cpu.c revision 1.204 1 /* $NetBSD: cpu.c,v 1.204 2022/08/14 07:49:33 mlelstv Exp $ */
2
3 /*
4 * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.204 2022/08/14 07:49:33 mlelstv Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71 #include "opt_svs.h"
72
73 #include "lapic.h"
74 #include "ioapic.h"
75 #include "acpica.h"
76 #include "hpet.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/cpu.h>
83 #include <sys/cpufreq.h>
84 #include <sys/idle.h>
85 #include <sys/atomic.h>
86 #include <sys/reboot.h>
87 #include <sys/csan.h>
88
89 #include <uvm/uvm.h>
90
91 #include "acpica.h" /* for NACPICA, for mp_verbose */
92
93 #include <x86/machdep.h>
94 #include <machine/cpufunc.h>
95 #include <machine/cpuvar.h>
96 #include <machine/pmap.h>
97 #include <machine/vmparam.h>
98 #if defined(MULTIPROCESSOR)
99 #include <machine/mpbiosvar.h>
100 #endif
101 #include <machine/mpconfig.h> /* for mp_verbose */
102 #include <machine/pcb.h>
103 #include <machine/specialreg.h>
104 #include <machine/segments.h>
105 #include <machine/gdt.h>
106 #include <machine/mtrr.h>
107 #include <machine/pio.h>
108 #include <machine/cpu_counter.h>
109
110 #include <x86/fpu.h>
111
112 #if NACPICA > 0
113 #include <dev/acpi/acpi_srat.h>
114 #endif
115
116 #if NLAPIC > 0
117 #include <machine/apicvar.h>
118 #include <machine/i82489reg.h>
119 #include <machine/i82489var.h>
120 #endif
121
122 #include <dev/ic/mc146818reg.h>
123 #include <dev/ic/hpetvar.h>
124 #include <i386/isa/nvram.h>
125 #include <dev/isa/isareg.h>
126
127 #include "tsc.h"
128
129 #ifndef XENPV
130 #include "hyperv.h"
131 #if NHYPERV > 0
132 #include <x86/x86/hypervvar.h>
133 #endif
134 #endif
135
136 #ifdef XEN
137 #include <xen/hypervisor.h>
138 #endif
139
140 static int cpu_match(device_t, cfdata_t, void *);
141 static void cpu_attach(device_t, device_t, void *);
142 static void cpu_defer(device_t);
143 static int cpu_rescan(device_t, const char *, const int *);
144 static void cpu_childdetached(device_t, device_t);
145 static bool cpu_stop(device_t);
146 static bool cpu_suspend(device_t, const pmf_qual_t *);
147 static bool cpu_resume(device_t, const pmf_qual_t *);
148 static bool cpu_shutdown(device_t, int);
149
150 struct cpu_softc {
151 device_t sc_dev; /* device tree glue */
152 struct cpu_info *sc_info; /* pointer to CPU info */
153 bool sc_wasonline;
154 };
155
156 #ifdef MULTIPROCESSOR
157 int mp_cpu_start(struct cpu_info *, paddr_t);
158 void mp_cpu_start_cleanup(struct cpu_info *);
159 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
160 mp_cpu_start_cleanup };
161 #endif
162
163
164 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
165 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
166
167 /*
168 * Statically-allocated CPU info for the primary CPU (or the only
169 * CPU, on uniprocessors). The CPU info list is initialized to
170 * point at it.
171 */
172 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
173 .ci_dev = 0,
174 .ci_self = &cpu_info_primary,
175 .ci_idepth = -1,
176 .ci_curlwp = &lwp0,
177 .ci_curldt = -1,
178 .ci_kfpu_spl = -1,
179 };
180
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182
183 #ifdef i386
184 void cpu_set_tss_gates(struct cpu_info *);
185 #endif
186
187 static void cpu_init_idle_lwp(struct cpu_info *);
188
189 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
190 /* [0] basic features cpuid.1:%edx
191 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
192 * [2] extended features cpuid:80000001:%edx
193 * [3] extended features cpuid:80000001:%ecx
194 * [4] VIA padlock features
195 * [5] structured extended features cpuid.7:%ebx
196 * [6] structured extended features cpuid.7:%ecx
197 */
198
199 #ifdef MULTIPROCESSOR
200 bool x86_mp_online;
201 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
202 #endif
203 #if NLAPIC > 0
204 static vaddr_t cmos_data_mapping;
205 #endif
206 struct cpu_info *cpu_starting;
207
208 #ifdef MULTIPROCESSOR
209 void cpu_hatch(void *);
210 static void cpu_boot_secondary(struct cpu_info *ci);
211 static void cpu_start_secondary(struct cpu_info *ci);
212 #if NLAPIC > 0
213 static void cpu_copy_trampoline(paddr_t);
214 #endif
215 #endif /* MULTIPROCESSOR */
216
217 /*
218 * Runs once per boot once multiprocessor goo has been detected and
219 * the local APIC on the boot processor has been mapped.
220 *
221 * Called from lapic_boot_init() (from mpbios_scan()).
222 */
223 #if NLAPIC > 0
224 void
225 cpu_init_first(void)
226 {
227
228 cpu_info_primary.ci_cpuid = lapic_cpu_number();
229
230 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
231 if (cmos_data_mapping == 0)
232 panic("No KVA for page 0");
233 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
234 pmap_update(pmap_kernel());
235 }
236 #endif
237
238 static int
239 cpu_match(device_t parent, cfdata_t match, void *aux)
240 {
241
242 return 1;
243 }
244
245 #ifdef __HAVE_PCPU_AREA
246 void
247 cpu_pcpuarea_init(struct cpu_info *ci)
248 {
249 struct vm_page *pg;
250 size_t i, npages;
251 vaddr_t base, va;
252 paddr_t pa;
253
254 CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
255
256 npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
257 base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
258
259 for (i = 0; i < npages; i++) {
260 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
261 if (pg == NULL) {
262 panic("failed to allocate pcpu PA");
263 }
264
265 va = base + i * PAGE_SIZE;
266 pa = VM_PAGE_TO_PHYS(pg);
267
268 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
269 }
270
271 pmap_update(pmap_kernel());
272 }
273 #endif
274
275 static void
276 cpu_vm_init(struct cpu_info *ci)
277 {
278 unsigned int ncolors = 2;
279
280 /*
281 * XXX: for AP's the cache info has not been initialized yet
282 * but that does not matter because uvm only pays attention at
283 * the maximum only. We should fix it once cpus have different
284 * cache sizes.
285 */
286 for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
287 struct x86_cache_info *cai;
288 unsigned int tcolors;
289
290 cai = &ci->ci_cinfo[i];
291
292 tcolors = atop(cai->cai_totalsize);
293 switch (cai->cai_associativity) {
294 case 0xff:
295 tcolors = 1; /* fully associative */
296 break;
297 case 0:
298 case 1:
299 break;
300 default:
301 tcolors /= cai->cai_associativity;
302 }
303 if (tcolors <= ncolors)
304 continue;
305 ncolors = tcolors;
306 }
307
308 /*
309 * If the desired number of colors is not a power of
310 * two, it won't be good. Find the greatest power of
311 * two which is an even divisor of the number of colors,
312 * to preserve even coloring of pages.
313 */
314 if (ncolors & (ncolors - 1) ) {
315 unsigned int try, picked = 1;
316 for (try = 1; try < ncolors; try *= 2) {
317 if (ncolors % try == 0) picked = try;
318 }
319 if (picked == 1) {
320 panic("desired number of cache colors %u is "
321 " > 1, but not even!", ncolors);
322 }
323 ncolors = picked;
324 }
325
326 /*
327 * Knowing the size of the largest cache on this CPU, potentially
328 * re-color our pages.
329 */
330 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
331 uvm_page_recolor(ncolors);
332
333 pmap_tlb_cpu_init(ci);
334 #ifndef __HAVE_DIRECT_MAP
335 pmap_vpage_cpu_init(ci);
336 #endif
337 }
338
339 static void
340 cpu_attach(device_t parent, device_t self, void *aux)
341 {
342 struct cpu_softc *sc = device_private(self);
343 struct cpu_attach_args *caa = aux;
344 struct cpu_info *ci;
345 uintptr_t ptr;
346 #if NLAPIC > 0
347 int cpunum = caa->cpu_number;
348 #endif
349 static bool again;
350
351 sc->sc_dev = self;
352
353 if (ncpu > maxcpus) {
354 #ifndef _LP64
355 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
356 #else
357 aprint_error(": too many CPUs\n");
358 #endif
359 return;
360 }
361
362 /*
363 * If we're an Application Processor, allocate a cpu_info
364 * structure, otherwise use the primary's.
365 */
366 if (caa->cpu_role == CPU_ROLE_AP) {
367 if ((boothowto & RB_MD1) != 0) {
368 aprint_error(": multiprocessor boot disabled\n");
369 if (!pmf_device_register(self, NULL, NULL))
370 aprint_error_dev(self,
371 "couldn't establish power handler\n");
372 return;
373 }
374 aprint_naive(": Application Processor\n");
375 ptr = (uintptr_t)uvm_km_alloc(kernel_map,
376 sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
377 UVM_KMF_WIRED|UVM_KMF_ZERO);
378 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
379 ci->ci_curldt = -1;
380 } else {
381 aprint_naive(": %s Processor\n",
382 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
383 ci = &cpu_info_primary;
384 #if NLAPIC > 0
385 if (cpunum != lapic_cpu_number()) {
386 /* XXX should be done earlier. */
387 uint32_t reg;
388 aprint_verbose("\n");
389 aprint_verbose_dev(self, "running CPU at apic %d"
390 " instead of at expected %d", lapic_cpu_number(),
391 cpunum);
392 reg = lapic_readreg(LAPIC_ID);
393 lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
394 (cpunum << LAPIC_ID_SHIFT));
395 }
396 if (cpunum != lapic_cpu_number()) {
397 aprint_error_dev(self, "unable to reset apic id\n");
398 }
399 #endif
400 }
401
402 ci->ci_self = ci;
403 sc->sc_info = ci;
404 ci->ci_dev = self;
405 ci->ci_acpiid = caa->cpu_id;
406 ci->ci_cpuid = caa->cpu_number;
407 ci->ci_func = caa->cpu_func;
408 ci->ci_kfpu_spl = -1;
409 aprint_normal("\n");
410
411 /* Must be before mi_cpu_attach(). */
412 cpu_vm_init(ci);
413
414 if (caa->cpu_role == CPU_ROLE_AP) {
415 int error;
416
417 error = mi_cpu_attach(ci);
418 if (error != 0) {
419 aprint_error_dev(self,
420 "mi_cpu_attach failed with %d\n", error);
421 return;
422 }
423 #ifdef __HAVE_PCPU_AREA
424 cpu_pcpuarea_init(ci);
425 #endif
426 cpu_init_tss(ci);
427 } else {
428 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
429 #if NACPICA > 0
430 /* Parse out NUMA info for cpu_identify(). */
431 acpisrat_init();
432 #endif
433 }
434
435 #ifdef SVS
436 cpu_svs_init(ci);
437 #endif
438
439 pmap_reference(pmap_kernel());
440 ci->ci_pmap = pmap_kernel();
441 ci->ci_tlbstate = TLBSTATE_STALE;
442
443 /*
444 * Boot processor may not be attached first, but the below
445 * must be done to allow booting other processors.
446 */
447 if (!again) {
448 /* Make sure DELAY() (likely i8254_delay()) is initialized. */
449 DELAY(1);
450
451 /*
452 * Basic init. Compute an approximate frequency for the TSC
453 * using the i8254. If there's a HPET we'll redo it later.
454 */
455 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
456 cpu_intr_init(ci);
457 tsc_setfunc(ci);
458 cpu_get_tsc_freq(ci);
459 cpu_init(ci);
460 #ifdef i386
461 cpu_set_tss_gates(ci);
462 #endif
463 pmap_cpu_init_late(ci);
464 #if NLAPIC > 0
465 if (caa->cpu_role != CPU_ROLE_SP) {
466 /* Enable lapic. */
467 lapic_enable();
468 lapic_set_lvt();
469 if (!vm_guest_is_xenpvh_or_pvhvm())
470 lapic_calibrate_timer(false);
471 }
472 #endif
473 kcsan_cpu_init(ci);
474 again = true;
475 }
476
477 /* further PCB init done later. */
478
479 switch (caa->cpu_role) {
480 case CPU_ROLE_SP:
481 atomic_or_32(&ci->ci_flags, CPUF_SP);
482 cpu_identify(ci);
483 x86_errata();
484 x86_cpu_idle_init();
485 #ifdef XENPVHVM
486 xen_hvm_init_cpu(ci);
487 #endif
488 break;
489
490 case CPU_ROLE_BP:
491 atomic_or_32(&ci->ci_flags, CPUF_BSP);
492 cpu_identify(ci);
493 x86_errata();
494 x86_cpu_idle_init();
495 #ifdef XENPVHVM
496 xen_hvm_init_cpu(ci);
497 #endif
498 break;
499
500 #ifdef MULTIPROCESSOR
501 case CPU_ROLE_AP:
502 /*
503 * report on an AP
504 */
505 cpu_intr_init(ci);
506 idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
507 gdt_alloc_cpu(ci);
508 #ifdef i386
509 cpu_set_tss_gates(ci);
510 #endif
511 pmap_cpu_init_late(ci);
512 cpu_start_secondary(ci);
513 if (ci->ci_flags & CPUF_PRESENT) {
514 struct cpu_info *tmp;
515
516 cpu_identify(ci);
517 tmp = cpu_info_list;
518 while (tmp->ci_next)
519 tmp = tmp->ci_next;
520
521 tmp->ci_next = ci;
522 }
523 break;
524 #endif
525
526 default:
527 panic("unknown processor type??\n");
528 }
529
530 pat_init(ci);
531
532 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
533 aprint_error_dev(self, "couldn't establish power handler\n");
534
535 #ifdef MULTIPROCESSOR
536 if (mp_verbose) {
537 struct lwp *l = ci->ci_data.cpu_idlelwp;
538 struct pcb *pcb = lwp_getpcb(l);
539
540 aprint_verbose_dev(self,
541 "idle lwp at %p, idle sp at %p\n",
542 l,
543 #ifdef i386
544 (void *)pcb->pcb_esp
545 #else
546 (void *)pcb->pcb_rsp
547 #endif
548 );
549 }
550 #endif
551
552 /*
553 * Postpone the "cpufeaturebus" scan.
554 * It is safe to scan the pseudo-bus
555 * only after all CPUs have attached.
556 */
557 (void)config_defer(self, cpu_defer);
558 }
559
560 static void
561 cpu_defer(device_t self)
562 {
563 cpu_rescan(self, NULL, NULL);
564 }
565
566 static int
567 cpu_rescan(device_t self, const char *ifattr, const int *locators)
568 {
569 struct cpu_softc *sc = device_private(self);
570 struct cpufeature_attach_args cfaa;
571 struct cpu_info *ci = sc->sc_info;
572
573 /*
574 * If we booted with RB_MD1 to disable multiprocessor, the
575 * auto-configuration data still contains the additional
576 * CPUs. But their initialization was mostly bypassed
577 * during attach, so we have to make sure we don't look at
578 * their featurebus info, since it wasn't retrieved.
579 */
580 if (ci == NULL)
581 return 0;
582
583 memset(&cfaa, 0, sizeof(cfaa));
584 cfaa.ci = ci;
585
586 if (ifattr_match(ifattr, "cpufeaturebus")) {
587 if (ci->ci_frequency == NULL) {
588 cfaa.name = "frequency";
589 ci->ci_frequency =
590 config_found(self, &cfaa, NULL,
591 CFARGS(.iattr = "cpufeaturebus"));
592 }
593
594 if (ci->ci_padlock == NULL) {
595 cfaa.name = "padlock";
596 ci->ci_padlock =
597 config_found(self, &cfaa, NULL,
598 CFARGS(.iattr = "cpufeaturebus"));
599 }
600
601 if (ci->ci_temperature == NULL) {
602 cfaa.name = "temperature";
603 ci->ci_temperature =
604 config_found(self, &cfaa, NULL,
605 CFARGS(.iattr = "cpufeaturebus"));
606 }
607
608 if (ci->ci_vm == NULL) {
609 cfaa.name = "vm";
610 ci->ci_vm =
611 config_found(self, &cfaa, NULL,
612 CFARGS(.iattr = "cpufeaturebus"));
613 }
614 }
615
616 return 0;
617 }
618
619 static void
620 cpu_childdetached(device_t self, device_t child)
621 {
622 struct cpu_softc *sc = device_private(self);
623 struct cpu_info *ci = sc->sc_info;
624
625 if (ci->ci_frequency == child)
626 ci->ci_frequency = NULL;
627
628 if (ci->ci_padlock == child)
629 ci->ci_padlock = NULL;
630
631 if (ci->ci_temperature == child)
632 ci->ci_temperature = NULL;
633
634 if (ci->ci_vm == child)
635 ci->ci_vm = NULL;
636 }
637
638 /*
639 * Initialize the processor appropriately.
640 */
641
642 void
643 cpu_init(struct cpu_info *ci)
644 {
645 extern int x86_fpu_save;
646 uint32_t cr4 = 0;
647
648 lcr0(rcr0() | CR0_WP);
649
650 /* If global TLB caching is supported, enable it */
651 if (cpu_feature[0] & CPUID_PGE)
652 cr4 |= CR4_PGE;
653
654 /*
655 * If we have FXSAVE/FXRESTOR, use them.
656 */
657 if (cpu_feature[0] & CPUID_FXSR) {
658 cr4 |= CR4_OSFXSR;
659
660 /*
661 * If we have SSE/SSE2, enable XMM exceptions.
662 */
663 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
664 cr4 |= CR4_OSXMMEXCPT;
665 }
666
667 /* If xsave is supported, enable it */
668 if (cpu_feature[1] & CPUID2_XSAVE)
669 cr4 |= CR4_OSXSAVE;
670
671 /* If SMEP is supported, enable it */
672 if (cpu_feature[5] & CPUID_SEF_SMEP)
673 cr4 |= CR4_SMEP;
674
675 /* If SMAP is supported, enable it */
676 if (cpu_feature[5] & CPUID_SEF_SMAP)
677 cr4 |= CR4_SMAP;
678
679 #ifdef SVS
680 /* If PCID is supported, enable it */
681 if (svs_pcid)
682 cr4 |= CR4_PCIDE;
683 #endif
684
685 if (cr4) {
686 cr4 |= rcr4();
687 lcr4(cr4);
688 }
689
690 /*
691 * Changing CR4 register may change cpuid values. For example, setting
692 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
693 * ci_feat_val[1], so update it.
694 * XXX Other than ci_feat_val[1] might be changed.
695 */
696 if (cpuid_level >= 1) {
697 u_int descs[4];
698
699 x86_cpuid(1, descs);
700 ci->ci_feat_val[1] = descs[2];
701 }
702
703 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
704 fpuinit_mxcsr_mask();
705 }
706
707 /* If xsave is enabled, enable all fpu features */
708 if (cr4 & CR4_OSXSAVE)
709 wrxcr(0, x86_xsave_features & XCR0_FPU);
710
711 #ifdef MTRR
712 /*
713 * On a P6 or above, initialize MTRR's if the hardware supports them.
714 */
715 if (cpu_feature[0] & CPUID_MTRR) {
716 if ((ci->ci_flags & CPUF_AP) == 0)
717 i686_mtrr_init_first();
718 mtrr_init_cpu(ci);
719 }
720
721 #ifdef i386
722 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
723 /*
724 * Must be a K6-2 Step >= 7 or a K6-III.
725 */
726 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
727 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
728 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
729 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
730 mtrr_funcs = &k6_mtrr_funcs;
731 k6_mtrr_init_first();
732 mtrr_init_cpu(ci);
733 }
734 }
735 }
736 #endif /* i386 */
737 #endif /* MTRR */
738
739 if (ci != &cpu_info_primary) {
740 /* Synchronize TSC */
741 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
742 tsc_sync_ap(ci);
743 } else {
744 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
745 }
746 }
747
748 #ifdef MULTIPROCESSOR
749 void
750 cpu_boot_secondary_processors(void)
751 {
752 struct cpu_info *ci;
753 kcpuset_t *cpus;
754 u_long i;
755
756 /* Now that we know the number of CPUs, patch the text segment. */
757 x86_patch(false);
758
759 #if NACPICA > 0
760 /* Finished with NUMA info for now. */
761 acpisrat_exit();
762 #endif
763
764 kcpuset_create(&cpus, true);
765 kcpuset_set(cpus, cpu_index(curcpu()));
766 for (i = 0; i < maxcpus; i++) {
767 ci = cpu_lookup(i);
768 if (ci == NULL)
769 continue;
770 if (ci->ci_data.cpu_idlelwp == NULL)
771 continue;
772 if ((ci->ci_flags & CPUF_PRESENT) == 0)
773 continue;
774 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
775 continue;
776 cpu_boot_secondary(ci);
777 kcpuset_set(cpus, cpu_index(ci));
778 }
779 while (!kcpuset_match(cpus, kcpuset_running))
780 ;
781 kcpuset_destroy(cpus);
782
783 x86_mp_online = true;
784
785 /* Now that we know about the TSC, attach the timecounter. */
786 tsc_tc_init();
787 }
788 #endif
789
790 static void
791 cpu_init_idle_lwp(struct cpu_info *ci)
792 {
793 struct lwp *l = ci->ci_data.cpu_idlelwp;
794 struct pcb *pcb = lwp_getpcb(l);
795
796 pcb->pcb_cr0 = rcr0();
797 }
798
799 void
800 cpu_init_idle_lwps(void)
801 {
802 struct cpu_info *ci;
803 u_long i;
804
805 for (i = 0; i < maxcpus; i++) {
806 ci = cpu_lookup(i);
807 if (ci == NULL)
808 continue;
809 if (ci->ci_data.cpu_idlelwp == NULL)
810 continue;
811 if ((ci->ci_flags & CPUF_PRESENT) == 0)
812 continue;
813 cpu_init_idle_lwp(ci);
814 }
815 }
816
817 #ifdef MULTIPROCESSOR
818 void
819 cpu_start_secondary(struct cpu_info *ci)
820 {
821 u_long psl;
822 int i;
823
824 #if NLAPIC > 0
825 paddr_t mp_pdirpa;
826 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
827 cpu_copy_trampoline(mp_pdirpa);
828 #endif
829
830 atomic_or_32(&ci->ci_flags, CPUF_AP);
831 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
832 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
833 return;
834 }
835
836 /*
837 * Wait for it to become ready. Setting cpu_starting opens the
838 * initial gate and allows the AP to start soft initialization.
839 */
840 KASSERT(cpu_starting == NULL);
841 cpu_starting = ci;
842 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
843 delay_func(10);
844 }
845
846 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
847 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
848 #if defined(MPDEBUG) && defined(DDB)
849 printf("dropping into debugger; continue from here to resume boot\n");
850 Debugger();
851 #endif
852 } else {
853 /*
854 * Synchronize time stamp counters. Invalidate cache and do
855 * twice (in tsc_sync_bp) to minimize possible cache effects.
856 * Disable interrupts to try and rule out any external
857 * interference.
858 */
859 psl = x86_read_psl();
860 x86_disable_intr();
861 tsc_sync_bp(ci);
862 x86_write_psl(psl);
863 }
864
865 CPU_START_CLEANUP(ci);
866 cpu_starting = NULL;
867 }
868
869 void
870 cpu_boot_secondary(struct cpu_info *ci)
871 {
872 int64_t drift;
873 u_long psl;
874 int i;
875
876 atomic_or_32(&ci->ci_flags, CPUF_GO);
877 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
878 delay_func(10);
879 }
880 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
881 aprint_error_dev(ci->ci_dev, "failed to start\n");
882 #if defined(MPDEBUG) && defined(DDB)
883 printf("dropping into debugger; continue from here to resume boot\n");
884 Debugger();
885 #endif
886 } else {
887 /* Synchronize TSC again, check for drift. */
888 drift = ci->ci_data.cpu_cc_skew;
889 psl = x86_read_psl();
890 x86_disable_intr();
891 tsc_sync_bp(ci);
892 x86_write_psl(psl);
893 drift -= ci->ci_data.cpu_cc_skew;
894 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
895 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
896 tsc_sync_drift(drift);
897 }
898 }
899
900 /*
901 * The CPU ends up here when it's ready to run.
902 * This is called from code in mptramp.s; at this point, we are running
903 * in the idle pcb/idle stack of the new CPU. When this function returns,
904 * this processor will enter the idle loop and start looking for work.
905 */
906 void
907 cpu_hatch(void *v)
908 {
909 struct cpu_info *ci = (struct cpu_info *)v;
910 struct pcb *pcb;
911 int s, i;
912
913 /* ------------------------------------------------------------- */
914
915 /*
916 * This section of code must be compiled with SSP disabled, to
917 * prevent a race against cpu0. See sys/conf/ssp.mk.
918 */
919
920 cpu_init_msrs(ci, true);
921 cpu_probe(ci);
922 cpu_speculation_init(ci);
923 #if NHYPERV > 0
924 hyperv_init_cpu(ci);
925 #endif
926
927 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
928 /* cpu_get_tsc_freq(ci); */
929
930 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
931
932 /*
933 * Synchronize the TSC for the first time. Note that interrupts are
934 * off at this point.
935 */
936 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
937 tsc_sync_ap(ci);
938
939 /* ------------------------------------------------------------- */
940
941 /*
942 * Wait to be brought online.
943 *
944 * Use MONITOR/MWAIT if available. These instructions put the CPU in
945 * a low consumption mode (C-state), and if the TSC is not invariant,
946 * this causes the TSC to drift. We want this to happen, so that we
947 * can later detect (in tsc_tc_init) any abnormal drift with invariant
948 * TSCs. That's just for safety; by definition such drifts should
949 * never occur with invariant TSCs.
950 *
951 * If not available, try PAUSE. We'd like to use HLT, but we have
952 * interrupts off.
953 */
954 while ((ci->ci_flags & CPUF_GO) == 0) {
955 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
956 x86_monitor(&ci->ci_flags, 0, 0);
957 if ((ci->ci_flags & CPUF_GO) != 0) {
958 continue;
959 }
960 x86_mwait(0, 0);
961 } else {
962 /*
963 * XXX The loop repetition count could be a lot higher, but
964 * XXX currently qemu emulator takes a _very_long_time_ to
965 * XXX execute the pause instruction. So for now, use a low
966 * XXX value to allow the cpu to hatch before timing out.
967 */
968 for (i = 50; i != 0; i--) {
969 x86_pause();
970 }
971 }
972 }
973
974 /* Because the text may have been patched in x86_patch(). */
975 wbinvd();
976 x86_flush();
977 tlbflushg();
978
979 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
980
981 #ifdef PAE
982 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
983 for (i = 0 ; i < PDP_SIZE; i++) {
984 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
985 }
986 lcr3(ci->ci_pae_l3_pdirpa);
987 #else
988 lcr3(pmap_pdirpa(pmap_kernel(), 0));
989 #endif
990
991 pcb = lwp_getpcb(curlwp);
992 pcb->pcb_cr3 = rcr3();
993 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
994 lcr0(pcb->pcb_cr0);
995
996 cpu_init_idt(ci);
997 gdt_init_cpu(ci);
998 #if NLAPIC > 0
999 lapic_enable();
1000 lapic_set_lvt();
1001 #endif
1002
1003 fpuinit(ci);
1004 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
1005 ltr(ci->ci_tss_sel);
1006
1007 /*
1008 * cpu_init will re-synchronize the TSC, and will detect any abnormal
1009 * drift that would have been caused by the use of MONITOR/MWAIT
1010 * above.
1011 */
1012 cpu_init(ci);
1013 #ifdef XENPVHVM
1014 xen_hvm_init_cpu(ci);
1015 #endif
1016 (*x86_initclock_func)();
1017 cpu_get_tsc_freq(ci);
1018
1019 s = splhigh();
1020 #if NLAPIC > 0
1021 lapic_write_tpri(0);
1022 #endif
1023 x86_enable_intr();
1024 splx(s);
1025 x86_errata();
1026
1027 aprint_debug_dev(ci->ci_dev, "running\n");
1028
1029 kcsan_cpu_init(ci);
1030
1031 idle_loop(NULL);
1032 KASSERT(false);
1033 }
1034 #endif
1035
1036 #if defined(DDB)
1037
1038 #include <ddb/db_output.h>
1039 #include <machine/db_machdep.h>
1040
1041 /*
1042 * Dump CPU information from ddb.
1043 */
1044 void
1045 cpu_debug_dump(void)
1046 {
1047 struct cpu_info *ci;
1048 CPU_INFO_ITERATOR cii;
1049 const char sixtyfour64space[] =
1050 #ifdef _LP64
1051 " "
1052 #endif
1053 "";
1054
1055 db_printf("addr %sdev id flags ipis spl curlwp "
1056 "\n", sixtyfour64space);
1057 for (CPU_INFO_FOREACH(cii, ci)) {
1058 db_printf("%p %s %ld %x %x %d %10p\n",
1059 ci,
1060 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1061 (long)ci->ci_cpuid,
1062 ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1063 ci->ci_curlwp);
1064 }
1065 }
1066 #endif
1067
1068 #ifdef MULTIPROCESSOR
1069 #if NLAPIC > 0
1070 static void
1071 cpu_copy_trampoline(paddr_t pdir_pa)
1072 {
1073 extern uint32_t nox_flag;
1074 extern u_char cpu_spinup_trampoline[];
1075 extern u_char cpu_spinup_trampoline_end[];
1076 vaddr_t mp_trampoline_vaddr;
1077 struct {
1078 uint32_t large;
1079 uint32_t nox;
1080 uint32_t pdir;
1081 } smp_data;
1082 CTASSERT(sizeof(smp_data) == 3 * 4);
1083
1084 smp_data.large = (pmap_largepages != 0);
1085 smp_data.nox = nox_flag;
1086 smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1087
1088 /* Enter the physical address */
1089 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1090 UVM_KMF_VAONLY);
1091 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1092 VM_PROT_READ | VM_PROT_WRITE, 0);
1093 pmap_update(pmap_kernel());
1094
1095 /* Copy boot code */
1096 memcpy((void *)mp_trampoline_vaddr,
1097 cpu_spinup_trampoline,
1098 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1099
1100 /* Copy smp_data at the end */
1101 memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1102 &smp_data, sizeof(smp_data));
1103
1104 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1105 pmap_update(pmap_kernel());
1106 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1107 }
1108 #endif
1109
1110 int
1111 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1112 {
1113 int error;
1114
1115 /*
1116 * Bootstrap code must be addressable in real mode
1117 * and it must be page aligned.
1118 */
1119 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1120
1121 /*
1122 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1123 */
1124
1125 outb(IO_RTC, NVRAM_RESET);
1126 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1127
1128 #if NLAPIC > 0
1129 /*
1130 * "and the warm reset vector (DWORD based at 40:67) to point
1131 * to the AP startup code ..."
1132 */
1133 unsigned short dwordptr[2];
1134 dwordptr[0] = 0;
1135 dwordptr[1] = target >> 4;
1136
1137 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1138 #endif
1139
1140 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1141 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1142 return ENODEV;
1143 }
1144
1145 /*
1146 * ... prior to executing the following sequence:". We'll also add in
1147 * local cache flush, in case the BIOS has left the AP with its cache
1148 * disabled. It may not be able to cope with MP coherency.
1149 */
1150 wbinvd();
1151
1152 if (ci->ci_flags & CPUF_AP) {
1153 error = x86_ipi_init(ci->ci_cpuid);
1154 if (error != 0) {
1155 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1156 __func__);
1157 return error;
1158 }
1159 delay_func(10000);
1160
1161 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1162 if (error != 0) {
1163 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1164 __func__);
1165 return error;
1166 }
1167 delay_func(200);
1168
1169 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1170 if (error != 0) {
1171 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1172 __func__);
1173 return error;
1174 }
1175 delay_func(200);
1176 }
1177
1178 return 0;
1179 }
1180
1181 void
1182 mp_cpu_start_cleanup(struct cpu_info *ci)
1183 {
1184 /*
1185 * Ensure the NVRAM reset byte contains something vaguely sane.
1186 */
1187
1188 outb(IO_RTC, NVRAM_RESET);
1189 outb(IO_RTC+1, NVRAM_RESET_RST);
1190 }
1191 #endif
1192
1193 #ifdef __x86_64__
1194 typedef void (vector)(void);
1195 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1196 #endif
1197
1198 void
1199 cpu_init_msrs(struct cpu_info *ci, bool full)
1200 {
1201 #ifdef __x86_64__
1202 wrmsr(MSR_STAR,
1203 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1204 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1205 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1206 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1207 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1208
1209 #ifdef SVS
1210 if (svs_enabled)
1211 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1212 #endif
1213
1214 if (full) {
1215 wrmsr(MSR_FSBASE, 0);
1216 wrmsr(MSR_GSBASE, (uint64_t)ci);
1217 wrmsr(MSR_KERNELGSBASE, 0);
1218 }
1219 #endif /* __x86_64__ */
1220
1221 if (cpu_feature[2] & CPUID_NOX)
1222 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1223 }
1224
1225 void
1226 cpu_offline_md(void)
1227 {
1228 return;
1229 }
1230
1231 /* XXX joerg restructure and restart CPUs individually */
1232 static bool
1233 cpu_stop(device_t dv)
1234 {
1235 struct cpu_softc *sc = device_private(dv);
1236 struct cpu_info *ci = sc->sc_info;
1237 int err;
1238
1239 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1240
1241 if (CPU_IS_PRIMARY(ci))
1242 return true;
1243
1244 if (ci->ci_data.cpu_idlelwp == NULL)
1245 return true;
1246
1247 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1248
1249 if (sc->sc_wasonline) {
1250 mutex_enter(&cpu_lock);
1251 err = cpu_setstate(ci, false);
1252 mutex_exit(&cpu_lock);
1253
1254 if (err != 0)
1255 return false;
1256 }
1257
1258 return true;
1259 }
1260
1261 static bool
1262 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1263 {
1264 struct cpu_softc *sc = device_private(dv);
1265 struct cpu_info *ci = sc->sc_info;
1266
1267 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1268 return true;
1269 else {
1270 cpufreq_suspend(ci);
1271 }
1272
1273 return cpu_stop(dv);
1274 }
1275
1276 static bool
1277 cpu_resume(device_t dv, const pmf_qual_t *qual)
1278 {
1279 struct cpu_softc *sc = device_private(dv);
1280 struct cpu_info *ci = sc->sc_info;
1281 int err = 0;
1282
1283 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1284 return true;
1285
1286 if (CPU_IS_PRIMARY(ci))
1287 goto out;
1288
1289 if (ci->ci_data.cpu_idlelwp == NULL)
1290 goto out;
1291
1292 if (sc->sc_wasonline) {
1293 mutex_enter(&cpu_lock);
1294 err = cpu_setstate(ci, true);
1295 mutex_exit(&cpu_lock);
1296 }
1297
1298 out:
1299 if (err != 0)
1300 return false;
1301
1302 cpufreq_resume(ci);
1303
1304 return true;
1305 }
1306
1307 static bool
1308 cpu_shutdown(device_t dv, int how)
1309 {
1310 struct cpu_softc *sc = device_private(dv);
1311 struct cpu_info *ci = sc->sc_info;
1312
1313 if ((ci->ci_flags & CPUF_BSP) != 0)
1314 return false;
1315
1316 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1317 return true;
1318
1319 return cpu_stop(dv);
1320 }
1321
1322 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1323 void
1324 cpu_get_tsc_freq(struct cpu_info *ci)
1325 {
1326 uint64_t freq = 0, freq_from_cpuid, t0, t1;
1327 int64_t overhead;
1328
1329 if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
1330 /*
1331 * If it's the first call of this function, try to get TSC
1332 * freq from CPUID by calling cpu_tsc_freq_cpuid().
1333 * The function also set lapic_per_second variable if it's
1334 * known. This is required for Intel's Comet Lake and newer
1335 * processors to set LAPIC timer correctly.
1336 */
1337 if (ci->ci_data.cpu_cc_freq == 0)
1338 freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1339 if (freq != 0)
1340 aprint_debug_dev(ci->ci_dev, "TSC freq "
1341 "from CPUID %" PRIu64 " Hz\n", freq);
1342 #if NHPET > 0
1343 if (freq == 0) {
1344 freq = hpet_tsc_freq();
1345 if (freq != 0)
1346 aprint_debug_dev(ci->ci_dev, "TSC freq "
1347 "from HPET %" PRIu64 " Hz\n", freq);
1348 }
1349 #endif
1350 if (freq == 0) {
1351 /*
1352 * Work out the approximate overhead involved below.
1353 * Discard the result of the first go around the
1354 * loop.
1355 */
1356 overhead = 0;
1357 for (int i = 0; i <= 8; i++) {
1358 const int s = splhigh();
1359 t0 = cpu_counter();
1360 delay_func(0);
1361 t1 = cpu_counter();
1362 splx(s);
1363 if (i > 0) {
1364 overhead += (t1 - t0);
1365 }
1366 }
1367 overhead >>= 3;
1368
1369 /*
1370 * Now do the calibration.
1371 */
1372 freq = 0;
1373 for (int i = 0; i < 1000; i++) {
1374 const int s = splhigh();
1375 t0 = cpu_counter();
1376 delay_func(100);
1377 t1 = cpu_counter();
1378 splx(s);
1379 freq += t1 - t0 - overhead;
1380 }
1381 freq = freq * 10;
1382
1383 aprint_debug_dev(ci->ci_dev, "TSC freq "
1384 "from delay %" PRIu64 " Hz\n", freq);
1385 }
1386 if (ci->ci_data.cpu_cc_freq != 0) {
1387 freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1388 if ((freq_from_cpuid != 0)
1389 && (freq != freq_from_cpuid))
1390 aprint_verbose_dev(ci->ci_dev, "TSC freq "
1391 "calibrated %" PRIu64 " Hz\n", freq);
1392 }
1393 } else {
1394 freq = cpu_info_primary.ci_data.cpu_cc_freq;
1395 }
1396
1397 ci->ci_data.cpu_cc_freq = freq;
1398 }
1399
1400 void
1401 x86_cpu_idle_mwait(void)
1402 {
1403 struct cpu_info *ci = curcpu();
1404
1405 KASSERT(ci->ci_ilevel == IPL_NONE);
1406
1407 x86_monitor(&ci->ci_want_resched, 0, 0);
1408 if (__predict_false(ci->ci_want_resched)) {
1409 return;
1410 }
1411 x86_mwait(0, 0);
1412 }
1413
1414 void
1415 x86_cpu_idle_halt(void)
1416 {
1417 struct cpu_info *ci = curcpu();
1418
1419 KASSERT(ci->ci_ilevel == IPL_NONE);
1420
1421 x86_disable_intr();
1422 if (!__predict_false(ci->ci_want_resched)) {
1423 x86_stihlt();
1424 } else {
1425 x86_enable_intr();
1426 }
1427 }
1428
1429 /*
1430 * Loads pmap for the current CPU.
1431 */
1432 void
1433 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1434 {
1435 #ifdef SVS
1436 if (svs_enabled) {
1437 svs_pdir_switch(pmap);
1438 }
1439 #endif
1440
1441 #ifdef PAE
1442 struct cpu_info *ci = curcpu();
1443 bool interrupts_enabled;
1444 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1445 int i;
1446
1447 /*
1448 * disable interrupts to block TLB shootdowns, which can reload cr3.
1449 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1450 * reload cr3.
1451 */
1452 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1453 if (interrupts_enabled)
1454 x86_disable_intr();
1455
1456 for (i = 0 ; i < PDP_SIZE; i++) {
1457 l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1458 }
1459
1460 if (interrupts_enabled)
1461 x86_enable_intr();
1462 tlbflush();
1463 #else
1464 lcr3(pmap_pdirpa(pmap, 0));
1465 #endif
1466 }
1467
1468 /*
1469 * Notify all other cpus to halt.
1470 */
1471
1472 void
1473 cpu_broadcast_halt(void)
1474 {
1475 x86_broadcast_ipi(X86_IPI_HALT);
1476 }
1477
1478 /*
1479 * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1480 * and trigger an AST on the running LWP.
1481 */
1482
1483 void
1484 cpu_kick(struct cpu_info *ci)
1485 {
1486 x86_send_ipi(ci, X86_IPI_AST);
1487 }
1488