change cpuid values. For example, setting
695 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
696 * ci_feat_val[1], so update it.
697 * XXX Other than ci_feat_val[1] might be changed.
698 */
699 if (cpuid_level >= 1) {
700 u_int descs[4];
701
702 x86_cpuid(1, descs);
703 ci->ci_feat_val[1] = descs[2];
704 }
705
706 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
707 fpuinit_mxcsr_mask();
708 }
709
710 /* If xsave is enabled, enable all fpu features */
711 if (cr4 & CR4_OSXSAVE)
712 wrxcr(0, x86_xsave_features & XCR0_FPU);
713
714 #ifdef MTRR
715 /*
716 * On a P6 or above, initialize MTRR's if the hardware supports them.
717 */
718 if (cpu_feature[0] & CPUID_MTRR) {
719 if ((ci->ci_flags & CPUF_AP) == 0)
720 i686_mtrr_init_first();
721 mtrr_init_cpu(ci);
722 }
723
724 #ifdef i386
725 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
726 /*
727 * Must be a K6-2 Step >= 7 or a K6-III.
728 */
729 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
730 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
731 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
732 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
733 mtrr_funcs = &k6_mtrr_funcs;
734 k6_mtrr_init_first();
735 mtrr_init_cpu(ci);
736 }
737 }
738 }
739 #endif /* i386 */
740 #endif /* MTRR */
741
742 if (ci != &cpu_info_primary) {
743 /* Synchronize TSC */
744 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
745 tsc_sync_ap(ci);
746 } else {
747 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
748 }
749 }
750
751 #ifdef MULTIPROCESSOR
752 void
753 cpu_boot_secondary_processors(void)
754 {
755 struct cpu_info *ci;
756 kcpuset_t *cpus;
757 u_long i;
758
759 /* Now that we know the number of CPUs, patch the text segment. */
760 x86_patch(false);
761
762 #if NACPICA > 0
763 /* Finished with NUMA info for now. */
764 acpisrat_exit();
765 #endif
766
767 kcpuset_create(&cpus, true);
768 kcpuset_set(cpus, cpu_index(curcpu()));
769 for (i = 0; i < maxcpus; i++) {
770 ci = cpu_lookup(i);
771 if (ci == NULL)
772 continue;
773 if (ci->ci_data.cpu_idlelwp == NULL)
774 continue;
775 if ((ci->ci_flags & CPUF_PRESENT) == 0)
776 continue;
777 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
778 continue;
779 cpu_boot_secondary(ci);
780 kcpuset_set(cpus, cpu_index(ci));
781 }
782 while (!kcpuset_match(cpus, kcpuset_running))
783 ;
784 kcpuset_destroy(cpus);
785
786 x86_mp_online = true;
787
788 /* Now that we know about the TSC, attach the timecounter. */
789 tsc_tc_init();
790 }
791 #endif
792
793 static void
794 cpu_init_idle_lwp(struct cpu_info *ci)
795 {
796 struct lwp *l = ci->ci_data.cpu_idlelwp;
797 struct pcb *pcb = lwp_getpcb(l);
798
799 pcb->pcb_cr0 = rcr0();
800 }
801
802 void
803 cpu_init_idle_lwps(void)
804 {
805 struct cpu_info *ci;
806 u_long i;
807
808 for (i = 0; i < maxcpus; i++) {
809 ci = cpu_lookup(i);
810 if (ci == NULL)
811 continue;
812 if (ci->ci_data.cpu_idlelwp == NULL)
813 continue;
814 if ((ci->ci_flags & CPUF_PRESENT) == 0)
815 continue;
816 cpu_init_idle_lwp(ci);
817 }
818 }
819
820 #ifdef MULTIPROCESSOR
821 void
822 cpu_start_secondary(struct cpu_info *ci)
823 {
824 u_long psl;
825 int i;
826
827 #if NLAPIC > 0
828 paddr_t mp_pdirpa;
829 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
830 cpu_copy_trampoline(mp_pdirpa);
831 #endif
832
833 atomic_or_32(&ci->ci_flags, CPUF_AP);
834 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
835 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
836 return;
837 }
838
839 /*
840 * Wait for it to become ready. Setting cpu_starting opens the
841 * initial gate and allows the AP to start soft initialization.
842 */
843 KASSERT(cpu_starting == NULL);
844 cpu_starting = ci;
845 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
846 delay_func(10);
847 }
848
849 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
850 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
851 #if defined(MPDEBUG) && defined(DDB)
852 printf("dropping into debugger; continue from here to resume boot\n");
853 Debugger();
854 #endif
855 } else {
856 /*
857 * Synchronize time stamp counters. Invalidate cache and do
858 * twice (in tsc_sync_bp) to minimize possible cache effects.
859 * Disable interrupts to try and rule out any external
860 * interference.
861 */
862 psl = x86_read_psl();
863 x86_disable_intr();
864 tsc_sync_bp(ci);
865 x86_write_psl(psl);
866 }
867
868 CPU_START_CLEANUP(ci);
869 cpu_starting = NULL;
870 }
871
872 void
873 cpu_boot_secondary(struct cpu_info *ci)
874 {
875 int64_t drift;
876 u_long psl;
877 int i;
878
879 atomic_or_32(&ci->ci_flags, CPUF_GO);
880 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
881 delay_func(10);
882 }
883 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
884 aprint_error_dev(ci->ci_dev, "failed to start\n");
885 #if defined(MPDEBUG) && defined(DDB)
886 printf("dropping into debugger; continue from here to resume boot\n");
887 Debugger();
888 #endif
889 } else {
890 /* Synchronize TSC again, check for drift. */
891 drift = ci->ci_data.cpu_cc_skew;
892 psl = x86_read_psl();
893 x86_disable_intr();
894 tsc_sync_bp(ci);
895 x86_write_psl(psl);
896 drift -= ci->ci_data.cpu_cc_skew;
897 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
898 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
899 tsc_sync_drift(drift);
900 }
901 }
902
903 /*
904 * The CPU ends up here when it's ready to run.
905 * This is called from code in mptramp.s; at this point, we are running
906 * in the idle pcb/idle stack of the new CPU. When this function returns,
907 * this processor will enter the idle loop and start looking for work.
908 */
909 void
910 cpu_hatch(void *v)
911 {
912 struct cpu_info *ci = (struct cpu_info *)v;
913 struct pcb *pcb;
914 int s, i;
915
916 /* ------------------------------------------------------------- */
917
918 /*
919 * This section of code must be compiled with SSP disabled, to
920 * prevent a race against cpu0. See sys/conf/ssp.mk.
921 */
922
923 cpu_init_msrs(ci, true);
924 cpu_probe(ci);
925 cpu_speculation_init(ci);
926 #if NHYPERV > 0
927 hyperv_init_cpu(ci);
928 #endif
929
930 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
931 /* cpu_get_tsc_freq(ci); */
932
933 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
934
935 /*
936 * Synchronize the TSC for the first time. Note that interrupts are
937 * off at this point.
938 */
939 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
940 tsc_sync_ap(ci);
941
942 /* ------------------------------------------------------------- */
943
944 /*
945 * Wait to be brought online.
946 *
947 * Use MONITOR/MWAIT if available. These instructions put the CPU in
948 * a low consumption mode (C-state), and if the TSC is not invariant,
949 * this causes the TSC to drift. We want this to happen, so that we
950 * can later detect (in tsc_tc_init) any abnormal drift with invariant
951 * TSCs. That's just for safety; by definition such drifts should
952 * never occur with invariant TSCs.
953 *
954 * If not available, try PAUSE. We'd like to use HLT, but we have
955 * interrupts off.
956 */
957 while ((ci->ci_flags & CPUF_GO) == 0) {
958 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
959 x86_monitor(&ci->ci_flags, 0, 0);
960 if ((ci->ci_flags & CPUF_GO) != 0) {
961 continue;
962 }
963 x86_mwait(0, 0);
964 } else {
965 /*
966 * XXX The loop repetition count could be a lot higher, but
967 * XXX currently qemu emulator takes a _very_long_time_ to
968 * XXX execute the pause instruction. So for now, use a low
969 * XXX value to allow the cpu to hatch before timing out.
970 */
971 for (i = 50; i != 0; i--) {
972 x86_pause();
973 }
974 }
975 }
976
977 /* Because the text may have been patched in x86_patch(). */
978 wbinvd();
979 x86_flush();
980 tlbflushg();
981
982 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
983
984 #ifdef PAE
985 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
986 for (i = 0 ; i < PDP_SIZE; i++) {
987 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
988 }
989 lcr3(ci->ci_pae_l3_pdirpa);
990 #else
991 lcr3(pmap_pdirpa(pmap_kernel(), 0));
992 #endif
993
994 pcb = lwp_getpcb(curlwp);
995 pcb->pcb_cr3 = rcr3();
996 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
997 lcr0(pcb->pcb_cr0);
998
999 cpu_init_idt(ci);
1000 gdt_init_cpu(ci);
1001 #if NLAPIC > 0
1002 lapic_enable();
1003 lapic_set_lvt();
1004 #endif
1005
1006 fpuinit(ci);
1007 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
1008 ltr(ci->ci_tss_sel);
1009
1010 /*
1011 * cpu_init will re-synchronize the TSC, and will detect any abnormal
1012 * drift that would have been caused by the use of MONITOR/MWAIT
1013 * above.
1014 */
1015 cpu_init(ci);
1016 #ifdef XENPVHVM
1017 xen_hvm_init_cpu(ci);
1018 #endif
1019 (*x86_initclock_func)();
1020 cpu_get_tsc_freq(ci);
1021
1022 s = splhigh();
1023 #if NLAPIC > 0
1024 lapic_write_tpri(0);
1025 #endif
1026 x86_enable_intr();
1027 splx(s);
1028 x86_errata();
1029
1030 aprint_debug_dev(ci->ci_dev, "running\n");
1031
1032 kcsan_cpu_init(ci);
1033
1034 idle_loop(NULL);
1035 KASSERT(false);
1036 }
1037 #endif
1038
1039 #if defined(DDB)
1040
1041 #include <ddb/db_output.h>
1042 #include <machine/db_machdep.h>
1043
1044 /*
1045 * Dump CPU information from ddb.
1046 */
1047 void
1048 cpu_debug_dump(void)
1049 {
1050 struct cpu_info *ci;
1051 CPU_INFO_ITERATOR cii;
1052 const char sixtyfour64space[] =
1053 #ifdef _LP64
1054 " "
1055 #endif
1056 "";
1057
1058 db_printf("addr %sdev id flags ipis spl curlwp "
1059 "\n", sixtyfour64space);
1060 for (CPU_INFO_FOREACH(cii, ci)) {
1061 db_printf("%p %s %ld %x %x %d %10p\n",
1062 ci,
1063 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1064 (long)ci->ci_cpuid,
1065 ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1066 ci->ci_curlwp);
1067 }
1068 }
1069 #endif
1070
1071 #ifdef MULTIPROCESSOR
1072 #if NLAPIC > 0
1073 static void
1074 cpu_copy_trampoline(paddr_t pdir_pa)
1075 {
1076 extern uint32_t nox_flag;
1077 extern u_char cpu_spinup_trampoline[];
1078 extern u_char cpu_spinup_trampoline_end[];
1079 vaddr_t mp_trampoline_vaddr;
1080 struct {
1081 uint32_t large;
1082 uint32_t nox;
1083 uint32_t pdir;
1084 } smp_data;
1085 CTASSERT(sizeof(smp_data) == 3 * 4);
1086
1087 smp_data.large = (pmap_largepages != 0);
1088 smp_data.nox = nox_flag;
1089 smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1090
1091 /* Enter the physical address */
1092 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1093 UVM_KMF_VAONLY);
1094 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1095 VM_PROT_READ | VM_PROT_WRITE, 0);
1096 pmap_update(pmap_kernel());
1097
1098 /* Copy boot code */
1099 memcpy((void *)mp_trampoline_vaddr,
1100 cpu_spinup_trampoline,
1101 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1102
1103 /* Copy smp_data at the end */
1104 memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1105 &smp_data, sizeof(smp_data));
1106
1107 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1108 pmap_update(pmap_kernel());
1109 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1110 }
1111 #endif
1112
1113 int
1114 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1115 {
1116 int error;
1117
1118 /*
1119 * Bootstrap code must be addressable in real mode
1120 * and it must be page aligned.
1121 */
1122 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1123
1124 /*
1125 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1126 */
1127
1128 outb(IO_RTC, NVRAM_RESET);
1129 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1130
1131 #if NLAPIC > 0
1132 /*
1133 * "and the warm reset vector (DWORD based at 40:67) to point
1134 * to the AP startup code ..."
1135 */
1136 unsigned short dwordptr[2];
1137 dwordptr[0] = 0;
1138 dwordptr[1] = target >> 4;
1139
1140 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1141 #endif
1142
1143 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1144 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1145 return ENODEV;
1146 }
1147
1148 /*
1149 * ... prior to executing the following sequence:". We'll also add in
1150 * local cache flush, in case the BIOS has left the AP with its cache
1151 * disabled. It may not be able to cope with MP coherency.
1152 */
1153 wbinvd();
1154
1155 if (ci->ci_flags & CPUF_AP) {
1156 error = x86_ipi_init(ci->ci_cpuid);
1157 if (error != 0) {
1158 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1159 __func__);
1160 return error;
1161 }
1162 delay_func(10000);
1163
1164 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1165 if (error != 0) {
1166 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1167 __func__);
1168 return error;
1169 }
1170 delay_func(200);
1171
1172 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1173 if (error != 0) {
1174 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1175 __func__);
1176 return error;
1177 }
1178 delay_func(200);
1179 }
1180
1181 return 0;
1182 }
1183
1184 void
1185 mp_cpu_start_cleanup(struct cpu_info *ci)
1186 {
1187 /*
1188 * Ensure the NVRAM reset byte contains something vaguely sane.
1189 */
1190
1191 outb(IO_RTC, NVRAM_RESET);
1192 outb(IO_RTC+1, NVRAM_RESET_RST);
1193 }
1194 #endif
1195
1196 #ifdef __x86_64__
1197 typedef void (vector)(void);
1198 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1199 #endif
1200
1201 void
1202 cpu_init_msrs(struct cpu_info *ci, bool full)
1203 {
1204 #ifdef __x86_64__
1205 wrmsr(MSR_STAR,
1206 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1207 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1208 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1209 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1210 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1211
1212 #ifdef SVS
1213 if (svs_enabled)
1214 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1215 #endif
1216
1217 if (full) {
1218 wrmsr(MSR_FSBASE, 0);
1219 wrmsr(MSR_GSBASE, (uint64_t)ci);
1220 wrmsr(MSR_KERNELGSBASE, 0);
1221 }
1222 #endif /* __x86_64__ */
1223
1224 if (cpu_feature[2] & CPUID_NOX)
1225 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1226 }
1227
1228 void
1229 cpu_offline_md(void)
1230 {
1231 return;
1232 }
1233
1234 /* XXX joerg restructure and restart CPUs individually */
1235 static bool
1236 cpu_stop(device_t dv)
1237 {
1238 struct cpu_softc *sc = device_private(dv);
1239 struct cpu_info *ci = sc->sc_info;
1240 int err;
1241
1242 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1243
1244 if (CPU_IS_PRIMARY(ci))
1245 return true;
1246
1247 if (ci->ci_data.cpu_idlelwp == NULL)
1248 return true;
1249
1250 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1251
1252 if (sc->sc_wasonline) {
1253 mutex_enter(&cpu_lock);
1254 err = cpu_setstate(ci, false);
1255 mutex_exit(&cpu_lock);
1256
1257 if (err != 0)
1258 return false;
1259 }
1260
1261 return true;
1262 }
1263
1264 static bool
1265 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1266 {
1267 struct cpu_softc *sc = device_private(dv);
1268 struct cpu_info *ci = sc->sc_info;
1269
1270 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1271 return true;
1272 else {
1273 cpufreq_suspend(ci);
1274 }
1275
1276 return cpu_stop(dv);
1277 }
1278
1279 static bool
1280 cpu_resume(device_t dv, const pmf_qual_t *qual)
1281 {
1282 struct cpu_softc *sc = device_private(dv);
1283 struct cpu_info *ci = sc->sc_info;
1284 int err = 0;
1285
1286 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1287 return true;
1288
1289 if (CPU_IS_PRIMARY(ci))
1290 goto out;
1291
1292 if (ci->ci_data.cpu_idlelwp == NULL)
1293 goto out;
1294
1295 if (sc->sc_wasonline) {
1296 mutex_enter(&cpu_lock);
1297 err = cpu_setstate(ci, true);
1298 mutex_exit(&cpu_lock);
1299 }
1300
1301 out:
1302 if (err != 0)
1303 return false;
1304
1305 cpufreq_resume(ci);
1306
1307 return true;
1308 }
1309
1310 static bool
1311 cpu_shutdown(device_t dv, int how)
1312 {
1313 struct cpu_softc *sc = device_private(dv);
1314 struct cpu_info *ci = sc->sc_info;
1315
1316 if ((ci->ci_flags & CPUF_BSP) != 0)
1317 return false;
1318
1319 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1320 return true;
1321
1322 return cpu_stop(dv);
1323 }
1324
1325 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1326 void
1327 cpu_get_tsc_freq(struct cpu_info *ci)
1328 {
1329 uint64_t freq = 0, freq_from_cpuid, t0, t1;
1330 int64_t overhead;
1331
1332 if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
1333 /*
1334 * If it's the first call of this function, try to get TSC
1335 * freq from CPUID by calling cpu_tsc_freq_cpuid().
1336 * The function also set lapic_per_second variable if it's
1337 * known. This is required for Intel's Comet Lake and newer
1338 * processors to set LAPIC timer correctly.
1339 */
1340 if (ci->ci_data.cpu_cc_freq == 0)
1341 freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1342 #if NHPET > 0
1343 if (freq == 0)
1344 freq = hpet_tsc_freq();
1345 #endif
1346 if (freq == 0) {
1347 /*
1348 * Work out the approximate overhead involved below.
1349 * Discard the result of the first go around the
1350 * loop.
1351 */
1352 overhead = 0;
1353 for (int i = 0; i <= 8; i++) {
1354 t0 = cpu_counter();
1355 delay_func(0);
1356 t1 = cpu_counter();
1357 if (i > 0) {
1358 overhead += (t1 - t0);
1359 }
1360 }
1361 overhead >>= 3;
1362
1363 /* Now do the calibration. */
1364 t0 = cpu_counter();
1365 delay_func(100000);
1366 t1 = cpu_counter();
1367 freq = (t1 - t0 - overhead) * 10;
1368 }
1369 if (ci->ci_data.cpu_cc_freq != 0) {
1370 freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1371 if ((freq_from_cpuid != 0)
1372 && (freq != freq_from_cpuid))
1373 aprint_verbose_dev(ci->ci_dev, "TSC freq "
1374 "calibrated %" PRIu64 " Hz\n", freq);
1375 }
1376 } else {
1377 freq = cpu_info_primary.ci_data.cpu_cc_freq;
1378 }
1379
1380 ci->ci_data.cpu_cc_freq = freq;
1381 }
1382
1383 void
1384 x86_cpu_idle_mwait(void)
1385 {
1386 struct cpu_info *ci = curcpu();
1387
1388 KASSERT(ci->ci_ilevel == IPL_NONE);
1389
1390 x86_monitor(&ci->ci_want_resched, 0, 0);
1391 if (__predict_false(ci->ci_want_resched)) {
1392 return;
1393 }
1394 x86_mwait(0, 0);
1395 }
1396
1397 void
1398 x86_cpu_idle_halt(void)
1399 {
1400 struct cpu_info *ci = curcpu();
1401
1402 KASSERT(ci->ci_ilevel == IPL_NONE);
1403
1404 x86_disable_intr();
1405 if (!__predict_false(ci->ci_want_resched)) {
1406 x86_stihlt();
1407 } else {
1408 x86_enable_intr();
1409 }
1410 }
1411
1412 /*
1413 * Loads pmap for the current CPU.
1414 */
1415 void
1416 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1417 {
1418 #ifdef SVS
1419 if (svs_enabled) {
1420 svs_pdir_switch(pmap);
1421 }
1422 #endif
1423
1424 #ifdef PAE
1425 struct cpu_info *ci = curcpu();
1426 bool interrupts_enabled;
1427 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1428 int i;
1429
1430 /*
1431 * disable interrupts to block TLB shootdowns, which can reload cr3.
1432 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1433 * reload cr3.
1434 */
1435 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1436 if (interrupts_enabled)
1437 x86_disable_intr();
1438
1439 for (i = 0 ; i < PDP_SIZE; i++) {
1440 l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1441 }
1442
1443 if (interrupts_enabled)
1444 x86_enable_intr();
1445 tlbflush();
1446 #else
1447 lcr3(pmap_pdirpa(pmap, 0));
1448 #endif
1449 }
1450
1451 /*
1452 * Notify all other cpus to halt.
1453 */
1454
1455 void
1456 cpu_broadcast_halt(void)
1457 {
1458 x86_broadcast_ipi(X86_IPI_HALT);
1459 }
1460
1461 /*
1462 * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1463 * and trigger an AST on the running LWP.
1464 */
1465
1466 void
1467 cpu_kick(struct cpu_info *ci)
1468 {
1469 x86_send_ipi(ci, X86_IPI_AST);
1470 }
1471