Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.45
      1 /*	$NetBSD: cpu.c,v 1.45 2008/05/11 22:26:59 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.45 2008/05/11 22:26:59 ad Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/user.h>
     77 #include <sys/systm.h>
     78 #include <sys/device.h>
     79 #include <sys/malloc.h>
     80 #include <sys/cpu.h>
     81 #include <sys/atomic.h>
     82 #include <sys/reboot.h>
     83 
     84 #include <uvm/uvm_extern.h>
     85 
     86 #include <machine/cpufunc.h>
     87 #include <machine/cpuvar.h>
     88 #include <machine/pmap.h>
     89 #include <machine/vmparam.h>
     90 #include <machine/mpbiosvar.h>
     91 #include <machine/pcb.h>
     92 #include <machine/specialreg.h>
     93 #include <machine/segments.h>
     94 #include <machine/gdt.h>
     95 #include <machine/mtrr.h>
     96 #include <machine/pio.h>
     97 #include <machine/cpu_counter.h>
     98 
     99 #ifdef i386
    100 #include <machine/tlog.h>
    101 #endif
    102 
    103 #include <machine/apicvar.h>
    104 #include <machine/i82489reg.h>
    105 #include <machine/i82489var.h>
    106 
    107 #include <dev/ic/mc146818reg.h>
    108 #include <i386/isa/nvram.h>
    109 #include <dev/isa/isareg.h>
    110 
    111 #include "tsc.h"
    112 
    113 int     cpu_match(device_t, cfdata_t, void *);
    114 void    cpu_attach(device_t, device_t, void *);
    115 
    116 static bool	cpu_suspend(device_t PMF_FN_PROTO);
    117 static bool	cpu_resume(device_t PMF_FN_PROTO);
    118 
    119 struct cpu_softc {
    120 	device_t sc_dev;		/* device tree glue */
    121 	struct cpu_info *sc_info;	/* pointer to CPU info */
    122 	bool sc_wasonline;
    123 };
    124 
    125 int mp_cpu_start(struct cpu_info *, paddr_t);
    126 void mp_cpu_start_cleanup(struct cpu_info *);
    127 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    128 					    mp_cpu_start_cleanup };
    129 
    130 
    131 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    132     cpu_match, cpu_attach, NULL, NULL);
    133 
    134 /*
    135  * Statically-allocated CPU info for the primary CPU (or the only
    136  * CPU, on uniprocessors).  The CPU info list is initialized to
    137  * point at it.
    138  */
    139 #ifdef TRAPLOG
    140 struct tlog tlog_primary;
    141 #endif
    142 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    143 	.ci_dev = 0,
    144 	.ci_self = &cpu_info_primary,
    145 	.ci_idepth = -1,
    146 	.ci_curlwp = &lwp0,
    147 	.ci_curldt = -1,
    148 #ifdef TRAPLOG
    149 	.ci_tlog_base = &tlog_primary,
    150 #endif /* !TRAPLOG */
    151 };
    152 
    153 struct cpu_info *cpu_info_list = &cpu_info_primary;
    154 
    155 static void	cpu_set_tss_gates(struct cpu_info *);
    156 
    157 #ifdef i386
    158 static void	tss_init(struct i386tss *, void *, void *);
    159 #endif
    160 
    161 static void	cpu_init_idle_lwp(struct cpu_info *);
    162 
    163 uint32_t cpus_attached = 0;
    164 uint32_t cpus_running = 0;
    165 
    166 extern char x86_64_doubleflt_stack[];
    167 
    168 bool x86_mp_online;
    169 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    170 
    171 static vaddr_t cmos_data_mapping;
    172 
    173 /*
    174  * Array of CPU info structures.  Must be statically-allocated because
    175  * curproc, etc. are used early.
    176  */
    177 struct cpu_info *cpu_info[X86_MAXPROCS];
    178 struct cpu_info *cpu_starting;
    179 
    180 void    	cpu_hatch(void *);
    181 static void    	cpu_boot_secondary(struct cpu_info *ci);
    182 static void    	cpu_start_secondary(struct cpu_info *ci);
    183 static void	cpu_copy_trampoline(void);
    184 
    185 /*
    186  * Runs once per boot once multiprocessor goo has been detected and
    187  * the local APIC on the boot processor has been mapped.
    188  *
    189  * Called from lapic_boot_init() (from mpbios_scan()).
    190  */
    191 void
    192 cpu_init_first(void)
    193 {
    194 
    195 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    196 	cpu_copy_trampoline();
    197 
    198 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    199 	if (cmos_data_mapping == 0)
    200 		panic("No KVA for page 0");
    201 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
    202 	pmap_update(pmap_kernel());
    203 }
    204 
    205 int
    206 cpu_match(device_t parent, cfdata_t match, void *aux)
    207 {
    208 
    209 	return 1;
    210 }
    211 
    212 static void
    213 cpu_vm_init(struct cpu_info *ci)
    214 {
    215 	int ncolors = 2, i;
    216 
    217 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    218 		struct x86_cache_info *cai;
    219 		int tcolors;
    220 
    221 		cai = &ci->ci_cinfo[i];
    222 
    223 		tcolors = atop(cai->cai_totalsize);
    224 		switch(cai->cai_associativity) {
    225 		case 0xff:
    226 			tcolors = 1; /* fully associative */
    227 			break;
    228 		case 0:
    229 		case 1:
    230 			break;
    231 		default:
    232 			tcolors /= cai->cai_associativity;
    233 		}
    234 		ncolors = max(ncolors, tcolors);
    235 		/*
    236 		 * If the desired number of colors is not a power of
    237 		 * two, it won't be good.  Find the greatest power of
    238 		 * two which is an even divisor of the number of colors,
    239 		 * to preserve even coloring of pages.
    240 		 */
    241 		if (ncolors & (ncolors - 1) ) {
    242 			int try, picked = 1;
    243 			for (try = 1; try < ncolors; try *= 2) {
    244 				if (ncolors % try == 0) picked = try;
    245 			}
    246 			if (picked == 1) {
    247 				panic("desired number of cache colors %d is "
    248 			      	" > 1, but not even!", ncolors);
    249 			}
    250 			ncolors = picked;
    251 		}
    252 	}
    253 
    254 	/*
    255 	 * Knowing the size of the largest cache on this CPU, re-color
    256 	 * our pages.
    257 	 */
    258 	if (ncolors <= uvmexp.ncolors)
    259 		return;
    260 	aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
    261 	uvm_page_recolor(ncolors);
    262 }
    263 
    264 
    265 void
    266 cpu_attach(device_t parent, device_t self, void *aux)
    267 {
    268 	struct cpu_softc *sc = device_private(self);
    269 	struct cpu_attach_args *caa = aux;
    270 	struct cpu_info *ci;
    271 	uintptr_t ptr;
    272 	int cpunum = caa->cpu_number;
    273 
    274 	sc->sc_dev = self;
    275 
    276 	/* Make sure DELAY() is initialized. */
    277 	DELAY(1);
    278 
    279 	/*
    280 	 * If we're an Application Processor, allocate a cpu_info
    281 	 * structure, otherwise use the primary's.
    282 	 */
    283 	if (caa->cpu_role == CPU_ROLE_AP) {
    284 		if ((boothowto & RB_MD1) != 0) {
    285 			aprint_error(": multiprocessor boot disabled\n");
    286 			return;
    287 		}
    288 		aprint_naive(": Application Processor\n");
    289 		ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    290 		    M_DEVBUF, M_WAITOK);
    291 		ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
    292 		    ~(CACHE_LINE_SIZE - 1));
    293 		memset(ci, 0, sizeof(*ci));
    294 		ci->ci_curldt = -1;
    295 #ifdef TRAPLOG
    296 		ci->ci_tlog_base = malloc(sizeof(struct tlog),
    297 		    M_DEVBUF, M_WAITOK);
    298 #endif
    299 	} else {
    300 		aprint_naive(": %s Processor\n",
    301 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    302 		ci = &cpu_info_primary;
    303 		if (cpunum != lapic_cpu_number()) {
    304 			uint32_t reg;
    305 			aprint_verbose("\n");
    306 			aprint_verbose("%s: running CPU is at apic %d"
    307 			    " instead of at expected %d",
    308 			    device_xname(sc->sc_dev), lapic_cpu_number(),
    309 			    cpunum);
    310 			reg = i82489_readreg(LAPIC_ID);
    311 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    312 			    (cpunum << LAPIC_ID_SHIFT));
    313 		}
    314 	}
    315 
    316 	ci->ci_self = ci;
    317 	sc->sc_info = ci;
    318 
    319 	ci->ci_dev = self;
    320 	ci->ci_cpuid = caa->cpu_number;
    321 	ci->ci_func = caa->cpu_func;
    322 
    323 	if (caa->cpu_role == CPU_ROLE_AP) {
    324 		int error;
    325 
    326 		error = mi_cpu_attach(ci);
    327 		if (error != 0) {
    328 			aprint_normal("\n");
    329 			aprint_error_dev(sc->sc_dev,
    330 			    "mi_cpu_attach failed with %d\n", error);
    331 			return;
    332 		}
    333 		cpu_init_tss(ci);
    334 	} else {
    335 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    336 	}
    337 
    338 	ci->ci_cpumask = (1 << cpu_index(ci));
    339 	cpu_info[cpu_index(ci)] = ci;
    340 	pmap_reference(pmap_kernel());
    341 	ci->ci_pmap = pmap_kernel();
    342 	ci->ci_tlbstate = TLBSTATE_STALE;
    343 
    344 	/* further PCB init done later. */
    345 
    346 	switch (caa->cpu_role) {
    347 	case CPU_ROLE_SP:
    348 		atomic_or_32(&ci->ci_flags,
    349 		    CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
    350 		cpu_intr_init(ci);
    351 		cpu_get_tsc_freq(ci);
    352 		cpu_identify(ci);
    353 		cpu_init(ci);
    354 		cpu_set_tss_gates(ci);
    355 		pmap_cpu_init_late(ci);
    356 		x86_errata();
    357 		x86_cpu_idle_init();
    358 		break;
    359 
    360 	case CPU_ROLE_BP:
    361 		atomic_or_32(&ci->ci_flags,
    362 		    CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
    363 		cpu_intr_init(ci);
    364 		cpu_get_tsc_freq(ci);
    365 		cpu_identify(ci);
    366 		cpu_init(ci);
    367 		cpu_set_tss_gates(ci);
    368 		pmap_cpu_init_late(ci);
    369 		/*
    370 		 * Enable local apic
    371 		 */
    372 		lapic_enable();
    373 		lapic_set_lvt();
    374 		lapic_calibrate_timer(ci);
    375 		x86_errata();
    376 		x86_cpu_idle_init();
    377 		break;
    378 
    379 	case CPU_ROLE_AP:
    380 		/*
    381 		 * report on an AP
    382 		 */
    383 		cpu_intr_init(ci);
    384 		gdt_alloc_cpu(ci);
    385 		cpu_set_tss_gates(ci);
    386 		pmap_cpu_init_early(ci);
    387 		pmap_cpu_init_late(ci);
    388 		cpu_start_secondary(ci);
    389 		if (ci->ci_flags & CPUF_PRESENT) {
    390 			cpu_identify(ci);
    391 			ci->ci_next = cpu_info_list->ci_next;
    392 			cpu_info_list->ci_next = ci;
    393 		}
    394 		break;
    395 
    396 	default:
    397 		aprint_normal("\n");
    398 		panic("unknown processor type??\n");
    399 	}
    400 	cpu_vm_init(ci);
    401 
    402 	cpus_attached |= ci->ci_cpumask;
    403 
    404 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    405 		aprint_error_dev(self, "couldn't establish power handler\n");
    406 
    407 	if (mp_verbose) {
    408 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    409 
    410 		aprint_verbose_dev(sc->sc_dev,
    411 		    "idle lwp at %p, idle sp at %p\n",
    412 		    l,
    413 #ifdef i386
    414 		    (void *)l->l_addr->u_pcb.pcb_esp
    415 #else
    416 		    (void *)l->l_addr->u_pcb.pcb_rsp
    417 #endif
    418 		);
    419 	}
    420 }
    421 
    422 /*
    423  * Initialize the processor appropriately.
    424  */
    425 
    426 void
    427 cpu_init(struct cpu_info *ci)
    428 {
    429 
    430 	lcr0(rcr0() | CR0_WP);
    431 
    432 	/*
    433 	 * On a P6 or above, enable global TLB caching if the
    434 	 * hardware supports it.
    435 	 */
    436 	if (cpu_feature & CPUID_PGE)
    437 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    438 
    439 	/*
    440 	 * If we have FXSAVE/FXRESTOR, use them.
    441 	 */
    442 	if (cpu_feature & CPUID_FXSR) {
    443 		lcr4(rcr4() | CR4_OSFXSR);
    444 
    445 		/*
    446 		 * If we have SSE/SSE2, enable XMM exceptions.
    447 		 */
    448 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    449 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    450 	}
    451 
    452 #ifdef MTRR
    453 	/*
    454 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    455 	 */
    456 	if (cpu_feature & CPUID_MTRR) {
    457 		if ((ci->ci_flags & CPUF_AP) == 0)
    458 			i686_mtrr_init_first();
    459 		mtrr_init_cpu(ci);
    460 	}
    461 
    462 #ifdef i386
    463 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    464 		/*
    465 		 * Must be a K6-2 Step >= 7 or a K6-III.
    466 		 */
    467 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    468 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    469 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    470 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    471 				mtrr_funcs = &k6_mtrr_funcs;
    472 				k6_mtrr_init_first();
    473 				mtrr_init_cpu(ci);
    474 			}
    475 		}
    476 	}
    477 #endif	/* i386 */
    478 #endif /* MTRR */
    479 
    480 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    481 
    482 	if (ci != &cpu_info_primary) {
    483 		/* Synchronize TSC again, and check for drift. */
    484 		wbinvd();
    485 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    486 		tsc_sync_ap(ci);
    487 		tsc_sync_ap(ci);
    488 	} else {
    489 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    490 	}
    491 }
    492 
    493 void
    494 cpu_boot_secondary_processors(void)
    495 {
    496 	struct cpu_info *ci;
    497 	u_long i;
    498 
    499 	/* Now that we know the number of CPUs, patch the text segment. */
    500 	x86_patch();
    501 
    502 	for (i=0; i < X86_MAXPROCS; i++) {
    503 		ci = cpu_info[i];
    504 		if (ci == NULL)
    505 			continue;
    506 		if (ci->ci_data.cpu_idlelwp == NULL)
    507 			continue;
    508 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    509 			continue;
    510 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    511 			continue;
    512 		cpu_boot_secondary(ci);
    513 	}
    514 
    515 	x86_mp_online = true;
    516 
    517 	/* Now that we know about the TSC, attach the timecounter. */
    518 	tsc_tc_init();
    519 }
    520 
    521 static void
    522 cpu_init_idle_lwp(struct cpu_info *ci)
    523 {
    524 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    525 	struct pcb *pcb = &l->l_addr->u_pcb;
    526 
    527 	pcb->pcb_cr0 = rcr0();
    528 }
    529 
    530 void
    531 cpu_init_idle_lwps(void)
    532 {
    533 	struct cpu_info *ci;
    534 	u_long i;
    535 
    536 	for (i = 0; i < X86_MAXPROCS; i++) {
    537 		ci = cpu_info[i];
    538 		if (ci == NULL)
    539 			continue;
    540 		if (ci->ci_data.cpu_idlelwp == NULL)
    541 			continue;
    542 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    543 			continue;
    544 		cpu_init_idle_lwp(ci);
    545 	}
    546 }
    547 
    548 void
    549 cpu_start_secondary(struct cpu_info *ci)
    550 {
    551 	extern paddr_t mp_pdirpa;
    552 	u_long psl;
    553 	int i;
    554 
    555 	KASSERT(cpu_starting == NULL);
    556 
    557 	cpu_starting = ci;
    558 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    559 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    560 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    561 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    562 		cpu_starting = NULL;
    563 		return;
    564 	}
    565 
    566 	/*
    567 	 * wait for it to become ready
    568 	 */
    569 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    570 #ifdef MPDEBUG
    571 		extern int cpu_trace[3];
    572 		static int otrace[3];
    573 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    574 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    575 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    576 			memcpy(otrace, cpu_trace, sizeof(otrace));
    577 		}
    578 #endif
    579 		i8254_delay(10);
    580 	}
    581 
    582 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    583 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    584 #if defined(MPDEBUG) && defined(DDB)
    585 		printf("dropping into debugger; continue from here to resume boot\n");
    586 		Debugger();
    587 #endif
    588 	} else {
    589 		/*
    590 		 * Synchronize time stamp counters.  Invalidate cache and do twice
    591 		 * to try and minimize possible cache effects.  Disable interrupts
    592 		 * to try and rule out any external interference.
    593 		 */
    594 		psl = x86_read_psl();
    595 		x86_disable_intr();
    596 		wbinvd();
    597 		tsc_sync_bp(ci);
    598 		tsc_sync_bp(ci);
    599 		x86_write_psl(psl);
    600 	}
    601 
    602 	CPU_START_CLEANUP(ci);
    603 	cpu_starting = NULL;
    604 }
    605 
    606 void
    607 cpu_boot_secondary(struct cpu_info *ci)
    608 {
    609 	int64_t drift;
    610 	u_long psl;
    611 	int i;
    612 
    613 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    614 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    615 		i8254_delay(10);
    616 	}
    617 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    618 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    619 #if defined(MPDEBUG) && defined(DDB)
    620 		printf("dropping into debugger; continue from here to resume boot\n");
    621 		Debugger();
    622 #endif
    623 	} else {
    624 		/* Synchronize TSC again, check for drift. */
    625 		drift = ci->ci_data.cpu_cc_skew;
    626 		psl = x86_read_psl();
    627 		x86_disable_intr();
    628 		wbinvd();
    629 		tsc_sync_bp(ci);
    630 		tsc_sync_bp(ci);
    631 		x86_write_psl(psl);
    632 		drift -= ci->ci_data.cpu_cc_skew;
    633 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    634 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    635 		tsc_sync_drift(drift);
    636 	}
    637 }
    638 
    639 /*
    640  * The CPU ends up here when its ready to run
    641  * This is called from code in mptramp.s; at this point, we are running
    642  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    643  * this processor will enter the idle loop and start looking for work.
    644  */
    645 void
    646 cpu_hatch(void *v)
    647 {
    648 	struct cpu_info *ci = (struct cpu_info *)v;
    649 	int s, i;
    650 
    651 #ifdef __x86_64__
    652 	cpu_init_msrs(ci, true);
    653 #endif
    654 	cpu_probe(ci);
    655 	cpu_get_tsc_freq(ci);
    656 
    657 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    658 
    659 	/*
    660 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    661 	 * to try and minimize possible cache effects.  Note that interrupts
    662 	 * are off at this point.
    663 	 */
    664 	wbinvd();
    665 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    666 	tsc_sync_ap(ci);
    667 	tsc_sync_ap(ci);
    668 
    669 	/*
    670 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    671 	 * in order to make the TSC drift as much as possible. so that
    672 	 * we can detect it later.  If not available, try 'pause'.
    673 	 * We'd like to use 'hlt', but we have interrupts off.
    674 	 */
    675 	while ((ci->ci_flags & CPUF_GO) == 0) {
    676 		if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
    677 			x86_monitor(&ci->ci_flags, 0, 0);
    678 			if ((ci->ci_flags & CPUF_GO) != 0) {
    679 				continue;
    680 			}
    681 			x86_mwait(0, 0);
    682 		} else {
    683 			for (i = 10000; i != 0; i--) {
    684 				x86_pause();
    685 			}
    686 		}
    687 	}
    688 
    689 	/* Because the text may have been patched in x86_patch(). */
    690 	wbinvd();
    691 	x86_flush();
    692 
    693 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    694 
    695 	lcr3(pmap_kernel()->pm_pdirpa);
    696 	curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
    697 	lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
    698 	cpu_init_idt();
    699 	gdt_init_cpu(ci);
    700 	lapic_enable();
    701 	lapic_set_lvt();
    702 	lapic_initclocks();
    703 
    704 #ifdef i386
    705 	npxinit(ci);
    706 #else
    707 	fpuinit(ci);
    708 #endif
    709 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    710 	ltr(ci->ci_tss_sel);
    711 
    712 	cpu_init(ci);
    713 	cpu_get_tsc_freq(ci);
    714 
    715 	s = splhigh();
    716 #ifdef i386
    717 	lapic_tpr = 0;
    718 #else
    719 	lcr8(0);
    720 #endif
    721 	x86_enable_intr();
    722 	splx(s);
    723 	x86_errata();
    724 
    725 	aprint_debug_dev(ci->ci_dev, "running\n");
    726 }
    727 
    728 #if defined(DDB)
    729 
    730 #include <ddb/db_output.h>
    731 #include <machine/db_machdep.h>
    732 
    733 /*
    734  * Dump CPU information from ddb.
    735  */
    736 void
    737 cpu_debug_dump(void)
    738 {
    739 	struct cpu_info *ci;
    740 	CPU_INFO_ITERATOR cii;
    741 
    742 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    743 	for (CPU_INFO_FOREACH(cii, ci)) {
    744 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    745 		    ci,
    746 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    747 		    (long)ci->ci_cpuid,
    748 		    ci->ci_flags, ci->ci_ipis,
    749 		    ci->ci_curlwp,
    750 		    ci->ci_fpcurlwp);
    751 	}
    752 }
    753 #endif
    754 
    755 static void
    756 cpu_copy_trampoline(void)
    757 {
    758 	/*
    759 	 * Copy boot code.
    760 	 */
    761 	extern u_char cpu_spinup_trampoline[];
    762 	extern u_char cpu_spinup_trampoline_end[];
    763 
    764 	vaddr_t mp_trampoline_vaddr;
    765 
    766 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    767 	    UVM_KMF_VAONLY);
    768 
    769 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    770 	    VM_PROT_READ | VM_PROT_WRITE);
    771 	pmap_update(pmap_kernel());
    772 	memcpy((void *)mp_trampoline_vaddr,
    773 	    cpu_spinup_trampoline,
    774 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    775 
    776 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    777 	pmap_update(pmap_kernel());
    778 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    779 }
    780 
    781 #ifdef i386
    782 static void
    783 tss_init(struct i386tss *tss, void *stack, void *func)
    784 {
    785 	memset(tss, 0, sizeof *tss);
    786 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    787 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    788 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    789 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    790 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    791 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    792 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    793 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    794 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    795 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    796 	tss->__tss_eip = (int)func;
    797 }
    798 
    799 /* XXX */
    800 #define IDTVEC(name)	__CONCAT(X, name)
    801 typedef void (vector)(void);
    802 extern vector IDTVEC(tss_trap08);
    803 #ifdef DDB
    804 extern vector Xintrddbipi;
    805 extern int ddb_vec;
    806 #endif
    807 
    808 static void
    809 cpu_set_tss_gates(struct cpu_info *ci)
    810 {
    811 	struct segment_descriptor sd;
    812 
    813 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    814 	    UVM_KMF_WIRED);
    815 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    816 	    IDTVEC(tss_trap08));
    817 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    818 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    819 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    820 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    821 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    822 
    823 #if defined(DDB)
    824 	/*
    825 	 * Set up separate handler for the DDB IPI, so that it doesn't
    826 	 * stomp on a possibly corrupted stack.
    827 	 *
    828 	 * XXX overwriting the gate set in db_machine_init.
    829 	 * Should rearrange the code so that it's set only once.
    830 	 */
    831 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    832 	    UVM_KMF_WIRED);
    833 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    834 
    835 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    836 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    837 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    838 
    839 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    840 	    GSEL(GIPITSS_SEL, SEL_KPL));
    841 #endif
    842 }
    843 #else
    844 static void
    845 cpu_set_tss_gates(struct cpu_info *ci)
    846 {
    847 
    848 }
    849 #endif	/* i386 */
    850 
    851 int
    852 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    853 {
    854 	unsigned short dwordptr[2];
    855 	int error;
    856 
    857 	/*
    858 	 * Bootstrap code must be addressable in real mode
    859 	 * and it must be page aligned.
    860 	 */
    861 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    862 
    863 	/*
    864 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    865 	 */
    866 
    867 	outb(IO_RTC, NVRAM_RESET);
    868 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    869 
    870 	/*
    871 	 * "and the warm reset vector (DWORD based at 40:67) to point
    872 	 * to the AP startup code ..."
    873 	 */
    874 
    875 	dwordptr[0] = 0;
    876 	dwordptr[1] = target >> 4;
    877 
    878 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    879 
    880 	if ((cpu_feature & CPUID_APIC) == 0) {
    881 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    882 		return ENODEV;
    883 	}
    884 
    885 	/*
    886 	 * ... prior to executing the following sequence:"
    887 	 */
    888 
    889 	if (ci->ci_flags & CPUF_AP) {
    890 		error = x86_ipi_init(ci->ci_cpuid);
    891 		if (error != 0) {
    892 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    893 					__func__);
    894 			return error;
    895 		}
    896 
    897 		i8254_delay(10000);
    898 
    899 		error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    900 		    LAPIC_DLMODE_STARTUP);
    901 		if (error != 0) {
    902 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    903 					__func__);
    904 			return error;
    905 		}
    906 		i8254_delay(200);
    907 
    908 		error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    909 		    LAPIC_DLMODE_STARTUP);
    910 		if (error != 0) {
    911 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    912 					__func__);
    913 			return error;
    914 		}
    915 		i8254_delay(200);
    916 	}
    917 
    918 	return 0;
    919 }
    920 
    921 void
    922 mp_cpu_start_cleanup(struct cpu_info *ci)
    923 {
    924 	/*
    925 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    926 	 */
    927 
    928 	outb(IO_RTC, NVRAM_RESET);
    929 	outb(IO_RTC+1, NVRAM_RESET_RST);
    930 }
    931 
    932 #ifdef __x86_64__
    933 typedef void (vector)(void);
    934 extern vector Xsyscall, Xsyscall32;
    935 
    936 void
    937 cpu_init_msrs(struct cpu_info *ci, bool full)
    938 {
    939 	wrmsr(MSR_STAR,
    940 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    941 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    942 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    943 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    944 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    945 
    946 	if (full) {
    947 		wrmsr(MSR_FSBASE, 0);
    948 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    949 		wrmsr(MSR_KERNELGSBASE, 0);
    950 	}
    951 
    952 	if (cpu_feature & CPUID_NOX)
    953 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    954 }
    955 #endif	/* __x86_64__ */
    956 
    957 void
    958 cpu_offline_md(void)
    959 {
    960 	int s;
    961 
    962 	s = splhigh();
    963 #ifdef __i386__
    964 	npxsave_cpu(true);
    965 #else
    966 	fpusave_cpu(true);
    967 #endif
    968 	splx(s);
    969 }
    970 
    971 /* XXX joerg restructure and restart CPUs individually */
    972 static bool
    973 cpu_suspend(device_t dv PMF_FN_ARGS)
    974 {
    975 	struct cpu_softc *sc = device_private(dv);
    976 	struct cpu_info *ci = sc->sc_info;
    977 	int err;
    978 
    979 	if (ci->ci_flags & CPUF_PRIMARY)
    980 		return true;
    981 	if (ci->ci_data.cpu_idlelwp == NULL)
    982 		return true;
    983 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
    984 		return true;
    985 
    986 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
    987 
    988 	if (sc->sc_wasonline) {
    989 		mutex_enter(&cpu_lock);
    990 		err = cpu_setonline(ci, false);
    991 		mutex_exit(&cpu_lock);
    992 
    993 		if (err)
    994 			return false;
    995 	}
    996 
    997 	return true;
    998 }
    999 
   1000 static bool
   1001 cpu_resume(device_t dv PMF_FN_ARGS)
   1002 {
   1003 	struct cpu_softc *sc = device_private(dv);
   1004 	struct cpu_info *ci = sc->sc_info;
   1005 	int err = 0;
   1006 
   1007 	if (ci->ci_flags & CPUF_PRIMARY)
   1008 		return true;
   1009 	if (ci->ci_data.cpu_idlelwp == NULL)
   1010 		return true;
   1011 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1012 		return true;
   1013 
   1014 	if (sc->sc_wasonline) {
   1015 		mutex_enter(&cpu_lock);
   1016 		err = cpu_setonline(ci, true);
   1017 		mutex_exit(&cpu_lock);
   1018 	}
   1019 
   1020 	return err == 0;
   1021 }
   1022 
   1023 void
   1024 cpu_get_tsc_freq(struct cpu_info *ci)
   1025 {
   1026 	uint64_t last_tsc;
   1027 
   1028 	if (ci->ci_feature_flags & CPUID_TSC) {
   1029 		last_tsc = rdmsr(MSR_TSC);
   1030 		i8254_delay(100000);
   1031 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1032 	}
   1033 }
   1034 
   1035 void
   1036 x86_cpu_idle_mwait(void)
   1037 {
   1038 	struct cpu_info *ci = curcpu();
   1039 
   1040 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1041 
   1042 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1043 	if (__predict_false(ci->ci_want_resched)) {
   1044 		return;
   1045 	}
   1046 	x86_mwait(0, 0);
   1047 }
   1048 
   1049 void
   1050 x86_cpu_idle_halt(void)
   1051 {
   1052 	struct cpu_info *ci = curcpu();
   1053 
   1054 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1055 
   1056 	x86_disable_intr();
   1057 	if (!__predict_false(ci->ci_want_resched)) {
   1058 		x86_stihlt();
   1059 	} else {
   1060 		x86_enable_intr();
   1061 	}
   1062 }
   1063