cpu.c revision 1.45 1 /* $NetBSD: cpu.c,v 1.45 2008/05/11 22:26:59 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.45 2008/05/11 22:26:59 ad Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70
71 #include "lapic.h"
72 #include "ioapic.h"
73
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/user.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/cpu.h>
81 #include <sys/atomic.h>
82 #include <sys/reboot.h>
83
84 #include <uvm/uvm_extern.h>
85
86 #include <machine/cpufunc.h>
87 #include <machine/cpuvar.h>
88 #include <machine/pmap.h>
89 #include <machine/vmparam.h>
90 #include <machine/mpbiosvar.h>
91 #include <machine/pcb.h>
92 #include <machine/specialreg.h>
93 #include <machine/segments.h>
94 #include <machine/gdt.h>
95 #include <machine/mtrr.h>
96 #include <machine/pio.h>
97 #include <machine/cpu_counter.h>
98
99 #ifdef i386
100 #include <machine/tlog.h>
101 #endif
102
103 #include <machine/apicvar.h>
104 #include <machine/i82489reg.h>
105 #include <machine/i82489var.h>
106
107 #include <dev/ic/mc146818reg.h>
108 #include <i386/isa/nvram.h>
109 #include <dev/isa/isareg.h>
110
111 #include "tsc.h"
112
113 int cpu_match(device_t, cfdata_t, void *);
114 void cpu_attach(device_t, device_t, void *);
115
116 static bool cpu_suspend(device_t PMF_FN_PROTO);
117 static bool cpu_resume(device_t PMF_FN_PROTO);
118
119 struct cpu_softc {
120 device_t sc_dev; /* device tree glue */
121 struct cpu_info *sc_info; /* pointer to CPU info */
122 bool sc_wasonline;
123 };
124
125 int mp_cpu_start(struct cpu_info *, paddr_t);
126 void mp_cpu_start_cleanup(struct cpu_info *);
127 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
128 mp_cpu_start_cleanup };
129
130
131 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
132 cpu_match, cpu_attach, NULL, NULL);
133
134 /*
135 * Statically-allocated CPU info for the primary CPU (or the only
136 * CPU, on uniprocessors). The CPU info list is initialized to
137 * point at it.
138 */
139 #ifdef TRAPLOG
140 struct tlog tlog_primary;
141 #endif
142 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
143 .ci_dev = 0,
144 .ci_self = &cpu_info_primary,
145 .ci_idepth = -1,
146 .ci_curlwp = &lwp0,
147 .ci_curldt = -1,
148 #ifdef TRAPLOG
149 .ci_tlog_base = &tlog_primary,
150 #endif /* !TRAPLOG */
151 };
152
153 struct cpu_info *cpu_info_list = &cpu_info_primary;
154
155 static void cpu_set_tss_gates(struct cpu_info *);
156
157 #ifdef i386
158 static void tss_init(struct i386tss *, void *, void *);
159 #endif
160
161 static void cpu_init_idle_lwp(struct cpu_info *);
162
163 uint32_t cpus_attached = 0;
164 uint32_t cpus_running = 0;
165
166 extern char x86_64_doubleflt_stack[];
167
168 bool x86_mp_online;
169 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
170
171 static vaddr_t cmos_data_mapping;
172
173 /*
174 * Array of CPU info structures. Must be statically-allocated because
175 * curproc, etc. are used early.
176 */
177 struct cpu_info *cpu_info[X86_MAXPROCS];
178 struct cpu_info *cpu_starting;
179
180 void cpu_hatch(void *);
181 static void cpu_boot_secondary(struct cpu_info *ci);
182 static void cpu_start_secondary(struct cpu_info *ci);
183 static void cpu_copy_trampoline(void);
184
185 /*
186 * Runs once per boot once multiprocessor goo has been detected and
187 * the local APIC on the boot processor has been mapped.
188 *
189 * Called from lapic_boot_init() (from mpbios_scan()).
190 */
191 void
192 cpu_init_first(void)
193 {
194
195 cpu_info_primary.ci_cpuid = lapic_cpu_number();
196 cpu_copy_trampoline();
197
198 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
199 if (cmos_data_mapping == 0)
200 panic("No KVA for page 0");
201 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
202 pmap_update(pmap_kernel());
203 }
204
205 int
206 cpu_match(device_t parent, cfdata_t match, void *aux)
207 {
208
209 return 1;
210 }
211
212 static void
213 cpu_vm_init(struct cpu_info *ci)
214 {
215 int ncolors = 2, i;
216
217 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
218 struct x86_cache_info *cai;
219 int tcolors;
220
221 cai = &ci->ci_cinfo[i];
222
223 tcolors = atop(cai->cai_totalsize);
224 switch(cai->cai_associativity) {
225 case 0xff:
226 tcolors = 1; /* fully associative */
227 break;
228 case 0:
229 case 1:
230 break;
231 default:
232 tcolors /= cai->cai_associativity;
233 }
234 ncolors = max(ncolors, tcolors);
235 /*
236 * If the desired number of colors is not a power of
237 * two, it won't be good. Find the greatest power of
238 * two which is an even divisor of the number of colors,
239 * to preserve even coloring of pages.
240 */
241 if (ncolors & (ncolors - 1) ) {
242 int try, picked = 1;
243 for (try = 1; try < ncolors; try *= 2) {
244 if (ncolors % try == 0) picked = try;
245 }
246 if (picked == 1) {
247 panic("desired number of cache colors %d is "
248 " > 1, but not even!", ncolors);
249 }
250 ncolors = picked;
251 }
252 }
253
254 /*
255 * Knowing the size of the largest cache on this CPU, re-color
256 * our pages.
257 */
258 if (ncolors <= uvmexp.ncolors)
259 return;
260 aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
261 uvm_page_recolor(ncolors);
262 }
263
264
265 void
266 cpu_attach(device_t parent, device_t self, void *aux)
267 {
268 struct cpu_softc *sc = device_private(self);
269 struct cpu_attach_args *caa = aux;
270 struct cpu_info *ci;
271 uintptr_t ptr;
272 int cpunum = caa->cpu_number;
273
274 sc->sc_dev = self;
275
276 /* Make sure DELAY() is initialized. */
277 DELAY(1);
278
279 /*
280 * If we're an Application Processor, allocate a cpu_info
281 * structure, otherwise use the primary's.
282 */
283 if (caa->cpu_role == CPU_ROLE_AP) {
284 if ((boothowto & RB_MD1) != 0) {
285 aprint_error(": multiprocessor boot disabled\n");
286 return;
287 }
288 aprint_naive(": Application Processor\n");
289 ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
290 M_DEVBUF, M_WAITOK);
291 ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
292 ~(CACHE_LINE_SIZE - 1));
293 memset(ci, 0, sizeof(*ci));
294 ci->ci_curldt = -1;
295 #ifdef TRAPLOG
296 ci->ci_tlog_base = malloc(sizeof(struct tlog),
297 M_DEVBUF, M_WAITOK);
298 #endif
299 } else {
300 aprint_naive(": %s Processor\n",
301 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
302 ci = &cpu_info_primary;
303 if (cpunum != lapic_cpu_number()) {
304 uint32_t reg;
305 aprint_verbose("\n");
306 aprint_verbose("%s: running CPU is at apic %d"
307 " instead of at expected %d",
308 device_xname(sc->sc_dev), lapic_cpu_number(),
309 cpunum);
310 reg = i82489_readreg(LAPIC_ID);
311 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
312 (cpunum << LAPIC_ID_SHIFT));
313 }
314 }
315
316 ci->ci_self = ci;
317 sc->sc_info = ci;
318
319 ci->ci_dev = self;
320 ci->ci_cpuid = caa->cpu_number;
321 ci->ci_func = caa->cpu_func;
322
323 if (caa->cpu_role == CPU_ROLE_AP) {
324 int error;
325
326 error = mi_cpu_attach(ci);
327 if (error != 0) {
328 aprint_normal("\n");
329 aprint_error_dev(sc->sc_dev,
330 "mi_cpu_attach failed with %d\n", error);
331 return;
332 }
333 cpu_init_tss(ci);
334 } else {
335 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
336 }
337
338 ci->ci_cpumask = (1 << cpu_index(ci));
339 cpu_info[cpu_index(ci)] = ci;
340 pmap_reference(pmap_kernel());
341 ci->ci_pmap = pmap_kernel();
342 ci->ci_tlbstate = TLBSTATE_STALE;
343
344 /* further PCB init done later. */
345
346 switch (caa->cpu_role) {
347 case CPU_ROLE_SP:
348 atomic_or_32(&ci->ci_flags,
349 CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
350 cpu_intr_init(ci);
351 cpu_get_tsc_freq(ci);
352 cpu_identify(ci);
353 cpu_init(ci);
354 cpu_set_tss_gates(ci);
355 pmap_cpu_init_late(ci);
356 x86_errata();
357 x86_cpu_idle_init();
358 break;
359
360 case CPU_ROLE_BP:
361 atomic_or_32(&ci->ci_flags,
362 CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
363 cpu_intr_init(ci);
364 cpu_get_tsc_freq(ci);
365 cpu_identify(ci);
366 cpu_init(ci);
367 cpu_set_tss_gates(ci);
368 pmap_cpu_init_late(ci);
369 /*
370 * Enable local apic
371 */
372 lapic_enable();
373 lapic_set_lvt();
374 lapic_calibrate_timer(ci);
375 x86_errata();
376 x86_cpu_idle_init();
377 break;
378
379 case CPU_ROLE_AP:
380 /*
381 * report on an AP
382 */
383 cpu_intr_init(ci);
384 gdt_alloc_cpu(ci);
385 cpu_set_tss_gates(ci);
386 pmap_cpu_init_early(ci);
387 pmap_cpu_init_late(ci);
388 cpu_start_secondary(ci);
389 if (ci->ci_flags & CPUF_PRESENT) {
390 cpu_identify(ci);
391 ci->ci_next = cpu_info_list->ci_next;
392 cpu_info_list->ci_next = ci;
393 }
394 break;
395
396 default:
397 aprint_normal("\n");
398 panic("unknown processor type??\n");
399 }
400 cpu_vm_init(ci);
401
402 cpus_attached |= ci->ci_cpumask;
403
404 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
405 aprint_error_dev(self, "couldn't establish power handler\n");
406
407 if (mp_verbose) {
408 struct lwp *l = ci->ci_data.cpu_idlelwp;
409
410 aprint_verbose_dev(sc->sc_dev,
411 "idle lwp at %p, idle sp at %p\n",
412 l,
413 #ifdef i386
414 (void *)l->l_addr->u_pcb.pcb_esp
415 #else
416 (void *)l->l_addr->u_pcb.pcb_rsp
417 #endif
418 );
419 }
420 }
421
422 /*
423 * Initialize the processor appropriately.
424 */
425
426 void
427 cpu_init(struct cpu_info *ci)
428 {
429
430 lcr0(rcr0() | CR0_WP);
431
432 /*
433 * On a P6 or above, enable global TLB caching if the
434 * hardware supports it.
435 */
436 if (cpu_feature & CPUID_PGE)
437 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
438
439 /*
440 * If we have FXSAVE/FXRESTOR, use them.
441 */
442 if (cpu_feature & CPUID_FXSR) {
443 lcr4(rcr4() | CR4_OSFXSR);
444
445 /*
446 * If we have SSE/SSE2, enable XMM exceptions.
447 */
448 if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
449 lcr4(rcr4() | CR4_OSXMMEXCPT);
450 }
451
452 #ifdef MTRR
453 /*
454 * On a P6 or above, initialize MTRR's if the hardware supports them.
455 */
456 if (cpu_feature & CPUID_MTRR) {
457 if ((ci->ci_flags & CPUF_AP) == 0)
458 i686_mtrr_init_first();
459 mtrr_init_cpu(ci);
460 }
461
462 #ifdef i386
463 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
464 /*
465 * Must be a K6-2 Step >= 7 or a K6-III.
466 */
467 if (CPUID2FAMILY(ci->ci_signature) == 5) {
468 if (CPUID2MODEL(ci->ci_signature) > 8 ||
469 (CPUID2MODEL(ci->ci_signature) == 8 &&
470 CPUID2STEPPING(ci->ci_signature) >= 7)) {
471 mtrr_funcs = &k6_mtrr_funcs;
472 k6_mtrr_init_first();
473 mtrr_init_cpu(ci);
474 }
475 }
476 }
477 #endif /* i386 */
478 #endif /* MTRR */
479
480 atomic_or_32(&cpus_running, ci->ci_cpumask);
481
482 if (ci != &cpu_info_primary) {
483 /* Synchronize TSC again, and check for drift. */
484 wbinvd();
485 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
486 tsc_sync_ap(ci);
487 tsc_sync_ap(ci);
488 } else {
489 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
490 }
491 }
492
493 void
494 cpu_boot_secondary_processors(void)
495 {
496 struct cpu_info *ci;
497 u_long i;
498
499 /* Now that we know the number of CPUs, patch the text segment. */
500 x86_patch();
501
502 for (i=0; i < X86_MAXPROCS; i++) {
503 ci = cpu_info[i];
504 if (ci == NULL)
505 continue;
506 if (ci->ci_data.cpu_idlelwp == NULL)
507 continue;
508 if ((ci->ci_flags & CPUF_PRESENT) == 0)
509 continue;
510 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
511 continue;
512 cpu_boot_secondary(ci);
513 }
514
515 x86_mp_online = true;
516
517 /* Now that we know about the TSC, attach the timecounter. */
518 tsc_tc_init();
519 }
520
521 static void
522 cpu_init_idle_lwp(struct cpu_info *ci)
523 {
524 struct lwp *l = ci->ci_data.cpu_idlelwp;
525 struct pcb *pcb = &l->l_addr->u_pcb;
526
527 pcb->pcb_cr0 = rcr0();
528 }
529
530 void
531 cpu_init_idle_lwps(void)
532 {
533 struct cpu_info *ci;
534 u_long i;
535
536 for (i = 0; i < X86_MAXPROCS; i++) {
537 ci = cpu_info[i];
538 if (ci == NULL)
539 continue;
540 if (ci->ci_data.cpu_idlelwp == NULL)
541 continue;
542 if ((ci->ci_flags & CPUF_PRESENT) == 0)
543 continue;
544 cpu_init_idle_lwp(ci);
545 }
546 }
547
548 void
549 cpu_start_secondary(struct cpu_info *ci)
550 {
551 extern paddr_t mp_pdirpa;
552 u_long psl;
553 int i;
554
555 KASSERT(cpu_starting == NULL);
556
557 cpu_starting = ci;
558 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
559 atomic_or_32(&ci->ci_flags, CPUF_AP);
560 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
561 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
562 cpu_starting = NULL;
563 return;
564 }
565
566 /*
567 * wait for it to become ready
568 */
569 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
570 #ifdef MPDEBUG
571 extern int cpu_trace[3];
572 static int otrace[3];
573 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
574 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
575 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
576 memcpy(otrace, cpu_trace, sizeof(otrace));
577 }
578 #endif
579 i8254_delay(10);
580 }
581
582 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
583 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
584 #if defined(MPDEBUG) && defined(DDB)
585 printf("dropping into debugger; continue from here to resume boot\n");
586 Debugger();
587 #endif
588 } else {
589 /*
590 * Synchronize time stamp counters. Invalidate cache and do twice
591 * to try and minimize possible cache effects. Disable interrupts
592 * to try and rule out any external interference.
593 */
594 psl = x86_read_psl();
595 x86_disable_intr();
596 wbinvd();
597 tsc_sync_bp(ci);
598 tsc_sync_bp(ci);
599 x86_write_psl(psl);
600 }
601
602 CPU_START_CLEANUP(ci);
603 cpu_starting = NULL;
604 }
605
606 void
607 cpu_boot_secondary(struct cpu_info *ci)
608 {
609 int64_t drift;
610 u_long psl;
611 int i;
612
613 atomic_or_32(&ci->ci_flags, CPUF_GO);
614 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
615 i8254_delay(10);
616 }
617 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
618 aprint_error_dev(ci->ci_dev, "failed to start\n");
619 #if defined(MPDEBUG) && defined(DDB)
620 printf("dropping into debugger; continue from here to resume boot\n");
621 Debugger();
622 #endif
623 } else {
624 /* Synchronize TSC again, check for drift. */
625 drift = ci->ci_data.cpu_cc_skew;
626 psl = x86_read_psl();
627 x86_disable_intr();
628 wbinvd();
629 tsc_sync_bp(ci);
630 tsc_sync_bp(ci);
631 x86_write_psl(psl);
632 drift -= ci->ci_data.cpu_cc_skew;
633 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
634 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
635 tsc_sync_drift(drift);
636 }
637 }
638
639 /*
640 * The CPU ends up here when its ready to run
641 * This is called from code in mptramp.s; at this point, we are running
642 * in the idle pcb/idle stack of the new CPU. When this function returns,
643 * this processor will enter the idle loop and start looking for work.
644 */
645 void
646 cpu_hatch(void *v)
647 {
648 struct cpu_info *ci = (struct cpu_info *)v;
649 int s, i;
650
651 #ifdef __x86_64__
652 cpu_init_msrs(ci, true);
653 #endif
654 cpu_probe(ci);
655 cpu_get_tsc_freq(ci);
656
657 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
658
659 /*
660 * Synchronize time stamp counters. Invalidate cache and do twice
661 * to try and minimize possible cache effects. Note that interrupts
662 * are off at this point.
663 */
664 wbinvd();
665 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
666 tsc_sync_ap(ci);
667 tsc_sync_ap(ci);
668
669 /*
670 * Wait to be brought online. Use 'monitor/mwait' if available,
671 * in order to make the TSC drift as much as possible. so that
672 * we can detect it later. If not available, try 'pause'.
673 * We'd like to use 'hlt', but we have interrupts off.
674 */
675 while ((ci->ci_flags & CPUF_GO) == 0) {
676 if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
677 x86_monitor(&ci->ci_flags, 0, 0);
678 if ((ci->ci_flags & CPUF_GO) != 0) {
679 continue;
680 }
681 x86_mwait(0, 0);
682 } else {
683 for (i = 10000; i != 0; i--) {
684 x86_pause();
685 }
686 }
687 }
688
689 /* Because the text may have been patched in x86_patch(). */
690 wbinvd();
691 x86_flush();
692
693 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
694
695 lcr3(pmap_kernel()->pm_pdirpa);
696 curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
697 lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
698 cpu_init_idt();
699 gdt_init_cpu(ci);
700 lapic_enable();
701 lapic_set_lvt();
702 lapic_initclocks();
703
704 #ifdef i386
705 npxinit(ci);
706 #else
707 fpuinit(ci);
708 #endif
709 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
710 ltr(ci->ci_tss_sel);
711
712 cpu_init(ci);
713 cpu_get_tsc_freq(ci);
714
715 s = splhigh();
716 #ifdef i386
717 lapic_tpr = 0;
718 #else
719 lcr8(0);
720 #endif
721 x86_enable_intr();
722 splx(s);
723 x86_errata();
724
725 aprint_debug_dev(ci->ci_dev, "running\n");
726 }
727
728 #if defined(DDB)
729
730 #include <ddb/db_output.h>
731 #include <machine/db_machdep.h>
732
733 /*
734 * Dump CPU information from ddb.
735 */
736 void
737 cpu_debug_dump(void)
738 {
739 struct cpu_info *ci;
740 CPU_INFO_ITERATOR cii;
741
742 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
743 for (CPU_INFO_FOREACH(cii, ci)) {
744 db_printf("%p %s %ld %x %x %10p %10p\n",
745 ci,
746 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
747 (long)ci->ci_cpuid,
748 ci->ci_flags, ci->ci_ipis,
749 ci->ci_curlwp,
750 ci->ci_fpcurlwp);
751 }
752 }
753 #endif
754
755 static void
756 cpu_copy_trampoline(void)
757 {
758 /*
759 * Copy boot code.
760 */
761 extern u_char cpu_spinup_trampoline[];
762 extern u_char cpu_spinup_trampoline_end[];
763
764 vaddr_t mp_trampoline_vaddr;
765
766 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
767 UVM_KMF_VAONLY);
768
769 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
770 VM_PROT_READ | VM_PROT_WRITE);
771 pmap_update(pmap_kernel());
772 memcpy((void *)mp_trampoline_vaddr,
773 cpu_spinup_trampoline,
774 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
775
776 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
777 pmap_update(pmap_kernel());
778 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
779 }
780
781 #ifdef i386
782 static void
783 tss_init(struct i386tss *tss, void *stack, void *func)
784 {
785 memset(tss, 0, sizeof *tss);
786 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
787 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
788 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
789 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
790 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
791 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
792 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
793 tss->tss_esp = (int)((char *)stack + USPACE - 16);
794 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
795 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
796 tss->__tss_eip = (int)func;
797 }
798
799 /* XXX */
800 #define IDTVEC(name) __CONCAT(X, name)
801 typedef void (vector)(void);
802 extern vector IDTVEC(tss_trap08);
803 #ifdef DDB
804 extern vector Xintrddbipi;
805 extern int ddb_vec;
806 #endif
807
808 static void
809 cpu_set_tss_gates(struct cpu_info *ci)
810 {
811 struct segment_descriptor sd;
812
813 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
814 UVM_KMF_WIRED);
815 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
816 IDTVEC(tss_trap08));
817 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
818 SDT_SYS386TSS, SEL_KPL, 0, 0);
819 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
820 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
821 GSEL(GTRAPTSS_SEL, SEL_KPL));
822
823 #if defined(DDB)
824 /*
825 * Set up separate handler for the DDB IPI, so that it doesn't
826 * stomp on a possibly corrupted stack.
827 *
828 * XXX overwriting the gate set in db_machine_init.
829 * Should rearrange the code so that it's set only once.
830 */
831 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
832 UVM_KMF_WIRED);
833 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
834
835 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
836 SDT_SYS386TSS, SEL_KPL, 0, 0);
837 ci->ci_gdt[GIPITSS_SEL].sd = sd;
838
839 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
840 GSEL(GIPITSS_SEL, SEL_KPL));
841 #endif
842 }
843 #else
844 static void
845 cpu_set_tss_gates(struct cpu_info *ci)
846 {
847
848 }
849 #endif /* i386 */
850
851 int
852 mp_cpu_start(struct cpu_info *ci, paddr_t target)
853 {
854 unsigned short dwordptr[2];
855 int error;
856
857 /*
858 * Bootstrap code must be addressable in real mode
859 * and it must be page aligned.
860 */
861 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
862
863 /*
864 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
865 */
866
867 outb(IO_RTC, NVRAM_RESET);
868 outb(IO_RTC+1, NVRAM_RESET_JUMP);
869
870 /*
871 * "and the warm reset vector (DWORD based at 40:67) to point
872 * to the AP startup code ..."
873 */
874
875 dwordptr[0] = 0;
876 dwordptr[1] = target >> 4;
877
878 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
879
880 if ((cpu_feature & CPUID_APIC) == 0) {
881 aprint_error("mp_cpu_start: CPU does not have APIC\n");
882 return ENODEV;
883 }
884
885 /*
886 * ... prior to executing the following sequence:"
887 */
888
889 if (ci->ci_flags & CPUF_AP) {
890 error = x86_ipi_init(ci->ci_cpuid);
891 if (error != 0) {
892 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
893 __func__);
894 return error;
895 }
896
897 i8254_delay(10000);
898
899 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
900 LAPIC_DLMODE_STARTUP);
901 if (error != 0) {
902 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
903 __func__);
904 return error;
905 }
906 i8254_delay(200);
907
908 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
909 LAPIC_DLMODE_STARTUP);
910 if (error != 0) {
911 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
912 __func__);
913 return error;
914 }
915 i8254_delay(200);
916 }
917
918 return 0;
919 }
920
921 void
922 mp_cpu_start_cleanup(struct cpu_info *ci)
923 {
924 /*
925 * Ensure the NVRAM reset byte contains something vaguely sane.
926 */
927
928 outb(IO_RTC, NVRAM_RESET);
929 outb(IO_RTC+1, NVRAM_RESET_RST);
930 }
931
932 #ifdef __x86_64__
933 typedef void (vector)(void);
934 extern vector Xsyscall, Xsyscall32;
935
936 void
937 cpu_init_msrs(struct cpu_info *ci, bool full)
938 {
939 wrmsr(MSR_STAR,
940 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
941 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
942 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
943 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
944 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
945
946 if (full) {
947 wrmsr(MSR_FSBASE, 0);
948 wrmsr(MSR_GSBASE, (uint64_t)ci);
949 wrmsr(MSR_KERNELGSBASE, 0);
950 }
951
952 if (cpu_feature & CPUID_NOX)
953 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
954 }
955 #endif /* __x86_64__ */
956
957 void
958 cpu_offline_md(void)
959 {
960 int s;
961
962 s = splhigh();
963 #ifdef __i386__
964 npxsave_cpu(true);
965 #else
966 fpusave_cpu(true);
967 #endif
968 splx(s);
969 }
970
971 /* XXX joerg restructure and restart CPUs individually */
972 static bool
973 cpu_suspend(device_t dv PMF_FN_ARGS)
974 {
975 struct cpu_softc *sc = device_private(dv);
976 struct cpu_info *ci = sc->sc_info;
977 int err;
978
979 if (ci->ci_flags & CPUF_PRIMARY)
980 return true;
981 if (ci->ci_data.cpu_idlelwp == NULL)
982 return true;
983 if ((ci->ci_flags & CPUF_PRESENT) == 0)
984 return true;
985
986 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
987
988 if (sc->sc_wasonline) {
989 mutex_enter(&cpu_lock);
990 err = cpu_setonline(ci, false);
991 mutex_exit(&cpu_lock);
992
993 if (err)
994 return false;
995 }
996
997 return true;
998 }
999
1000 static bool
1001 cpu_resume(device_t dv PMF_FN_ARGS)
1002 {
1003 struct cpu_softc *sc = device_private(dv);
1004 struct cpu_info *ci = sc->sc_info;
1005 int err = 0;
1006
1007 if (ci->ci_flags & CPUF_PRIMARY)
1008 return true;
1009 if (ci->ci_data.cpu_idlelwp == NULL)
1010 return true;
1011 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1012 return true;
1013
1014 if (sc->sc_wasonline) {
1015 mutex_enter(&cpu_lock);
1016 err = cpu_setonline(ci, true);
1017 mutex_exit(&cpu_lock);
1018 }
1019
1020 return err == 0;
1021 }
1022
1023 void
1024 cpu_get_tsc_freq(struct cpu_info *ci)
1025 {
1026 uint64_t last_tsc;
1027
1028 if (ci->ci_feature_flags & CPUID_TSC) {
1029 last_tsc = rdmsr(MSR_TSC);
1030 i8254_delay(100000);
1031 ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
1032 }
1033 }
1034
1035 void
1036 x86_cpu_idle_mwait(void)
1037 {
1038 struct cpu_info *ci = curcpu();
1039
1040 KASSERT(ci->ci_ilevel == IPL_NONE);
1041
1042 x86_monitor(&ci->ci_want_resched, 0, 0);
1043 if (__predict_false(ci->ci_want_resched)) {
1044 return;
1045 }
1046 x86_mwait(0, 0);
1047 }
1048
1049 void
1050 x86_cpu_idle_halt(void)
1051 {
1052 struct cpu_info *ci = curcpu();
1053
1054 KASSERT(ci->ci_ilevel == IPL_NONE);
1055
1056 x86_disable_intr();
1057 if (!__predict_false(ci->ci_want_resched)) {
1058 x86_stihlt();
1059 } else {
1060 x86_enable_intr();
1061 }
1062 }
1063