Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.207
      1 /*	$NetBSD: cpu.c,v 1.207 2023/02/25 00:31:40 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.207 2023/02/25 00:31:40 riastradh Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 #include "opt_svs.h"
     72 
     73 #include "lapic.h"
     74 #include "ioapic.h"
     75 #include "acpica.h"
     76 #include "hpet.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/cpu.h>
     83 #include <sys/cpufreq.h>
     84 #include <sys/idle.h>
     85 #include <sys/atomic.h>
     86 #include <sys/reboot.h>
     87 #include <sys/csan.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     92 
     93 #include <x86/machdep.h>
     94 #include <machine/cpufunc.h>
     95 #include <machine/cpuvar.h>
     96 #include <machine/pmap.h>
     97 #include <machine/vmparam.h>
     98 #if defined(MULTIPROCESSOR)
     99 #include <machine/mpbiosvar.h>
    100 #endif
    101 #include <machine/mpconfig.h>		/* for mp_verbose */
    102 #include <machine/pcb.h>
    103 #include <machine/specialreg.h>
    104 #include <machine/segments.h>
    105 #include <machine/gdt.h>
    106 #include <machine/mtrr.h>
    107 #include <machine/pio.h>
    108 #include <machine/cpu_counter.h>
    109 #include <machine/pmap_private.h>
    110 
    111 #include <x86/fpu.h>
    112 
    113 #if NACPICA > 0
    114 #include <dev/acpi/acpi_srat.h>
    115 #endif
    116 
    117 #if NLAPIC > 0
    118 #include <machine/apicvar.h>
    119 #include <machine/i82489reg.h>
    120 #include <machine/i82489var.h>
    121 #endif
    122 
    123 #include <dev/ic/mc146818reg.h>
    124 #include <dev/ic/hpetvar.h>
    125 #include <i386/isa/nvram.h>
    126 #include <dev/isa/isareg.h>
    127 
    128 #include "tsc.h"
    129 
    130 #ifndef XENPV
    131 #include "hyperv.h"
    132 #if NHYPERV > 0
    133 #include <x86/x86/hypervvar.h>
    134 #endif
    135 #endif
    136 
    137 #ifdef XEN
    138 #include <xen/hypervisor.h>
    139 #endif
    140 
    141 static int	cpu_match(device_t, cfdata_t, void *);
    142 static void	cpu_attach(device_t, device_t, void *);
    143 static void	cpu_defer(device_t);
    144 static int	cpu_rescan(device_t, const char *, const int *);
    145 static void	cpu_childdetached(device_t, device_t);
    146 static bool	cpu_stop(device_t);
    147 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    148 static bool	cpu_resume(device_t, const pmf_qual_t *);
    149 static bool	cpu_shutdown(device_t, int);
    150 
    151 struct cpu_softc {
    152 	device_t sc_dev;		/* device tree glue */
    153 	struct cpu_info *sc_info;	/* pointer to CPU info */
    154 	bool sc_wasonline;
    155 };
    156 
    157 #ifdef MULTIPROCESSOR
    158 int mp_cpu_start(struct cpu_info *, paddr_t);
    159 void mp_cpu_start_cleanup(struct cpu_info *);
    160 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    161 					    mp_cpu_start_cleanup };
    162 #endif
    163 
    164 
    165 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    166     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    167 
    168 /*
    169  * Statically-allocated CPU info for the primary CPU (or the only
    170  * CPU, on uniprocessors).  The CPU info list is initialized to
    171  * point at it.
    172  */
    173 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    174 	.ci_dev = 0,
    175 	.ci_self = &cpu_info_primary,
    176 	.ci_idepth = -1,
    177 	.ci_curlwp = &lwp0,
    178 	.ci_curldt = -1,
    179 	.ci_kfpu_spl = -1,
    180 };
    181 
    182 struct cpu_info *cpu_info_list = &cpu_info_primary;
    183 
    184 #ifdef i386
    185 void		cpu_set_tss_gates(struct cpu_info *);
    186 #endif
    187 
    188 static void	cpu_init_idle_lwp(struct cpu_info *);
    189 
    190 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    191 			/* [0] basic features cpuid.1:%edx
    192 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    193 			 * [2] extended features cpuid:80000001:%edx
    194 			 * [3] extended features cpuid:80000001:%ecx
    195 			 * [4] VIA padlock features
    196 			 * [5] structured extended features cpuid.7:%ebx
    197 			 * [6] structured extended features cpuid.7:%ecx
    198 			 */
    199 
    200 #ifdef MULTIPROCESSOR
    201 bool x86_mp_online;
    202 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    203 #endif
    204 #if NLAPIC > 0
    205 static vaddr_t cmos_data_mapping;
    206 #endif
    207 struct cpu_info *cpu_starting;
    208 
    209 #ifdef MULTIPROCESSOR
    210 void		cpu_hatch(void *);
    211 static void	cpu_boot_secondary(struct cpu_info *ci);
    212 static void	cpu_start_secondary(struct cpu_info *ci);
    213 #if NLAPIC > 0
    214 static void	cpu_copy_trampoline(paddr_t);
    215 #endif
    216 #endif /* MULTIPROCESSOR */
    217 
    218 /*
    219  * Runs once per boot once multiprocessor goo has been detected and
    220  * the local APIC on the boot processor has been mapped.
    221  *
    222  * Called from lapic_boot_init() (from mpbios_scan()).
    223  */
    224 #if NLAPIC > 0
    225 void
    226 cpu_init_first(void)
    227 {
    228 
    229 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    230 
    231 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    232 	if (cmos_data_mapping == 0)
    233 		panic("No KVA for page 0");
    234 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    235 	pmap_update(pmap_kernel());
    236 }
    237 #endif
    238 
    239 static int
    240 cpu_match(device_t parent, cfdata_t match, void *aux)
    241 {
    242 
    243 	return 1;
    244 }
    245 
    246 #ifdef __HAVE_PCPU_AREA
    247 void
    248 cpu_pcpuarea_init(struct cpu_info *ci)
    249 {
    250 	struct vm_page *pg;
    251 	size_t i, npages;
    252 	vaddr_t base, va;
    253 	paddr_t pa;
    254 
    255 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    256 
    257 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    258 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    259 
    260 	for (i = 0; i < npages; i++) {
    261 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    262 		if (pg == NULL) {
    263 			panic("failed to allocate pcpu PA");
    264 		}
    265 
    266 		va = base + i * PAGE_SIZE;
    267 		pa = VM_PAGE_TO_PHYS(pg);
    268 
    269 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    270 	}
    271 
    272 	pmap_update(pmap_kernel());
    273 }
    274 #endif
    275 
    276 static void
    277 cpu_vm_init(struct cpu_info *ci)
    278 {
    279 	unsigned int ncolors = 2;
    280 
    281 	/*
    282 	 * XXX: for AP's the cache info has not been initialized yet
    283 	 * but that does not matter because uvm only pays attention at
    284 	 * the maximum only. We should fix it once cpus have different
    285 	 * cache sizes.
    286 	 */
    287 	for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    288 		struct x86_cache_info *cai;
    289 		unsigned int tcolors;
    290 
    291 		cai = &ci->ci_cinfo[i];
    292 
    293 		tcolors = atop(cai->cai_totalsize);
    294 		switch (cai->cai_associativity) {
    295 		case 0xff:
    296 			tcolors = 1; /* fully associative */
    297 			break;
    298 		case 0:
    299 		case 1:
    300 			break;
    301 		default:
    302 			tcolors /= cai->cai_associativity;
    303 		}
    304 		if (tcolors <= ncolors)
    305 			continue;
    306 		ncolors = tcolors;
    307 	}
    308 
    309 	/*
    310 	 * If the desired number of colors is not a power of
    311 	 * two, it won't be good.  Find the greatest power of
    312 	 * two which is an even divisor of the number of colors,
    313 	 * to preserve even coloring of pages.
    314 	 */
    315 	if (ncolors & (ncolors - 1) ) {
    316 		unsigned int try, picked = 1;
    317 		for (try = 1; try < ncolors; try *= 2) {
    318 			if (ncolors % try == 0) picked = try;
    319 		}
    320 		if (picked == 1) {
    321 			panic("desired number of cache colors %u is "
    322 			" > 1, but not even!", ncolors);
    323 		}
    324 		ncolors = picked;
    325 	}
    326 
    327 	/*
    328 	 * Knowing the size of the largest cache on this CPU, potentially
    329 	 * re-color our pages.
    330 	 */
    331 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    332 	uvm_page_recolor(ncolors);
    333 
    334 	pmap_tlb_cpu_init(ci);
    335 #ifndef __HAVE_DIRECT_MAP
    336 	pmap_vpage_cpu_init(ci);
    337 #endif
    338 }
    339 
    340 static void
    341 cpu_attach(device_t parent, device_t self, void *aux)
    342 {
    343 	struct cpu_softc *sc = device_private(self);
    344 	struct cpu_attach_args *caa = aux;
    345 	struct cpu_info *ci;
    346 	uintptr_t ptr;
    347 #if NLAPIC > 0
    348 	int cpunum = caa->cpu_number;
    349 #endif
    350 	static bool again;
    351 
    352 	sc->sc_dev = self;
    353 
    354 	if (ncpu > maxcpus) {
    355 #ifndef _LP64
    356 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    357 #else
    358 		aprint_error(": too many CPUs\n");
    359 #endif
    360 		return;
    361 	}
    362 
    363 	/*
    364 	 * If we're an Application Processor, allocate a cpu_info
    365 	 * structure, otherwise use the primary's.
    366 	 */
    367 	if (caa->cpu_role == CPU_ROLE_AP) {
    368 		if ((boothowto & RB_MD1) != 0) {
    369 			aprint_error(": multiprocessor boot disabled\n");
    370 			if (!pmf_device_register(self, NULL, NULL))
    371 				aprint_error_dev(self,
    372 				    "couldn't establish power handler\n");
    373 			return;
    374 		}
    375 		aprint_naive(": Application Processor\n");
    376 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    377 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    378 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    379 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    380 		ci->ci_curldt = -1;
    381 	} else {
    382 		aprint_naive(": %s Processor\n",
    383 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    384 		ci = &cpu_info_primary;
    385 #if NLAPIC > 0
    386 		if (cpunum != lapic_cpu_number()) {
    387 			/* XXX should be done earlier. */
    388 			uint32_t reg;
    389 			aprint_verbose("\n");
    390 			aprint_verbose_dev(self, "running CPU at apic %d"
    391 			    " instead of at expected %d", lapic_cpu_number(),
    392 			    cpunum);
    393 			reg = lapic_readreg(LAPIC_ID);
    394 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    395 			    (cpunum << LAPIC_ID_SHIFT));
    396 		}
    397 		if (cpunum != lapic_cpu_number()) {
    398 			aprint_error_dev(self, "unable to reset apic id\n");
    399 		}
    400 #endif
    401 	}
    402 
    403 	ci->ci_self = ci;
    404 	sc->sc_info = ci;
    405 	ci->ci_dev = self;
    406 	ci->ci_acpiid = caa->cpu_id;
    407 	ci->ci_cpuid = caa->cpu_number;
    408 	ci->ci_func = caa->cpu_func;
    409 	ci->ci_kfpu_spl = -1;
    410 	aprint_normal("\n");
    411 
    412 	/* Must be before mi_cpu_attach(). */
    413 	cpu_vm_init(ci);
    414 
    415 	if (caa->cpu_role == CPU_ROLE_AP) {
    416 		int error;
    417 
    418 		error = mi_cpu_attach(ci);
    419 		if (error != 0) {
    420 			aprint_error_dev(self,
    421 			    "mi_cpu_attach failed with %d\n", error);
    422 			return;
    423 		}
    424 #ifdef __HAVE_PCPU_AREA
    425 		cpu_pcpuarea_init(ci);
    426 #endif
    427 		cpu_init_tss(ci);
    428 	} else {
    429 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    430 #if NACPICA > 0
    431 		/* Parse out NUMA info for cpu_identify(). */
    432 		acpisrat_init();
    433 #endif
    434 	}
    435 
    436 #ifdef SVS
    437 	cpu_svs_init(ci);
    438 #endif
    439 
    440 	pmap_reference(pmap_kernel());
    441 	ci->ci_pmap = pmap_kernel();
    442 	ci->ci_tlbstate = TLBSTATE_STALE;
    443 
    444 	/*
    445 	 * Boot processor may not be attached first, but the below
    446 	 * must be done to allow booting other processors.
    447 	 */
    448 	if (!again) {
    449 		/* Make sure DELAY() (likely i8254_delay()) is initialized. */
    450 		DELAY(1);
    451 
    452 		/*
    453 		 * Basic init.  Compute an approximate frequency for the TSC
    454 		 * using the i8254.  If there's a HPET we'll redo it later.
    455 		 */
    456 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    457 		cpu_intr_init(ci);
    458 		tsc_setfunc(ci);
    459 		cpu_get_tsc_freq(ci);
    460 		cpu_init(ci);
    461 #ifdef i386
    462 		cpu_set_tss_gates(ci);
    463 #endif
    464 		pmap_cpu_init_late(ci);
    465 #if NLAPIC > 0
    466 		if (caa->cpu_role != CPU_ROLE_SP) {
    467 			/* Enable lapic. */
    468 			lapic_enable();
    469 			lapic_set_lvt();
    470 			if (!vm_guest_is_xenpvh_or_pvhvm())
    471 				lapic_calibrate_timer(false);
    472 		}
    473 #endif
    474 		kcsan_cpu_init(ci);
    475 		again = true;
    476 	}
    477 
    478 	/* further PCB init done later. */
    479 
    480 	switch (caa->cpu_role) {
    481 	case CPU_ROLE_SP:
    482 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    483 		cpu_identify(ci);
    484 		x86_errata();
    485 		x86_cpu_idle_init();
    486 #ifdef XENPVHVM
    487 		xen_hvm_init_cpu(ci);
    488 #endif
    489 		break;
    490 
    491 	case CPU_ROLE_BP:
    492 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    493 		cpu_identify(ci);
    494 		x86_errata();
    495 		x86_cpu_idle_init();
    496 #ifdef XENPVHVM
    497 		xen_hvm_init_cpu(ci);
    498 #endif
    499 		break;
    500 
    501 #ifdef MULTIPROCESSOR
    502 	case CPU_ROLE_AP:
    503 		/*
    504 		 * report on an AP
    505 		 */
    506 		cpu_intr_init(ci);
    507 		idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
    508 		gdt_alloc_cpu(ci);
    509 #ifdef i386
    510 		cpu_set_tss_gates(ci);
    511 #endif
    512 		pmap_cpu_init_late(ci);
    513 		cpu_start_secondary(ci);
    514 		if (ci->ci_flags & CPUF_PRESENT) {
    515 			struct cpu_info *tmp;
    516 
    517 			cpu_identify(ci);
    518 			tmp = cpu_info_list;
    519 			while (tmp->ci_next)
    520 				tmp = tmp->ci_next;
    521 
    522 			tmp->ci_next = ci;
    523 		}
    524 		break;
    525 #endif
    526 
    527 	default:
    528 		panic("unknown processor type??\n");
    529 	}
    530 
    531 	pat_init(ci);
    532 
    533 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    534 		aprint_error_dev(self, "couldn't establish power handler\n");
    535 
    536 #ifdef MULTIPROCESSOR
    537 	if (mp_verbose) {
    538 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    539 		struct pcb *pcb = lwp_getpcb(l);
    540 
    541 		aprint_verbose_dev(self,
    542 		    "idle lwp at %p, idle sp at %p\n",
    543 		    l,
    544 #ifdef i386
    545 		    (void *)pcb->pcb_esp
    546 #else
    547 		    (void *)pcb->pcb_rsp
    548 #endif
    549 		);
    550 	}
    551 #endif
    552 
    553 	/*
    554 	 * Postpone the "cpufeaturebus" scan.
    555 	 * It is safe to scan the pseudo-bus
    556 	 * only after all CPUs have attached.
    557 	 */
    558 	(void)config_defer(self, cpu_defer);
    559 }
    560 
    561 static void
    562 cpu_defer(device_t self)
    563 {
    564 	cpu_rescan(self, NULL, NULL);
    565 }
    566 
    567 static int
    568 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    569 {
    570 	struct cpu_softc *sc = device_private(self);
    571 	struct cpufeature_attach_args cfaa;
    572 	struct cpu_info *ci = sc->sc_info;
    573 
    574 	/*
    575 	 * If we booted with RB_MD1 to disable multiprocessor, the
    576 	 * auto-configuration data still contains the additional
    577 	 * CPUs.   But their initialization was mostly bypassed
    578 	 * during attach, so we have to make sure we don't look at
    579 	 * their featurebus info, since it wasn't retrieved.
    580 	 */
    581 	if (ci == NULL)
    582 		return 0;
    583 
    584 	memset(&cfaa, 0, sizeof(cfaa));
    585 	cfaa.ci = ci;
    586 
    587 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    588 		if (ci->ci_frequency == NULL) {
    589 			cfaa.name = "frequency";
    590 			ci->ci_frequency =
    591 			    config_found(self, &cfaa, NULL,
    592 					 CFARGS(.iattr = "cpufeaturebus"));
    593 		}
    594 
    595 		if (ci->ci_padlock == NULL) {
    596 			cfaa.name = "padlock";
    597 			ci->ci_padlock =
    598 			    config_found(self, &cfaa, NULL,
    599 					 CFARGS(.iattr = "cpufeaturebus"));
    600 		}
    601 
    602 		if (ci->ci_temperature == NULL) {
    603 			cfaa.name = "temperature";
    604 			ci->ci_temperature =
    605 			    config_found(self, &cfaa, NULL,
    606 					 CFARGS(.iattr = "cpufeaturebus"));
    607 		}
    608 
    609 		if (ci->ci_vm == NULL) {
    610 			cfaa.name = "vm";
    611 			ci->ci_vm =
    612 			    config_found(self, &cfaa, NULL,
    613 					 CFARGS(.iattr = "cpufeaturebus"));
    614 		}
    615 	}
    616 
    617 	return 0;
    618 }
    619 
    620 static void
    621 cpu_childdetached(device_t self, device_t child)
    622 {
    623 	struct cpu_softc *sc = device_private(self);
    624 	struct cpu_info *ci = sc->sc_info;
    625 
    626 	if (ci->ci_frequency == child)
    627 		ci->ci_frequency = NULL;
    628 
    629 	if (ci->ci_padlock == child)
    630 		ci->ci_padlock = NULL;
    631 
    632 	if (ci->ci_temperature == child)
    633 		ci->ci_temperature = NULL;
    634 
    635 	if (ci->ci_vm == child)
    636 		ci->ci_vm = NULL;
    637 }
    638 
    639 /*
    640  * Initialize the processor appropriately.
    641  */
    642 
    643 void
    644 cpu_init(struct cpu_info *ci)
    645 {
    646 	extern int x86_fpu_save;
    647 	uint32_t cr4 = 0;
    648 
    649 	lcr0(rcr0() | CR0_WP);
    650 
    651 	/* If global TLB caching is supported, enable it */
    652 	if (cpu_feature[0] & CPUID_PGE)
    653 		cr4 |= CR4_PGE;
    654 
    655 	/*
    656 	 * If we have FXSAVE/FXRESTOR, use them.
    657 	 */
    658 	if (cpu_feature[0] & CPUID_FXSR) {
    659 		cr4 |= CR4_OSFXSR;
    660 
    661 		/*
    662 		 * If we have SSE/SSE2, enable XMM exceptions.
    663 		 */
    664 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    665 			cr4 |= CR4_OSXMMEXCPT;
    666 	}
    667 
    668 	/* If xsave is supported, enable it */
    669 	if (cpu_feature[1] & CPUID2_XSAVE)
    670 		cr4 |= CR4_OSXSAVE;
    671 
    672 	/* If SMEP is supported, enable it */
    673 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    674 		cr4 |= CR4_SMEP;
    675 
    676 	/* If SMAP is supported, enable it */
    677 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    678 		cr4 |= CR4_SMAP;
    679 
    680 #ifdef SVS
    681 	/* If PCID is supported, enable it */
    682 	if (svs_pcid)
    683 		cr4 |= CR4_PCIDE;
    684 #endif
    685 
    686 	if (cr4) {
    687 		cr4 |= rcr4();
    688 		lcr4(cr4);
    689 	}
    690 
    691 	/*
    692 	 * Changing CR4 register may change cpuid values. For example, setting
    693 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    694 	 * ci_feat_val[1], so update it.
    695 	 * XXX Other than ci_feat_val[1] might be changed.
    696 	 */
    697 	if (cpuid_level >= 1) {
    698 		u_int descs[4];
    699 
    700 		x86_cpuid(1, descs);
    701 		ci->ci_feat_val[1] = descs[2];
    702 	}
    703 
    704 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    705 		fpuinit_mxcsr_mask();
    706 	}
    707 
    708 	/* If xsave is enabled, enable all fpu features */
    709 	if (cr4 & CR4_OSXSAVE)
    710 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    711 
    712 #ifdef MTRR
    713 	/*
    714 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    715 	 */
    716 	if (cpu_feature[0] & CPUID_MTRR) {
    717 		if ((ci->ci_flags & CPUF_AP) == 0)
    718 			i686_mtrr_init_first();
    719 		mtrr_init_cpu(ci);
    720 	}
    721 
    722 #ifdef i386
    723 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    724 		/*
    725 		 * Must be a K6-2 Step >= 7 or a K6-III.
    726 		 */
    727 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    728 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    729 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    730 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    731 				mtrr_funcs = &k6_mtrr_funcs;
    732 				k6_mtrr_init_first();
    733 				mtrr_init_cpu(ci);
    734 			}
    735 		}
    736 	}
    737 #endif	/* i386 */
    738 #endif /* MTRR */
    739 
    740 	if (ci != &cpu_info_primary) {
    741 		/* Synchronize TSC */
    742 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    743 		tsc_sync_ap(ci);
    744 	} else {
    745 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    746 	}
    747 }
    748 
    749 #ifdef MULTIPROCESSOR
    750 void
    751 cpu_boot_secondary_processors(void)
    752 {
    753 	struct cpu_info *ci;
    754 	kcpuset_t *cpus;
    755 	u_long i;
    756 
    757 	/* Now that we know the number of CPUs, patch the text segment. */
    758 	x86_patch(false);
    759 
    760 #if NACPICA > 0
    761 	/* Finished with NUMA info for now. */
    762 	acpisrat_exit();
    763 #endif
    764 
    765 	kcpuset_create(&cpus, true);
    766 	kcpuset_set(cpus, cpu_index(curcpu()));
    767 	for (i = 0; i < maxcpus; i++) {
    768 		ci = cpu_lookup(i);
    769 		if (ci == NULL)
    770 			continue;
    771 		if (ci->ci_data.cpu_idlelwp == NULL)
    772 			continue;
    773 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    774 			continue;
    775 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    776 			continue;
    777 		cpu_boot_secondary(ci);
    778 		kcpuset_set(cpus, cpu_index(ci));
    779 	}
    780 	while (!kcpuset_match(cpus, kcpuset_running))
    781 		;
    782 	kcpuset_destroy(cpus);
    783 
    784 	x86_mp_online = true;
    785 
    786 	/* Now that we know about the TSC, attach the timecounter. */
    787 	tsc_tc_init();
    788 }
    789 #endif
    790 
    791 static void
    792 cpu_init_idle_lwp(struct cpu_info *ci)
    793 {
    794 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    795 	struct pcb *pcb = lwp_getpcb(l);
    796 
    797 	pcb->pcb_cr0 = rcr0();
    798 }
    799 
    800 void
    801 cpu_init_idle_lwps(void)
    802 {
    803 	struct cpu_info *ci;
    804 	u_long i;
    805 
    806 	for (i = 0; i < maxcpus; i++) {
    807 		ci = cpu_lookup(i);
    808 		if (ci == NULL)
    809 			continue;
    810 		if (ci->ci_data.cpu_idlelwp == NULL)
    811 			continue;
    812 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    813 			continue;
    814 		cpu_init_idle_lwp(ci);
    815 	}
    816 }
    817 
    818 #ifdef MULTIPROCESSOR
    819 void
    820 cpu_start_secondary(struct cpu_info *ci)
    821 {
    822 	u_long psl;
    823 	int i;
    824 
    825 #if NLAPIC > 0
    826 	paddr_t mp_pdirpa;
    827 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    828 	cpu_copy_trampoline(mp_pdirpa);
    829 #endif
    830 
    831 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    832 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    833 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    834 		return;
    835 	}
    836 
    837 	/*
    838 	 * Wait for it to become ready.   Setting cpu_starting opens the
    839 	 * initial gate and allows the AP to start soft initialization.
    840 	 */
    841 	KASSERT(cpu_starting == NULL);
    842 	cpu_starting = ci;
    843 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    844 		delay_func(10);
    845 	}
    846 
    847 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    848 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    849 #if defined(MPDEBUG) && defined(DDB)
    850 		printf("dropping into debugger; continue from here to resume boot\n");
    851 		Debugger();
    852 #endif
    853 	} else {
    854 		/*
    855 		 * Synchronize time stamp counters. Invalidate cache and do
    856 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    857 		 * Disable interrupts to try and rule out any external
    858 		 * interference.
    859 		 */
    860 		psl = x86_read_psl();
    861 		x86_disable_intr();
    862 		tsc_sync_bp(ci);
    863 		x86_write_psl(psl);
    864 	}
    865 
    866 	CPU_START_CLEANUP(ci);
    867 	cpu_starting = NULL;
    868 }
    869 
    870 void
    871 cpu_boot_secondary(struct cpu_info *ci)
    872 {
    873 	int64_t drift;
    874 	u_long psl;
    875 	int i;
    876 
    877 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    878 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    879 		delay_func(10);
    880 	}
    881 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    882 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    883 #if defined(MPDEBUG) && defined(DDB)
    884 		printf("dropping into debugger; continue from here to resume boot\n");
    885 		Debugger();
    886 #endif
    887 	} else {
    888 		/* Synchronize TSC again, check for drift. */
    889 		drift = ci->ci_data.cpu_cc_skew;
    890 		psl = x86_read_psl();
    891 		x86_disable_intr();
    892 		tsc_sync_bp(ci);
    893 		x86_write_psl(psl);
    894 		drift -= ci->ci_data.cpu_cc_skew;
    895 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    896 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    897 		tsc_sync_drift(drift);
    898 	}
    899 }
    900 
    901 /*
    902  * The CPU ends up here when it's ready to run.
    903  * This is called from code in mptramp.s; at this point, we are running
    904  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    905  * this processor will enter the idle loop and start looking for work.
    906  */
    907 void
    908 cpu_hatch(void *v)
    909 {
    910 	struct cpu_info *ci = (struct cpu_info *)v;
    911 	struct pcb *pcb;
    912 	int s, i;
    913 
    914 	/* ------------------------------------------------------------- */
    915 
    916 	/*
    917 	 * This section of code must be compiled with SSP disabled, to
    918 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    919 	 */
    920 
    921 	cpu_init_msrs(ci, true);
    922 	cpu_probe(ci);
    923 	cpu_speculation_init(ci);
    924 #if NHYPERV > 0
    925 	hyperv_init_cpu(ci);
    926 #endif
    927 
    928 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    929 	/* cpu_get_tsc_freq(ci); */
    930 
    931 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    932 
    933 	/*
    934 	 * Synchronize the TSC for the first time. Note that interrupts are
    935 	 * off at this point.
    936 	 */
    937 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    938 	tsc_sync_ap(ci);
    939 
    940 	/* ------------------------------------------------------------- */
    941 
    942 	/*
    943 	 * Wait to be brought online.
    944 	 *
    945 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    946 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    947 	 * this causes the TSC to drift. We want this to happen, so that we
    948 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    949 	 * TSCs. That's just for safety; by definition such drifts should
    950 	 * never occur with invariant TSCs.
    951 	 *
    952 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    953 	 * interrupts off.
    954 	 */
    955 	while ((ci->ci_flags & CPUF_GO) == 0) {
    956 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    957 			x86_monitor(&ci->ci_flags, 0, 0);
    958 			if ((ci->ci_flags & CPUF_GO) != 0) {
    959 				continue;
    960 			}
    961 			x86_mwait(0, 0);
    962 		} else {
    963 	/*
    964 	 * XXX The loop repetition count could be a lot higher, but
    965 	 * XXX currently qemu emulator takes a _very_long_time_ to
    966 	 * XXX execute the pause instruction.  So for now, use a low
    967 	 * XXX value to allow the cpu to hatch before timing out.
    968 	 */
    969 			for (i = 50; i != 0; i--) {
    970 				x86_pause();
    971 			}
    972 		}
    973 	}
    974 
    975 	/* Because the text may have been patched in x86_patch(). */
    976 	wbinvd();
    977 	x86_flush();
    978 	tlbflushg();
    979 
    980 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    981 
    982 #ifdef PAE
    983 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    984 	for (i = 0 ; i < PDP_SIZE; i++) {
    985 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
    986 	}
    987 	lcr3(ci->ci_pae_l3_pdirpa);
    988 #else
    989 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    990 #endif
    991 
    992 	pcb = lwp_getpcb(curlwp);
    993 	pcb->pcb_cr3 = rcr3();
    994 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    995 	lcr0(pcb->pcb_cr0);
    996 
    997 	cpu_init_idt(ci);
    998 	gdt_init_cpu(ci);
    999 #if NLAPIC > 0
   1000 	lapic_enable();
   1001 	lapic_set_lvt();
   1002 #endif
   1003 
   1004 	fpuinit(ci);
   1005 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
   1006 	ltr(ci->ci_tss_sel);
   1007 
   1008 	/*
   1009 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
   1010 	 * drift that would have been caused by the use of MONITOR/MWAIT
   1011 	 * above.
   1012 	 */
   1013 	cpu_init(ci);
   1014 #ifdef XENPVHVM
   1015 	xen_hvm_init_cpu(ci);
   1016 #endif
   1017 	(*x86_initclock_func)();
   1018 	cpu_get_tsc_freq(ci);
   1019 
   1020 	s = splhigh();
   1021 #if NLAPIC > 0
   1022 	lapic_write_tpri(0);
   1023 #endif
   1024 	x86_enable_intr();
   1025 	splx(s);
   1026 	x86_errata();
   1027 
   1028 	aprint_debug_dev(ci->ci_dev, "running\n");
   1029 
   1030 	kcsan_cpu_init(ci);
   1031 
   1032 	idle_loop(NULL);
   1033 	KASSERT(false);
   1034 }
   1035 #endif
   1036 
   1037 #if defined(DDB)
   1038 
   1039 #include <ddb/db_output.h>
   1040 #include <machine/db_machdep.h>
   1041 
   1042 /*
   1043  * Dump CPU information from ddb.
   1044  */
   1045 void
   1046 cpu_debug_dump(void)
   1047 {
   1048 	struct cpu_info *ci;
   1049 	CPU_INFO_ITERATOR cii;
   1050 	const char sixtyfour64space[] =
   1051 #ifdef _LP64
   1052 			   "        "
   1053 #endif
   1054 			   "";
   1055 
   1056 	db_printf("addr		%sdev	id	flags	ipis	spl curlwp 		"
   1057 		  "\n", sixtyfour64space);
   1058 	for (CPU_INFO_FOREACH(cii, ci)) {
   1059 		db_printf("%p	%s	%ld	%x	%x	%d  %10p\n",
   1060 		    ci,
   1061 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
   1062 		    (long)ci->ci_cpuid,
   1063 		    ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
   1064 		    ci->ci_curlwp);
   1065 	}
   1066 }
   1067 #endif
   1068 
   1069 #ifdef MULTIPROCESSOR
   1070 #if NLAPIC > 0
   1071 static void
   1072 cpu_copy_trampoline(paddr_t pdir_pa)
   1073 {
   1074 	extern uint32_t nox_flag;
   1075 	extern u_char cpu_spinup_trampoline[];
   1076 	extern u_char cpu_spinup_trampoline_end[];
   1077 	vaddr_t mp_trampoline_vaddr;
   1078 	struct {
   1079 		uint32_t large;
   1080 		uint32_t nox;
   1081 		uint32_t pdir;
   1082 	} smp_data;
   1083 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1084 
   1085 	smp_data.large = (pmap_largepages != 0);
   1086 	smp_data.nox = nox_flag;
   1087 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1088 
   1089 	/* Enter the physical address */
   1090 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1091 	    UVM_KMF_VAONLY);
   1092 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1093 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1094 	pmap_update(pmap_kernel());
   1095 
   1096 	/* Copy boot code */
   1097 	memcpy((void *)mp_trampoline_vaddr,
   1098 	    cpu_spinup_trampoline,
   1099 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1100 
   1101 	/* Copy smp_data at the end */
   1102 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1103 	    &smp_data, sizeof(smp_data));
   1104 
   1105 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1106 	pmap_update(pmap_kernel());
   1107 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1108 }
   1109 #endif
   1110 
   1111 int
   1112 mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1113 {
   1114 	int error;
   1115 
   1116 	/*
   1117 	 * Bootstrap code must be addressable in real mode
   1118 	 * and it must be page aligned.
   1119 	 */
   1120 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1121 
   1122 	/*
   1123 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1124 	 */
   1125 
   1126 	outb(IO_RTC, NVRAM_RESET);
   1127 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1128 
   1129 #if NLAPIC > 0
   1130 	/*
   1131 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1132 	 * to the AP startup code ..."
   1133 	 */
   1134 	unsigned short dwordptr[2];
   1135 	dwordptr[0] = 0;
   1136 	dwordptr[1] = target >> 4;
   1137 
   1138 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1139 #endif
   1140 
   1141 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1142 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1143 		return ENODEV;
   1144 	}
   1145 
   1146 	/*
   1147 	 * ... prior to executing the following sequence:".  We'll also add in
   1148 	 * local cache flush, in case the BIOS has left the AP with its cache
   1149 	 * disabled.  It may not be able to cope with MP coherency.
   1150 	 */
   1151 	wbinvd();
   1152 
   1153 	if (ci->ci_flags & CPUF_AP) {
   1154 		error = x86_ipi_init(ci->ci_cpuid);
   1155 		if (error != 0) {
   1156 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1157 			    __func__);
   1158 			return error;
   1159 		}
   1160 		delay_func(10000);
   1161 
   1162 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1163 		if (error != 0) {
   1164 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1165 			    __func__);
   1166 			return error;
   1167 		}
   1168 		delay_func(200);
   1169 
   1170 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1171 		if (error != 0) {
   1172 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1173 			    __func__);
   1174 			return error;
   1175 		}
   1176 		delay_func(200);
   1177 	}
   1178 
   1179 	return 0;
   1180 }
   1181 
   1182 void
   1183 mp_cpu_start_cleanup(struct cpu_info *ci)
   1184 {
   1185 	/*
   1186 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1187 	 */
   1188 
   1189 	outb(IO_RTC, NVRAM_RESET);
   1190 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1191 }
   1192 #endif
   1193 
   1194 #ifdef __x86_64__
   1195 typedef void (vector)(void);
   1196 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1197 #endif
   1198 
   1199 void
   1200 cpu_init_msrs(struct cpu_info *ci, bool full)
   1201 {
   1202 #ifdef __x86_64__
   1203 	wrmsr(MSR_STAR,
   1204 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1205 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1206 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1207 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1208 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1209 
   1210 #ifdef SVS
   1211 	if (svs_enabled)
   1212 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1213 #endif
   1214 
   1215 	if (full) {
   1216 		wrmsr(MSR_FSBASE, 0);
   1217 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1218 		wrmsr(MSR_KERNELGSBASE, 0);
   1219 	}
   1220 #endif	/* __x86_64__ */
   1221 
   1222 	if (cpu_feature[2] & CPUID_NOX)
   1223 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1224 }
   1225 
   1226 void
   1227 cpu_offline_md(void)
   1228 {
   1229 	return;
   1230 }
   1231 
   1232 /* XXX joerg restructure and restart CPUs individually */
   1233 static bool
   1234 cpu_stop(device_t dv)
   1235 {
   1236 	struct cpu_softc *sc = device_private(dv);
   1237 	struct cpu_info *ci = sc->sc_info;
   1238 	int err;
   1239 
   1240 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1241 
   1242 	if (CPU_IS_PRIMARY(ci))
   1243 		return true;
   1244 
   1245 	if (ci->ci_data.cpu_idlelwp == NULL)
   1246 		return true;
   1247 
   1248 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1249 
   1250 	if (sc->sc_wasonline) {
   1251 		mutex_enter(&cpu_lock);
   1252 		err = cpu_setstate(ci, false);
   1253 		mutex_exit(&cpu_lock);
   1254 
   1255 		if (err != 0)
   1256 			return false;
   1257 	}
   1258 
   1259 	return true;
   1260 }
   1261 
   1262 static bool
   1263 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1264 {
   1265 	struct cpu_softc *sc = device_private(dv);
   1266 	struct cpu_info *ci = sc->sc_info;
   1267 
   1268 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1269 		return true;
   1270 	else {
   1271 		cpufreq_suspend(ci);
   1272 	}
   1273 
   1274 	return cpu_stop(dv);
   1275 }
   1276 
   1277 static bool
   1278 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1279 {
   1280 	struct cpu_softc *sc = device_private(dv);
   1281 	struct cpu_info *ci = sc->sc_info;
   1282 	int err = 0;
   1283 
   1284 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1285 		return true;
   1286 
   1287 	if (CPU_IS_PRIMARY(ci))
   1288 		goto out;
   1289 
   1290 	if (ci->ci_data.cpu_idlelwp == NULL)
   1291 		goto out;
   1292 
   1293 	if (sc->sc_wasonline) {
   1294 		mutex_enter(&cpu_lock);
   1295 		err = cpu_setstate(ci, true);
   1296 		mutex_exit(&cpu_lock);
   1297 	}
   1298 
   1299 out:
   1300 	if (err != 0)
   1301 		return false;
   1302 
   1303 	cpufreq_resume(ci);
   1304 
   1305 	return true;
   1306 }
   1307 
   1308 static bool
   1309 cpu_shutdown(device_t dv, int how)
   1310 {
   1311 	struct cpu_softc *sc = device_private(dv);
   1312 	struct cpu_info *ci = sc->sc_info;
   1313 
   1314 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1315 		return false;
   1316 
   1317 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1318 		return true;
   1319 
   1320 	return cpu_stop(dv);
   1321 }
   1322 
   1323 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
   1324 void
   1325 cpu_get_tsc_freq(struct cpu_info *ci)
   1326 {
   1327 	uint64_t freq = 0, freq_from_cpuid, t0, t1;
   1328 	int64_t overhead;
   1329 
   1330 	if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
   1331 		/*
   1332 		 * If it's the first call of this function, try to get TSC
   1333 		 * freq from CPUID by calling cpu_tsc_freq_cpuid().
   1334 		 * The function also set lapic_per_second variable if it's
   1335 		 * known. This is required for Intel's Comet Lake and newer
   1336 		 * processors to set LAPIC timer correctly.
   1337 		 */
   1338 		if (ci->ci_data.cpu_cc_freq == 0)
   1339 			freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1340 		if (freq != 0)
   1341 			aprint_debug_dev(ci->ci_dev, "TSC freq "
   1342 			    "from CPUID %" PRIu64 " Hz\n", freq);
   1343 #if NHPET > 0
   1344 		if (freq == 0) {
   1345 			freq = hpet_tsc_freq();
   1346 			if (freq != 0)
   1347 				aprint_debug_dev(ci->ci_dev, "TSC freq "
   1348 				    "from HPET %" PRIu64 " Hz\n", freq);
   1349 		}
   1350 #endif
   1351 		if (freq == 0) {
   1352 			/*
   1353 			 * Work out the approximate overhead involved below.
   1354 			 * Discard the result of the first go around the
   1355 			 * loop.
   1356 			 */
   1357 			overhead = 0;
   1358 			for (int i = 0; i <= 8; i++) {
   1359 				const int s = splhigh();
   1360 				t0 = cpu_counter();
   1361 				delay_func(0);
   1362 				t1 = cpu_counter();
   1363 				splx(s);
   1364 				if (i > 0) {
   1365 					overhead += (t1 - t0);
   1366 				}
   1367 			}
   1368 			overhead >>= 3;
   1369 
   1370 			/*
   1371 			 * Now do the calibration.
   1372 			 */
   1373 			freq = 0;
   1374 			for (int i = 0; i < 1000; i++) {
   1375 				const int s = splhigh();
   1376 				t0 = cpu_counter();
   1377 				delay_func(100);
   1378 				t1 = cpu_counter();
   1379 				splx(s);
   1380 				freq += t1 - t0 - overhead;
   1381 			}
   1382 			freq = freq * 10;
   1383 
   1384 			aprint_debug_dev(ci->ci_dev, "TSC freq "
   1385 			    "from delay %" PRIu64 " Hz\n", freq);
   1386 		}
   1387 		if (ci->ci_data.cpu_cc_freq != 0) {
   1388 			freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1389 			if ((freq_from_cpuid != 0)
   1390 			    && (freq != freq_from_cpuid))
   1391 				aprint_verbose_dev(ci->ci_dev, "TSC freq "
   1392 				    "calibrated %" PRIu64 " Hz\n", freq);
   1393 		}
   1394 	} else {
   1395 		freq = cpu_info_primary.ci_data.cpu_cc_freq;
   1396 	}
   1397 
   1398 	ci->ci_data.cpu_cc_freq = freq;
   1399 }
   1400 
   1401 void
   1402 x86_cpu_idle_mwait(void)
   1403 {
   1404 	struct cpu_info *ci = curcpu();
   1405 
   1406 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1407 
   1408 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1409 	if (__predict_false(ci->ci_want_resched)) {
   1410 		return;
   1411 	}
   1412 	x86_mwait(0, 0);
   1413 }
   1414 
   1415 void
   1416 x86_cpu_idle_halt(void)
   1417 {
   1418 	struct cpu_info *ci = curcpu();
   1419 
   1420 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1421 
   1422 	x86_disable_intr();
   1423 	if (!__predict_false(ci->ci_want_resched)) {
   1424 		x86_stihlt();
   1425 	} else {
   1426 		x86_enable_intr();
   1427 	}
   1428 }
   1429 
   1430 /*
   1431  * Loads pmap for the current CPU.
   1432  */
   1433 void
   1434 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1435 {
   1436 
   1437 	KASSERT(kpreempt_disabled());
   1438 
   1439 #ifdef SVS
   1440 	if (svs_enabled && pmap_is_user(pmap)) {
   1441 		svs_pdir_switch(pmap);
   1442 	}
   1443 #endif
   1444 
   1445 #ifdef PAE
   1446 	struct cpu_info *ci = curcpu();
   1447 	bool interrupts_enabled;
   1448 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1449 	int i;
   1450 
   1451 	/*
   1452 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1453 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1454 	 * reload cr3.
   1455 	 */
   1456 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1457 	if (interrupts_enabled)
   1458 		x86_disable_intr();
   1459 
   1460 	for (i = 0 ; i < PDP_SIZE; i++) {
   1461 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1462 	}
   1463 
   1464 	if (interrupts_enabled)
   1465 		x86_enable_intr();
   1466 	tlbflush();
   1467 #else
   1468 	lcr3(pmap_pdirpa(pmap, 0));
   1469 #endif
   1470 }
   1471 
   1472 /*
   1473  * Notify all other cpus to halt.
   1474  */
   1475 
   1476 void
   1477 cpu_broadcast_halt(void)
   1478 {
   1479 	x86_broadcast_ipi(X86_IPI_HALT);
   1480 }
   1481 
   1482 /*
   1483  * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
   1484  * and trigger an AST on the running LWP.
   1485  */
   1486 
   1487 void
   1488 cpu_kick(struct cpu_info *ci)
   1489 {
   1490 	x86_send_ipi(ci, X86_IPI_AST);
   1491 }
   1492