Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.201
      1 /*	$NetBSD: cpu.c,v 1.201 2021/08/07 16:19:08 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.201 2021/08/07 16:19:08 thorpej Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 #include "opt_svs.h"
     72 
     73 #include "lapic.h"
     74 #include "ioapic.h"
     75 #include "acpica.h"
     76 #include "hpet.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/cpu.h>
     83 #include <sys/cpufreq.h>
     84 #include <sys/idle.h>
     85 #include <sys/atomic.h>
     86 #include <sys/reboot.h>
     87 #include <sys/csan.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     92 
     93 #include <x86/machdep.h>
     94 #include <machine/cpufunc.h>
     95 #include <machine/cpuvar.h>
     96 #include <machine/pmap.h>
     97 #include <machine/vmparam.h>
     98 #if defined(MULTIPROCESSOR)
     99 #include <machine/mpbiosvar.h>
    100 #endif
    101 #include <machine/mpconfig.h>		/* for mp_verbose */
    102 #include <machine/pcb.h>
    103 #include <machine/specialreg.h>
    104 #include <machine/segments.h>
    105 #include <machine/gdt.h>
    106 #include <machine/mtrr.h>
    107 #include <machine/pio.h>
    108 #include <machine/cpu_counter.h>
    109 
    110 #include <x86/fpu.h>
    111 
    112 #if NACPICA > 0
    113 #include <dev/acpi/acpi_srat.h>
    114 #endif
    115 
    116 #if NLAPIC > 0
    117 #include <machine/apicvar.h>
    118 #include <machine/i82489reg.h>
    119 #include <machine/i82489var.h>
    120 #endif
    121 
    122 #include <dev/ic/mc146818reg.h>
    123 #include <dev/ic/hpetvar.h>
    124 #include <i386/isa/nvram.h>
    125 #include <dev/isa/isareg.h>
    126 
    127 #include "tsc.h"
    128 
    129 #ifndef XENPV
    130 #include "hyperv.h"
    131 #if NHYPERV > 0
    132 #include <x86/x86/hypervvar.h>
    133 #endif
    134 #endif
    135 
    136 #ifdef XEN
    137 #include <xen/hypervisor.h>
    138 #endif
    139 
    140 static int	cpu_match(device_t, cfdata_t, void *);
    141 static void	cpu_attach(device_t, device_t, void *);
    142 static void	cpu_defer(device_t);
    143 static int	cpu_rescan(device_t, const char *, const int *);
    144 static void	cpu_childdetached(device_t, device_t);
    145 static bool	cpu_stop(device_t);
    146 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    147 static bool	cpu_resume(device_t, const pmf_qual_t *);
    148 static bool	cpu_shutdown(device_t, int);
    149 
    150 struct cpu_softc {
    151 	device_t sc_dev;		/* device tree glue */
    152 	struct cpu_info *sc_info;	/* pointer to CPU info */
    153 	bool sc_wasonline;
    154 };
    155 
    156 #ifdef MULTIPROCESSOR
    157 int mp_cpu_start(struct cpu_info *, paddr_t);
    158 void mp_cpu_start_cleanup(struct cpu_info *);
    159 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    160 					    mp_cpu_start_cleanup };
    161 #endif
    162 
    163 
    164 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    165     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    166 
    167 /*
    168  * Statically-allocated CPU info for the primary CPU (or the only
    169  * CPU, on uniprocessors).  The CPU info list is initialized to
    170  * point at it.
    171  */
    172 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    173 	.ci_dev = 0,
    174 	.ci_self = &cpu_info_primary,
    175 	.ci_idepth = -1,
    176 	.ci_curlwp = &lwp0,
    177 	.ci_curldt = -1,
    178 };
    179 
    180 struct cpu_info *cpu_info_list = &cpu_info_primary;
    181 
    182 #ifdef i386
    183 void		cpu_set_tss_gates(struct cpu_info *);
    184 #endif
    185 
    186 static void	cpu_init_idle_lwp(struct cpu_info *);
    187 
    188 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    189 			/* [0] basic features cpuid.1:%edx
    190 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    191 			 * [2] extended features cpuid:80000001:%edx
    192 			 * [3] extended features cpuid:80000001:%ecx
    193 			 * [4] VIA padlock features
    194 			 * [5] structured extended features cpuid.7:%ebx
    195 			 * [6] structured extended features cpuid.7:%ecx
    196 			 */
    197 
    198 #ifdef MULTIPROCESSOR
    199 bool x86_mp_online;
    200 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    201 #endif
    202 #if NLAPIC > 0
    203 static vaddr_t cmos_data_mapping;
    204 #endif
    205 struct cpu_info *cpu_starting;
    206 
    207 #ifdef MULTIPROCESSOR
    208 void		cpu_hatch(void *);
    209 static void	cpu_boot_secondary(struct cpu_info *ci);
    210 static void	cpu_start_secondary(struct cpu_info *ci);
    211 #if NLAPIC > 0
    212 static void	cpu_copy_trampoline(paddr_t);
    213 #endif
    214 #endif /* MULTIPROCESSOR */
    215 
    216 /*
    217  * Runs once per boot once multiprocessor goo has been detected and
    218  * the local APIC on the boot processor has been mapped.
    219  *
    220  * Called from lapic_boot_init() (from mpbios_scan()).
    221  */
    222 #if NLAPIC > 0
    223 void
    224 cpu_init_first(void)
    225 {
    226 
    227 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    228 
    229 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    230 	if (cmos_data_mapping == 0)
    231 		panic("No KVA for page 0");
    232 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    233 	pmap_update(pmap_kernel());
    234 }
    235 #endif
    236 
    237 static int
    238 cpu_match(device_t parent, cfdata_t match, void *aux)
    239 {
    240 
    241 	return 1;
    242 }
    243 
    244 #ifdef __HAVE_PCPU_AREA
    245 void
    246 cpu_pcpuarea_init(struct cpu_info *ci)
    247 {
    248 	struct vm_page *pg;
    249 	size_t i, npages;
    250 	vaddr_t base, va;
    251 	paddr_t pa;
    252 
    253 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    254 
    255 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    256 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    257 
    258 	for (i = 0; i < npages; i++) {
    259 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    260 		if (pg == NULL) {
    261 			panic("failed to allocate pcpu PA");
    262 		}
    263 
    264 		va = base + i * PAGE_SIZE;
    265 		pa = VM_PAGE_TO_PHYS(pg);
    266 
    267 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    268 	}
    269 
    270 	pmap_update(pmap_kernel());
    271 }
    272 #endif
    273 
    274 static void
    275 cpu_vm_init(struct cpu_info *ci)
    276 {
    277 	unsigned int ncolors = 2;
    278 
    279 	/*
    280 	 * XXX: for AP's the cache info has not been initialized yet
    281 	 * but that does not matter because uvm only pays attention at
    282 	 * the maximum only. We should fix it once cpus have different
    283 	 * cache sizes.
    284 	 */
    285 	for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    286 		struct x86_cache_info *cai;
    287 		unsigned int tcolors;
    288 
    289 		cai = &ci->ci_cinfo[i];
    290 
    291 		tcolors = atop(cai->cai_totalsize);
    292 		switch (cai->cai_associativity) {
    293 		case 0xff:
    294 			tcolors = 1; /* fully associative */
    295 			break;
    296 		case 0:
    297 		case 1:
    298 			break;
    299 		default:
    300 			tcolors /= cai->cai_associativity;
    301 		}
    302 		if (tcolors <= ncolors)
    303 			continue;
    304 		ncolors = tcolors;
    305 	}
    306 
    307 	/*
    308 	 * If the desired number of colors is not a power of
    309 	 * two, it won't be good.  Find the greatest power of
    310 	 * two which is an even divisor of the number of colors,
    311 	 * to preserve even coloring of pages.
    312 	 */
    313 	if (ncolors & (ncolors - 1) ) {
    314 		unsigned int try, picked = 1;
    315 		for (try = 1; try < ncolors; try *= 2) {
    316 			if (ncolors % try == 0) picked = try;
    317 		}
    318 		if (picked == 1) {
    319 			panic("desired number of cache colors %u is "
    320 			" > 1, but not even!", ncolors);
    321 		}
    322 		ncolors = picked;
    323 	}
    324 
    325 	/*
    326 	 * Knowing the size of the largest cache on this CPU, potentially
    327 	 * re-color our pages.
    328 	 */
    329 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    330 	uvm_page_recolor(ncolors);
    331 
    332 	pmap_tlb_cpu_init(ci);
    333 #ifndef __HAVE_DIRECT_MAP
    334 	pmap_vpage_cpu_init(ci);
    335 #endif
    336 }
    337 
    338 static void
    339 cpu_attach(device_t parent, device_t self, void *aux)
    340 {
    341 	struct cpu_softc *sc = device_private(self);
    342 	struct cpu_attach_args *caa = aux;
    343 	struct cpu_info *ci;
    344 	uintptr_t ptr;
    345 #if NLAPIC > 0
    346 	int cpunum = caa->cpu_number;
    347 #endif
    348 	static bool again;
    349 
    350 	sc->sc_dev = self;
    351 
    352 	if (ncpu > maxcpus) {
    353 #ifndef _LP64
    354 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    355 #else
    356 		aprint_error(": too many CPUs\n");
    357 #endif
    358 		return;
    359 	}
    360 
    361 	/*
    362 	 * If we're an Application Processor, allocate a cpu_info
    363 	 * structure, otherwise use the primary's.
    364 	 */
    365 	if (caa->cpu_role == CPU_ROLE_AP) {
    366 		if ((boothowto & RB_MD1) != 0) {
    367 			aprint_error(": multiprocessor boot disabled\n");
    368 			if (!pmf_device_register(self, NULL, NULL))
    369 				aprint_error_dev(self,
    370 				    "couldn't establish power handler\n");
    371 			return;
    372 		}
    373 		aprint_naive(": Application Processor\n");
    374 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    375 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    376 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    377 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    378 		ci->ci_curldt = -1;
    379 	} else {
    380 		aprint_naive(": %s Processor\n",
    381 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    382 		ci = &cpu_info_primary;
    383 #if NLAPIC > 0
    384 		if (cpunum != lapic_cpu_number()) {
    385 			/* XXX should be done earlier. */
    386 			uint32_t reg;
    387 			aprint_verbose("\n");
    388 			aprint_verbose_dev(self, "running CPU at apic %d"
    389 			    " instead of at expected %d", lapic_cpu_number(),
    390 			    cpunum);
    391 			reg = lapic_readreg(LAPIC_ID);
    392 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    393 			    (cpunum << LAPIC_ID_SHIFT));
    394 		}
    395 		if (cpunum != lapic_cpu_number()) {
    396 			aprint_error_dev(self, "unable to reset apic id\n");
    397 		}
    398 #endif
    399 	}
    400 
    401 	ci->ci_self = ci;
    402 	sc->sc_info = ci;
    403 	ci->ci_dev = self;
    404 	ci->ci_acpiid = caa->cpu_id;
    405 	ci->ci_cpuid = caa->cpu_number;
    406 	ci->ci_func = caa->cpu_func;
    407 	ci->ci_kfpu_spl = -1;
    408 	aprint_normal("\n");
    409 
    410 	/* Must be before mi_cpu_attach(). */
    411 	cpu_vm_init(ci);
    412 
    413 	if (caa->cpu_role == CPU_ROLE_AP) {
    414 		int error;
    415 
    416 		error = mi_cpu_attach(ci);
    417 		if (error != 0) {
    418 			aprint_error_dev(self,
    419 			    "mi_cpu_attach failed with %d\n", error);
    420 			return;
    421 		}
    422 #ifdef __HAVE_PCPU_AREA
    423 		cpu_pcpuarea_init(ci);
    424 #endif
    425 		cpu_init_tss(ci);
    426 	} else {
    427 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    428 #if NACPICA > 0
    429 		/* Parse out NUMA info for cpu_identify(). */
    430 		acpisrat_init();
    431 #endif
    432 	}
    433 
    434 #ifdef SVS
    435 	cpu_svs_init(ci);
    436 #endif
    437 
    438 	pmap_reference(pmap_kernel());
    439 	ci->ci_pmap = pmap_kernel();
    440 	ci->ci_tlbstate = TLBSTATE_STALE;
    441 
    442 	/*
    443 	 * Boot processor may not be attached first, but the below
    444 	 * must be done to allow booting other processors.
    445 	 */
    446 	if (!again) {
    447 		/* Make sure DELAY() (likely i8254_delay()) is initialized. */
    448 		DELAY(1);
    449 
    450 		/*
    451 		 * Basic init.  Compute an approximate frequency for the TSC
    452 		 * using the i8254.  If there's a HPET we'll redo it later.
    453 		 */
    454 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    455 		cpu_intr_init(ci);
    456 		tsc_setfunc(ci);
    457 		cpu_get_tsc_freq(ci);
    458 		cpu_init(ci);
    459 #ifdef i386
    460 		cpu_set_tss_gates(ci);
    461 #endif
    462 		pmap_cpu_init_late(ci);
    463 #if NLAPIC > 0
    464 		if (caa->cpu_role != CPU_ROLE_SP) {
    465 			/* Enable lapic. */
    466 			lapic_enable();
    467 			lapic_set_lvt();
    468 			if (!vm_guest_is_xenpvh_or_pvhvm())
    469 				lapic_calibrate_timer(false);
    470 		}
    471 #endif
    472 		kcsan_cpu_init(ci);
    473 		again = true;
    474 	}
    475 
    476 	/* further PCB init done later. */
    477 
    478 	switch (caa->cpu_role) {
    479 	case CPU_ROLE_SP:
    480 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    481 		cpu_identify(ci);
    482 		x86_errata();
    483 		x86_cpu_idle_init();
    484 #ifdef XENPVHVM
    485 		xen_hvm_init_cpu(ci);
    486 #endif
    487 		break;
    488 
    489 	case CPU_ROLE_BP:
    490 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    491 		cpu_identify(ci);
    492 		x86_errata();
    493 		x86_cpu_idle_init();
    494 #ifdef XENPVHVM
    495 		xen_hvm_init_cpu(ci);
    496 #endif
    497 		break;
    498 
    499 #ifdef MULTIPROCESSOR
    500 	case CPU_ROLE_AP:
    501 		/*
    502 		 * report on an AP
    503 		 */
    504 		cpu_intr_init(ci);
    505 		idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
    506 		gdt_alloc_cpu(ci);
    507 #ifdef i386
    508 		cpu_set_tss_gates(ci);
    509 #endif
    510 		pmap_cpu_init_late(ci);
    511 		cpu_start_secondary(ci);
    512 		if (ci->ci_flags & CPUF_PRESENT) {
    513 			struct cpu_info *tmp;
    514 
    515 			cpu_identify(ci);
    516 			tmp = cpu_info_list;
    517 			while (tmp->ci_next)
    518 				tmp = tmp->ci_next;
    519 
    520 			tmp->ci_next = ci;
    521 		}
    522 		break;
    523 #endif
    524 
    525 	default:
    526 		panic("unknown processor type??\n");
    527 	}
    528 
    529 	pat_init(ci);
    530 
    531 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    532 		aprint_error_dev(self, "couldn't establish power handler\n");
    533 
    534 #ifdef MULTIPROCESSOR
    535 	if (mp_verbose) {
    536 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    537 		struct pcb *pcb = lwp_getpcb(l);
    538 
    539 		aprint_verbose_dev(self,
    540 		    "idle lwp at %p, idle sp at %p\n",
    541 		    l,
    542 #ifdef i386
    543 		    (void *)pcb->pcb_esp
    544 #else
    545 		    (void *)pcb->pcb_rsp
    546 #endif
    547 		);
    548 	}
    549 #endif
    550 
    551 	/*
    552 	 * Postpone the "cpufeaturebus" scan.
    553 	 * It is safe to scan the pseudo-bus
    554 	 * only after all CPUs have attached.
    555 	 */
    556 	(void)config_defer(self, cpu_defer);
    557 }
    558 
    559 static void
    560 cpu_defer(device_t self)
    561 {
    562 	cpu_rescan(self, NULL, NULL);
    563 }
    564 
    565 static int
    566 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    567 {
    568 	struct cpu_softc *sc = device_private(self);
    569 	struct cpufeature_attach_args cfaa;
    570 	struct cpu_info *ci = sc->sc_info;
    571 
    572 	/*
    573 	 * If we booted with RB_MD1 to disable multiprocessor, the
    574 	 * auto-configuration data still contains the additional
    575 	 * CPUs.   But their initialization was mostly bypassed
    576 	 * during attach, so we have to make sure we don't look at
    577 	 * their featurebus info, since it wasn't retrieved.
    578 	 */
    579 	if (ci == NULL)
    580 		return 0;
    581 
    582 	memset(&cfaa, 0, sizeof(cfaa));
    583 	cfaa.ci = ci;
    584 
    585 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    586 		if (ci->ci_frequency == NULL) {
    587 			cfaa.name = "frequency";
    588 			ci->ci_frequency =
    589 			    config_found(self, &cfaa, NULL,
    590 					 CFARGS(.iattr = "cpufeaturebus"));
    591 		}
    592 
    593 		if (ci->ci_padlock == NULL) {
    594 			cfaa.name = "padlock";
    595 			ci->ci_padlock =
    596 			    config_found(self, &cfaa, NULL,
    597 					 CFARGS(.iattr = "cpufeaturebus"));
    598 		}
    599 
    600 		if (ci->ci_temperature == NULL) {
    601 			cfaa.name = "temperature";
    602 			ci->ci_temperature =
    603 			    config_found(self, &cfaa, NULL,
    604 					 CFARGS(.iattr = "cpufeaturebus"));
    605 		}
    606 
    607 		if (ci->ci_vm == NULL) {
    608 			cfaa.name = "vm";
    609 			ci->ci_vm =
    610 			    config_found(self, &cfaa, NULL,
    611 					 CFARGS(.iattr = "cpufeaturebus"));
    612 		}
    613 	}
    614 
    615 	return 0;
    616 }
    617 
    618 static void
    619 cpu_childdetached(device_t self, device_t child)
    620 {
    621 	struct cpu_softc *sc = device_private(self);
    622 	struct cpu_info *ci = sc->sc_info;
    623 
    624 	if (ci->ci_frequency == child)
    625 		ci->ci_frequency = NULL;
    626 
    627 	if (ci->ci_padlock == child)
    628 		ci->ci_padlock = NULL;
    629 
    630 	if (ci->ci_temperature == child)
    631 		ci->ci_temperature = NULL;
    632 
    633 	if (ci->ci_vm == child)
    634 		ci->ci_vm = NULL;
    635 }
    636 
    637 /*
    638  * Initialize the processor appropriately.
    639  */
    640 
    641 void
    642 cpu_init(struct cpu_info *ci)
    643 {
    644 	extern int x86_fpu_save;
    645 	uint32_t cr4 = 0;
    646 
    647 	lcr0(rcr0() | CR0_WP);
    648 
    649 	/* If global TLB caching is supported, enable it */
    650 	if (cpu_feature[0] & CPUID_PGE)
    651 		cr4 |= CR4_PGE;
    652 
    653 	/*
    654 	 * If we have FXSAVE/FXRESTOR, use them.
    655 	 */
    656 	if (cpu_feature[0] & CPUID_FXSR) {
    657 		cr4 |= CR4_OSFXSR;
    658 
    659 		/*
    660 		 * If we have SSE/SSE2, enable XMM exceptions.
    661 		 */
    662 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    663 			cr4 |= CR4_OSXMMEXCPT;
    664 	}
    665 
    666 	/* If xsave is supported, enable it */
    667 	if (cpu_feature[1] & CPUID2_XSAVE)
    668 		cr4 |= CR4_OSXSAVE;
    669 
    670 	/* If SMEP is supported, enable it */
    671 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    672 		cr4 |= CR4_SMEP;
    673 
    674 	/* If SMAP is supported, enable it */
    675 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    676 		cr4 |= CR4_SMAP;
    677 
    678 #ifdef SVS
    679 	/* If PCID is supported, enable it */
    680 	if (svs_pcid)
    681 		cr4 |= CR4_PCIDE;
    682 #endif
    683 
    684 	if (cr4) {
    685 		cr4 |= rcr4();
    686 		lcr4(cr4);
    687 	}
    688 
    689 	/*
    690 	 * Changing CR4 register may change cpuid values. For example, setting
    691 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    692 	 * ci_feat_val[1], so update it.
    693 	 * XXX Other than ci_feat_val[1] might be changed.
    694 	 */
    695 	if (cpuid_level >= 1) {
    696 		u_int descs[4];
    697 
    698 		x86_cpuid(1, descs);
    699 		ci->ci_feat_val[1] = descs[2];
    700 	}
    701 
    702 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    703 		fpuinit_mxcsr_mask();
    704 	}
    705 
    706 	/* If xsave is enabled, enable all fpu features */
    707 	if (cr4 & CR4_OSXSAVE)
    708 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    709 
    710 #ifdef MTRR
    711 	/*
    712 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    713 	 */
    714 	if (cpu_feature[0] & CPUID_MTRR) {
    715 		if ((ci->ci_flags & CPUF_AP) == 0)
    716 			i686_mtrr_init_first();
    717 		mtrr_init_cpu(ci);
    718 	}
    719 
    720 #ifdef i386
    721 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    722 		/*
    723 		 * Must be a K6-2 Step >= 7 or a K6-III.
    724 		 */
    725 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    726 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    727 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    728 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    729 				mtrr_funcs = &k6_mtrr_funcs;
    730 				k6_mtrr_init_first();
    731 				mtrr_init_cpu(ci);
    732 			}
    733 		}
    734 	}
    735 #endif	/* i386 */
    736 #endif /* MTRR */
    737 
    738 	if (ci != &cpu_info_primary) {
    739 		/* Synchronize TSC */
    740 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    741 		tsc_sync_ap(ci);
    742 	} else {
    743 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    744 	}
    745 }
    746 
    747 #ifdef MULTIPROCESSOR
    748 void
    749 cpu_boot_secondary_processors(void)
    750 {
    751 	struct cpu_info *ci;
    752 	kcpuset_t *cpus;
    753 	u_long i;
    754 
    755 	/* Now that we know the number of CPUs, patch the text segment. */
    756 	x86_patch(false);
    757 
    758 #if NACPICA > 0
    759 	/* Finished with NUMA info for now. */
    760 	acpisrat_exit();
    761 #endif
    762 
    763 	kcpuset_create(&cpus, true);
    764 	kcpuset_set(cpus, cpu_index(curcpu()));
    765 	for (i = 0; i < maxcpus; i++) {
    766 		ci = cpu_lookup(i);
    767 		if (ci == NULL)
    768 			continue;
    769 		if (ci->ci_data.cpu_idlelwp == NULL)
    770 			continue;
    771 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    772 			continue;
    773 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    774 			continue;
    775 		cpu_boot_secondary(ci);
    776 		kcpuset_set(cpus, cpu_index(ci));
    777 	}
    778 	while (!kcpuset_match(cpus, kcpuset_running))
    779 		;
    780 	kcpuset_destroy(cpus);
    781 
    782 	x86_mp_online = true;
    783 
    784 	/* Now that we know about the TSC, attach the timecounter. */
    785 	tsc_tc_init();
    786 }
    787 #endif
    788 
    789 static void
    790 cpu_init_idle_lwp(struct cpu_info *ci)
    791 {
    792 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    793 	struct pcb *pcb = lwp_getpcb(l);
    794 
    795 	pcb->pcb_cr0 = rcr0();
    796 }
    797 
    798 void
    799 cpu_init_idle_lwps(void)
    800 {
    801 	struct cpu_info *ci;
    802 	u_long i;
    803 
    804 	for (i = 0; i < maxcpus; i++) {
    805 		ci = cpu_lookup(i);
    806 		if (ci == NULL)
    807 			continue;
    808 		if (ci->ci_data.cpu_idlelwp == NULL)
    809 			continue;
    810 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    811 			continue;
    812 		cpu_init_idle_lwp(ci);
    813 	}
    814 }
    815 
    816 #ifdef MULTIPROCESSOR
    817 void
    818 cpu_start_secondary(struct cpu_info *ci)
    819 {
    820 	u_long psl;
    821 	int i;
    822 
    823 #if NLAPIC > 0
    824 	paddr_t mp_pdirpa;
    825 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    826 	cpu_copy_trampoline(mp_pdirpa);
    827 #endif
    828 
    829 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    830 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    831 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    832 		return;
    833 	}
    834 
    835 	/*
    836 	 * Wait for it to become ready.   Setting cpu_starting opens the
    837 	 * initial gate and allows the AP to start soft initialization.
    838 	 */
    839 	KASSERT(cpu_starting == NULL);
    840 	cpu_starting = ci;
    841 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    842 		delay_func(10);
    843 	}
    844 
    845 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    846 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    847 #if defined(MPDEBUG) && defined(DDB)
    848 		printf("dropping into debugger; continue from here to resume boot\n");
    849 		Debugger();
    850 #endif
    851 	} else {
    852 		/*
    853 		 * Synchronize time stamp counters. Invalidate cache and do
    854 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    855 		 * Disable interrupts to try and rule out any external
    856 		 * interference.
    857 		 */
    858 		psl = x86_read_psl();
    859 		x86_disable_intr();
    860 		tsc_sync_bp(ci);
    861 		x86_write_psl(psl);
    862 	}
    863 
    864 	CPU_START_CLEANUP(ci);
    865 	cpu_starting = NULL;
    866 }
    867 
    868 void
    869 cpu_boot_secondary(struct cpu_info *ci)
    870 {
    871 	int64_t drift;
    872 	u_long psl;
    873 	int i;
    874 
    875 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    876 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    877 		delay_func(10);
    878 	}
    879 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    880 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    881 #if defined(MPDEBUG) && defined(DDB)
    882 		printf("dropping into debugger; continue from here to resume boot\n");
    883 		Debugger();
    884 #endif
    885 	} else {
    886 		/* Synchronize TSC again, check for drift. */
    887 		drift = ci->ci_data.cpu_cc_skew;
    888 		psl = x86_read_psl();
    889 		x86_disable_intr();
    890 		tsc_sync_bp(ci);
    891 		x86_write_psl(psl);
    892 		drift -= ci->ci_data.cpu_cc_skew;
    893 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    894 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    895 		tsc_sync_drift(drift);
    896 	}
    897 }
    898 
    899 /*
    900  * The CPU ends up here when it's ready to run.
    901  * This is called from code in mptramp.s; at this point, we are running
    902  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    903  * this processor will enter the idle loop and start looking for work.
    904  */
    905 void
    906 cpu_hatch(void *v)
    907 {
    908 	struct cpu_info *ci = (struct cpu_info *)v;
    909 	struct pcb *pcb;
    910 	int s, i;
    911 
    912 	/* ------------------------------------------------------------- */
    913 
    914 	/*
    915 	 * This section of code must be compiled with SSP disabled, to
    916 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    917 	 */
    918 
    919 	cpu_init_msrs(ci, true);
    920 	cpu_probe(ci);
    921 	cpu_speculation_init(ci);
    922 #if NHYPERV > 0
    923 	hyperv_init_cpu(ci);
    924 #endif
    925 
    926 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    927 	/* cpu_get_tsc_freq(ci); */
    928 
    929 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    930 
    931 	/*
    932 	 * Synchronize the TSC for the first time. Note that interrupts are
    933 	 * off at this point.
    934 	 */
    935 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    936 	tsc_sync_ap(ci);
    937 
    938 	/* ------------------------------------------------------------- */
    939 
    940 	/*
    941 	 * Wait to be brought online.
    942 	 *
    943 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    944 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    945 	 * this causes the TSC to drift. We want this to happen, so that we
    946 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    947 	 * TSCs. That's just for safety; by definition such drifts should
    948 	 * never occur with invariant TSCs.
    949 	 *
    950 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    951 	 * interrupts off.
    952 	 */
    953 	while ((ci->ci_flags & CPUF_GO) == 0) {
    954 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    955 			x86_monitor(&ci->ci_flags, 0, 0);
    956 			if ((ci->ci_flags & CPUF_GO) != 0) {
    957 				continue;
    958 			}
    959 			x86_mwait(0, 0);
    960 		} else {
    961 	/*
    962 	 * XXX The loop repetition count could be a lot higher, but
    963 	 * XXX currently qemu emulator takes a _very_long_time_ to
    964 	 * XXX execute the pause instruction.  So for now, use a low
    965 	 * XXX value to allow the cpu to hatch before timing out.
    966 	 */
    967 			for (i = 50; i != 0; i--) {
    968 				x86_pause();
    969 			}
    970 		}
    971 	}
    972 
    973 	/* Because the text may have been patched in x86_patch(). */
    974 	wbinvd();
    975 	x86_flush();
    976 	tlbflushg();
    977 
    978 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    979 
    980 #ifdef PAE
    981 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    982 	for (i = 0 ; i < PDP_SIZE; i++) {
    983 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
    984 	}
    985 	lcr3(ci->ci_pae_l3_pdirpa);
    986 #else
    987 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    988 #endif
    989 
    990 	pcb = lwp_getpcb(curlwp);
    991 	pcb->pcb_cr3 = rcr3();
    992 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    993 	lcr0(pcb->pcb_cr0);
    994 
    995 	cpu_init_idt(ci);
    996 	gdt_init_cpu(ci);
    997 #if NLAPIC > 0
    998 	lapic_enable();
    999 	lapic_set_lvt();
   1000 #endif
   1001 
   1002 	fpuinit(ci);
   1003 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
   1004 	ltr(ci->ci_tss_sel);
   1005 
   1006 	/*
   1007 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
   1008 	 * drift that would have been caused by the use of MONITOR/MWAIT
   1009 	 * above.
   1010 	 */
   1011 	cpu_init(ci);
   1012 #ifdef XENPVHVM
   1013 	xen_hvm_init_cpu(ci);
   1014 #endif
   1015 	(*x86_initclock_func)();
   1016 	cpu_get_tsc_freq(ci);
   1017 
   1018 	s = splhigh();
   1019 #if NLAPIC > 0
   1020 	lapic_write_tpri(0);
   1021 #endif
   1022 	x86_enable_intr();
   1023 	splx(s);
   1024 	x86_errata();
   1025 
   1026 	aprint_debug_dev(ci->ci_dev, "running\n");
   1027 
   1028 	kcsan_cpu_init(ci);
   1029 
   1030 	idle_loop(NULL);
   1031 	KASSERT(false);
   1032 }
   1033 #endif
   1034 
   1035 #if defined(DDB)
   1036 
   1037 #include <ddb/db_output.h>
   1038 #include <machine/db_machdep.h>
   1039 
   1040 /*
   1041  * Dump CPU information from ddb.
   1042  */
   1043 void
   1044 cpu_debug_dump(void)
   1045 {
   1046 	struct cpu_info *ci;
   1047 	CPU_INFO_ITERATOR cii;
   1048 	const char sixtyfour64space[] =
   1049 #ifdef _LP64
   1050 			   "        "
   1051 #endif
   1052 			   "";
   1053 
   1054 	db_printf("addr		%sdev	id	flags	ipis	spl curlwp 		"
   1055 		  "\n", sixtyfour64space);
   1056 	for (CPU_INFO_FOREACH(cii, ci)) {
   1057 		db_printf("%p	%s	%ld	%x	%x	%d  %10p\n",
   1058 		    ci,
   1059 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
   1060 		    (long)ci->ci_cpuid,
   1061 		    ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
   1062 		    ci->ci_curlwp);
   1063 	}
   1064 }
   1065 #endif
   1066 
   1067 #ifdef MULTIPROCESSOR
   1068 #if NLAPIC > 0
   1069 static void
   1070 cpu_copy_trampoline(paddr_t pdir_pa)
   1071 {
   1072 	extern uint32_t nox_flag;
   1073 	extern u_char cpu_spinup_trampoline[];
   1074 	extern u_char cpu_spinup_trampoline_end[];
   1075 	vaddr_t mp_trampoline_vaddr;
   1076 	struct {
   1077 		uint32_t large;
   1078 		uint32_t nox;
   1079 		uint32_t pdir;
   1080 	} smp_data;
   1081 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1082 
   1083 	smp_data.large = (pmap_largepages != 0);
   1084 	smp_data.nox = nox_flag;
   1085 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1086 
   1087 	/* Enter the physical address */
   1088 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1089 	    UVM_KMF_VAONLY);
   1090 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1091 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1092 	pmap_update(pmap_kernel());
   1093 
   1094 	/* Copy boot code */
   1095 	memcpy((void *)mp_trampoline_vaddr,
   1096 	    cpu_spinup_trampoline,
   1097 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1098 
   1099 	/* Copy smp_data at the end */
   1100 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1101 	    &smp_data, sizeof(smp_data));
   1102 
   1103 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1104 	pmap_update(pmap_kernel());
   1105 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1106 }
   1107 #endif
   1108 
   1109 int
   1110 mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1111 {
   1112 	int error;
   1113 
   1114 	/*
   1115 	 * Bootstrap code must be addressable in real mode
   1116 	 * and it must be page aligned.
   1117 	 */
   1118 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1119 
   1120 	/*
   1121 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1122 	 */
   1123 
   1124 	outb(IO_RTC, NVRAM_RESET);
   1125 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1126 
   1127 #if NLAPIC > 0
   1128 	/*
   1129 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1130 	 * to the AP startup code ..."
   1131 	 */
   1132 	unsigned short dwordptr[2];
   1133 	dwordptr[0] = 0;
   1134 	dwordptr[1] = target >> 4;
   1135 
   1136 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1137 #endif
   1138 
   1139 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1140 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1141 		return ENODEV;
   1142 	}
   1143 
   1144 	/*
   1145 	 * ... prior to executing the following sequence:".  We'll also add in
   1146 	 * local cache flush, in case the BIOS has left the AP with its cache
   1147 	 * disabled.  It may not be able to cope with MP coherency.
   1148 	 */
   1149 	wbinvd();
   1150 
   1151 	if (ci->ci_flags & CPUF_AP) {
   1152 		error = x86_ipi_init(ci->ci_cpuid);
   1153 		if (error != 0) {
   1154 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1155 			    __func__);
   1156 			return error;
   1157 		}
   1158 		delay_func(10000);
   1159 
   1160 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1161 		if (error != 0) {
   1162 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1163 			    __func__);
   1164 			return error;
   1165 		}
   1166 		delay_func(200);
   1167 
   1168 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1169 		if (error != 0) {
   1170 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1171 			    __func__);
   1172 			return error;
   1173 		}
   1174 		delay_func(200);
   1175 	}
   1176 
   1177 	return 0;
   1178 }
   1179 
   1180 void
   1181 mp_cpu_start_cleanup(struct cpu_info *ci)
   1182 {
   1183 	/*
   1184 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1185 	 */
   1186 
   1187 	outb(IO_RTC, NVRAM_RESET);
   1188 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1189 }
   1190 #endif
   1191 
   1192 #ifdef __x86_64__
   1193 typedef void (vector)(void);
   1194 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1195 #endif
   1196 
   1197 void
   1198 cpu_init_msrs(struct cpu_info *ci, bool full)
   1199 {
   1200 #ifdef __x86_64__
   1201 	wrmsr(MSR_STAR,
   1202 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1203 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1204 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1205 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1206 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1207 
   1208 #ifdef SVS
   1209 	if (svs_enabled)
   1210 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1211 #endif
   1212 
   1213 	if (full) {
   1214 		wrmsr(MSR_FSBASE, 0);
   1215 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1216 		wrmsr(MSR_KERNELGSBASE, 0);
   1217 	}
   1218 #endif	/* __x86_64__ */
   1219 
   1220 	if (cpu_feature[2] & CPUID_NOX)
   1221 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1222 }
   1223 
   1224 void
   1225 cpu_offline_md(void)
   1226 {
   1227 	return;
   1228 }
   1229 
   1230 /* XXX joerg restructure and restart CPUs individually */
   1231 static bool
   1232 cpu_stop(device_t dv)
   1233 {
   1234 	struct cpu_softc *sc = device_private(dv);
   1235 	struct cpu_info *ci = sc->sc_info;
   1236 	int err;
   1237 
   1238 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1239 
   1240 	if (CPU_IS_PRIMARY(ci))
   1241 		return true;
   1242 
   1243 	if (ci->ci_data.cpu_idlelwp == NULL)
   1244 		return true;
   1245 
   1246 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1247 
   1248 	if (sc->sc_wasonline) {
   1249 		mutex_enter(&cpu_lock);
   1250 		err = cpu_setstate(ci, false);
   1251 		mutex_exit(&cpu_lock);
   1252 
   1253 		if (err != 0)
   1254 			return false;
   1255 	}
   1256 
   1257 	return true;
   1258 }
   1259 
   1260 static bool
   1261 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1262 {
   1263 	struct cpu_softc *sc = device_private(dv);
   1264 	struct cpu_info *ci = sc->sc_info;
   1265 
   1266 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1267 		return true;
   1268 	else {
   1269 		cpufreq_suspend(ci);
   1270 	}
   1271 
   1272 	return cpu_stop(dv);
   1273 }
   1274 
   1275 static bool
   1276 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1277 {
   1278 	struct cpu_softc *sc = device_private(dv);
   1279 	struct cpu_info *ci = sc->sc_info;
   1280 	int err = 0;
   1281 
   1282 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1283 		return true;
   1284 
   1285 	if (CPU_IS_PRIMARY(ci))
   1286 		goto out;
   1287 
   1288 	if (ci->ci_data.cpu_idlelwp == NULL)
   1289 		goto out;
   1290 
   1291 	if (sc->sc_wasonline) {
   1292 		mutex_enter(&cpu_lock);
   1293 		err = cpu_setstate(ci, true);
   1294 		mutex_exit(&cpu_lock);
   1295 	}
   1296 
   1297 out:
   1298 	if (err != 0)
   1299 		return false;
   1300 
   1301 	cpufreq_resume(ci);
   1302 
   1303 	return true;
   1304 }
   1305 
   1306 static bool
   1307 cpu_shutdown(device_t dv, int how)
   1308 {
   1309 	struct cpu_softc *sc = device_private(dv);
   1310 	struct cpu_info *ci = sc->sc_info;
   1311 
   1312 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1313 		return false;
   1314 
   1315 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1316 		return true;
   1317 
   1318 	return cpu_stop(dv);
   1319 }
   1320 
   1321 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
   1322 void
   1323 cpu_get_tsc_freq(struct cpu_info *ci)
   1324 {
   1325 	uint64_t freq = 0, freq_from_cpuid, t0, t1;
   1326 	int64_t overhead;
   1327 
   1328 	if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
   1329 		/*
   1330 		 * If it's the first call of this function, try to get TSC
   1331 		 * freq from CPUID by calling cpu_tsc_freq_cpuid().
   1332 		 * The function also set lapic_per_second variable if it's
   1333 		 * known. This is required for Intel's Comet Lake and newer
   1334 		 * processors to set LAPIC timer correctly.
   1335 		 */
   1336 		if (ci->ci_data.cpu_cc_freq == 0)
   1337 			freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1338 #if NHPET > 0
   1339 		if (freq == 0)
   1340 			freq = hpet_tsc_freq();
   1341 #endif
   1342 		if (freq == 0) {
   1343 			/*
   1344 			 * Work out the approximate overhead involved below.
   1345 			 * Discard the result of the first go around the
   1346 			 * loop.
   1347 			 */
   1348 			overhead = 0;
   1349 			for (int i = 0; i <= 8; i++) {
   1350 				t0 = cpu_counter();
   1351 				delay_func(0);
   1352 				t1 = cpu_counter();
   1353 				if (i > 0) {
   1354 					overhead += (t1 - t0);
   1355 				}
   1356 			}
   1357 			overhead >>= 3;
   1358 
   1359 			/* Now do the calibration. */
   1360 			t0 = cpu_counter();
   1361 			delay_func(100000);
   1362 			t1 = cpu_counter();
   1363 			freq = (t1 - t0 - overhead) * 10;
   1364 		}
   1365 		if (ci->ci_data.cpu_cc_freq != 0) {
   1366 			freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1367 			if ((freq_from_cpuid != 0)
   1368 			    && (freq != freq_from_cpuid))
   1369 				aprint_verbose_dev(ci->ci_dev, "TSC freq "
   1370 				    "calibrated %" PRIu64 " Hz\n", freq);
   1371 		}
   1372 	} else {
   1373 		freq = cpu_info_primary.ci_data.cpu_cc_freq;
   1374 	}
   1375 
   1376 	ci->ci_data.cpu_cc_freq = freq;
   1377 }
   1378 
   1379 void
   1380 x86_cpu_idle_mwait(void)
   1381 {
   1382 	struct cpu_info *ci = curcpu();
   1383 
   1384 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1385 
   1386 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1387 	if (__predict_false(ci->ci_want_resched)) {
   1388 		return;
   1389 	}
   1390 	x86_mwait(0, 0);
   1391 }
   1392 
   1393 void
   1394 x86_cpu_idle_halt(void)
   1395 {
   1396 	struct cpu_info *ci = curcpu();
   1397 
   1398 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1399 
   1400 	x86_disable_intr();
   1401 	if (!__predict_false(ci->ci_want_resched)) {
   1402 		x86_stihlt();
   1403 	} else {
   1404 		x86_enable_intr();
   1405 	}
   1406 }
   1407 
   1408 /*
   1409  * Loads pmap for the current CPU.
   1410  */
   1411 void
   1412 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1413 {
   1414 #ifdef SVS
   1415 	if (svs_enabled) {
   1416 		svs_pdir_switch(pmap);
   1417 	}
   1418 #endif
   1419 
   1420 #ifdef PAE
   1421 	struct cpu_info *ci = curcpu();
   1422 	bool interrupts_enabled;
   1423 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1424 	int i;
   1425 
   1426 	/*
   1427 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1428 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1429 	 * reload cr3.
   1430 	 */
   1431 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1432 	if (interrupts_enabled)
   1433 		x86_disable_intr();
   1434 
   1435 	for (i = 0 ; i < PDP_SIZE; i++) {
   1436 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1437 	}
   1438 
   1439 	if (interrupts_enabled)
   1440 		x86_enable_intr();
   1441 	tlbflush();
   1442 #else
   1443 	lcr3(pmap_pdirpa(pmap, 0));
   1444 #endif
   1445 }
   1446 
   1447 /*
   1448  * Notify all other cpus to halt.
   1449  */
   1450 
   1451 void
   1452 cpu_broadcast_halt(void)
   1453 {
   1454 	x86_broadcast_ipi(X86_IPI_HALT);
   1455 }
   1456 
   1457 /*
   1458  * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
   1459  * and trigger an AST on the running LWP.
   1460  */
   1461 
   1462 void
   1463 cpu_kick(struct cpu_info *ci)
   1464 {
   1465 	x86_send_ipi(ci, X86_IPI_AST);
   1466 }
   1467