Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.51
      1 /*	$NetBSD: cpu.c,v 1.51 2008/05/14 12:53:49 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.51 2008/05/14 12:53:49 ad Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/proc.h>
     76 #include <sys/user.h>
     77 #include <sys/systm.h>
     78 #include <sys/device.h>
     79 #include <sys/malloc.h>
     80 #include <sys/cpu.h>
     81 #include <sys/atomic.h>
     82 #include <sys/reboot.h>
     83 
     84 #include <uvm/uvm_extern.h>
     85 
     86 #include <machine/cpufunc.h>
     87 #include <machine/cpuvar.h>
     88 #include <machine/pmap.h>
     89 #include <machine/vmparam.h>
     90 #include <machine/mpbiosvar.h>
     91 #include <machine/pcb.h>
     92 #include <machine/specialreg.h>
     93 #include <machine/segments.h>
     94 #include <machine/gdt.h>
     95 #include <machine/mtrr.h>
     96 #include <machine/pio.h>
     97 #include <machine/cpu_counter.h>
     98 
     99 #ifdef i386
    100 #include <machine/tlog.h>
    101 #endif
    102 
    103 #include <machine/apicvar.h>
    104 #include <machine/i82489reg.h>
    105 #include <machine/i82489var.h>
    106 
    107 #include <dev/ic/mc146818reg.h>
    108 #include <i386/isa/nvram.h>
    109 #include <dev/isa/isareg.h>
    110 
    111 #include "tsc.h"
    112 
    113 int     cpu_match(device_t, cfdata_t, void *);
    114 void    cpu_attach(device_t, device_t, void *);
    115 
    116 static bool	cpu_suspend(device_t PMF_FN_PROTO);
    117 static bool	cpu_resume(device_t PMF_FN_PROTO);
    118 
    119 struct cpu_softc {
    120 	device_t sc_dev;		/* device tree glue */
    121 	struct cpu_info *sc_info;	/* pointer to CPU info */
    122 	bool sc_wasonline;
    123 };
    124 
    125 int mp_cpu_start(struct cpu_info *, paddr_t);
    126 void mp_cpu_start_cleanup(struct cpu_info *);
    127 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    128 					    mp_cpu_start_cleanup };
    129 
    130 
    131 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    132     cpu_match, cpu_attach, NULL, NULL);
    133 
    134 /*
    135  * Statically-allocated CPU info for the primary CPU (or the only
    136  * CPU, on uniprocessors).  The CPU info list is initialized to
    137  * point at it.
    138  */
    139 #ifdef TRAPLOG
    140 struct tlog tlog_primary;
    141 #endif
    142 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    143 	.ci_dev = 0,
    144 	.ci_self = &cpu_info_primary,
    145 	.ci_idepth = -1,
    146 	.ci_curlwp = &lwp0,
    147 	.ci_curldt = -1,
    148 #ifdef TRAPLOG
    149 	.ci_tlog_base = &tlog_primary,
    150 #endif /* !TRAPLOG */
    151 };
    152 
    153 struct cpu_info *cpu_info_list = &cpu_info_primary;
    154 
    155 static void	cpu_set_tss_gates(struct cpu_info *);
    156 
    157 #ifdef i386
    158 static void	tss_init(struct i386tss *, void *, void *);
    159 #endif
    160 
    161 static void	cpu_init_idle_lwp(struct cpu_info *);
    162 
    163 uint32_t cpus_attached = 0;
    164 uint32_t cpus_running = 0;
    165 
    166 extern char x86_64_doubleflt_stack[];
    167 
    168 bool x86_mp_online;
    169 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    170 static vaddr_t cmos_data_mapping;
    171 struct cpu_info *cpu_starting;
    172 
    173 void    	cpu_hatch(void *);
    174 static void    	cpu_boot_secondary(struct cpu_info *ci);
    175 static void    	cpu_start_secondary(struct cpu_info *ci);
    176 static void	cpu_copy_trampoline(void);
    177 
    178 /*
    179  * Runs once per boot once multiprocessor goo has been detected and
    180  * the local APIC on the boot processor has been mapped.
    181  *
    182  * Called from lapic_boot_init() (from mpbios_scan()).
    183  */
    184 void
    185 cpu_init_first(void)
    186 {
    187 
    188 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    189 	cpu_copy_trampoline();
    190 
    191 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    192 	if (cmos_data_mapping == 0)
    193 		panic("No KVA for page 0");
    194 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
    195 	pmap_update(pmap_kernel());
    196 }
    197 
    198 int
    199 cpu_match(device_t parent, cfdata_t match, void *aux)
    200 {
    201 
    202 	return 1;
    203 }
    204 
    205 static void
    206 cpu_vm_init(struct cpu_info *ci)
    207 {
    208 	int ncolors = 2, i;
    209 
    210 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    211 		struct x86_cache_info *cai;
    212 		int tcolors;
    213 
    214 		cai = &ci->ci_cinfo[i];
    215 
    216 		tcolors = atop(cai->cai_totalsize);
    217 		switch(cai->cai_associativity) {
    218 		case 0xff:
    219 			tcolors = 1; /* fully associative */
    220 			break;
    221 		case 0:
    222 		case 1:
    223 			break;
    224 		default:
    225 			tcolors /= cai->cai_associativity;
    226 		}
    227 		ncolors = max(ncolors, tcolors);
    228 		/*
    229 		 * If the desired number of colors is not a power of
    230 		 * two, it won't be good.  Find the greatest power of
    231 		 * two which is an even divisor of the number of colors,
    232 		 * to preserve even coloring of pages.
    233 		 */
    234 		if (ncolors & (ncolors - 1) ) {
    235 			int try, picked = 1;
    236 			for (try = 1; try < ncolors; try *= 2) {
    237 				if (ncolors % try == 0) picked = try;
    238 			}
    239 			if (picked == 1) {
    240 				panic("desired number of cache colors %d is "
    241 			      	" > 1, but not even!", ncolors);
    242 			}
    243 			ncolors = picked;
    244 		}
    245 	}
    246 
    247 	/*
    248 	 * Knowing the size of the largest cache on this CPU, re-color
    249 	 * our pages.
    250 	 */
    251 	if (ncolors <= uvmexp.ncolors)
    252 		return;
    253 	aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
    254 	uvm_page_recolor(ncolors);
    255 }
    256 
    257 
    258 void
    259 cpu_attach(device_t parent, device_t self, void *aux)
    260 {
    261 	struct cpu_softc *sc = device_private(self);
    262 	struct cpu_attach_args *caa = aux;
    263 	struct cpu_info *ci;
    264 	uintptr_t ptr;
    265 	int cpunum = caa->cpu_number;
    266 	static bool again;
    267 
    268 	sc->sc_dev = self;
    269 
    270 	if (cpus_attached == ~0) {
    271 		aprint_error(": increase MAXCPUS, X86_MAXPROCS\n");
    272 		return;
    273 	}
    274 
    275 	/*
    276 	 * If we're an Application Processor, allocate a cpu_info
    277 	 * structure, otherwise use the primary's.
    278 	 */
    279 	if (caa->cpu_role == CPU_ROLE_AP) {
    280 		if ((boothowto & RB_MD1) != 0) {
    281 			aprint_error(": multiprocessor boot disabled\n");
    282 			return;
    283 		}
    284 		aprint_naive(": Application Processor\n");
    285 		ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    286 		    M_DEVBUF, M_WAITOK);
    287 		ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
    288 		    ~(CACHE_LINE_SIZE - 1));
    289 		memset(ci, 0, sizeof(*ci));
    290 		ci->ci_curldt = -1;
    291 #ifdef TRAPLOG
    292 		ci->ci_tlog_base = malloc(sizeof(struct tlog),
    293 		    M_DEVBUF, M_WAITOK);
    294 #endif
    295 	} else {
    296 		aprint_naive(": %s Processor\n",
    297 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    298 		ci = &cpu_info_primary;
    299 		if (cpunum != lapic_cpu_number()) {
    300 			/* XXX should be done earlier. */
    301 			uint32_t reg;
    302 			aprint_verbose("\n");
    303 			aprint_verbose_dev(self, "running CPU at apic %d"
    304 			    " instead of at expected %d", lapic_cpu_number(),
    305 			    cpunum);
    306 			reg = i82489_readreg(LAPIC_ID);
    307 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    308 			    (cpunum << LAPIC_ID_SHIFT));
    309 		}
    310 		if (cpunum != lapic_cpu_number()) {
    311 			aprint_error_dev(self, "unable to reset apic id\n");
    312 		}
    313 	}
    314 
    315 	ci->ci_self = ci;
    316 	sc->sc_info = ci;
    317 	ci->ci_dev = self;
    318 	ci->ci_cpuid = caa->cpu_number;
    319 	ci->ci_func = caa->cpu_func;
    320 
    321 	if (caa->cpu_role == CPU_ROLE_AP) {
    322 		int error;
    323 
    324 		error = mi_cpu_attach(ci);
    325 		if (error != 0) {
    326 			aprint_normal("\n");
    327 			aprint_error_dev(self,
    328 			    "mi_cpu_attach failed with %d\n", error);
    329 			return;
    330 		}
    331 		cpu_init_tss(ci);
    332 	} else {
    333 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    334 	}
    335 
    336 	ci->ci_cpumask = (1 << cpu_index(ci));
    337 	pmap_reference(pmap_kernel());
    338 	ci->ci_pmap = pmap_kernel();
    339 	ci->ci_tlbstate = TLBSTATE_STALE;
    340 
    341 	/*
    342 	 * Boot processor may not be attached first, but the below
    343 	 * must be done to allow booting other processors.
    344 	 */
    345 	if (!again) {
    346 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    347 		/* Basic init. */
    348 		cpu_intr_init(ci);
    349 		cpu_get_tsc_freq(ci);
    350 		cpu_init(ci);
    351 		cpu_set_tss_gates(ci);
    352 		pmap_cpu_init_late(ci);
    353 		x86_errata();
    354 		if (caa->cpu_role != CPU_ROLE_SP) {
    355 			/* Enable lapic. */
    356 			lapic_enable();
    357 			lapic_set_lvt();
    358 			lapic_calibrate_timer(ci);
    359 		}
    360 		/* Make sure DELAY() is initialized. */
    361 		DELAY(1);
    362 		again = true;
    363 	}
    364 
    365 	/* further PCB init done later. */
    366 
    367 	switch (caa->cpu_role) {
    368 	case CPU_ROLE_SP:
    369 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    370 		cpu_identify(ci);
    371 		x86_cpu_idle_init();
    372 		break;
    373 
    374 	case CPU_ROLE_BP:
    375 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    376 		cpu_identify(ci);
    377 		x86_cpu_idle_init();
    378 		break;
    379 
    380 	case CPU_ROLE_AP:
    381 		/*
    382 		 * report on an AP
    383 		 */
    384 		cpu_intr_init(ci);
    385 		gdt_alloc_cpu(ci);
    386 		cpu_set_tss_gates(ci);
    387 		pmap_cpu_init_early(ci);
    388 		pmap_cpu_init_late(ci);
    389 		cpu_start_secondary(ci);
    390 		if (ci->ci_flags & CPUF_PRESENT) {
    391 			cpu_identify(ci);
    392 			ci->ci_next = cpu_info_list->ci_next;
    393 			cpu_info_list->ci_next = ci;
    394 		}
    395 		break;
    396 
    397 	default:
    398 		aprint_normal("\n");
    399 		panic("unknown processor type??\n");
    400 	}
    401 
    402 	cpu_vm_init(ci);
    403 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    404 
    405 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    406 		aprint_error_dev(self, "couldn't establish power handler\n");
    407 
    408 	if (mp_verbose) {
    409 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    410 
    411 		aprint_verbose_dev(self,
    412 		    "idle lwp at %p, idle sp at %p\n",
    413 		    l,
    414 #ifdef i386
    415 		    (void *)l->l_addr->u_pcb.pcb_esp
    416 #else
    417 		    (void *)l->l_addr->u_pcb.pcb_rsp
    418 #endif
    419 		);
    420 	}
    421 }
    422 
    423 /*
    424  * Initialize the processor appropriately.
    425  */
    426 
    427 void
    428 cpu_init(struct cpu_info *ci)
    429 {
    430 
    431 	lcr0(rcr0() | CR0_WP);
    432 
    433 	/*
    434 	 * On a P6 or above, enable global TLB caching if the
    435 	 * hardware supports it.
    436 	 */
    437 	if (cpu_feature & CPUID_PGE)
    438 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    439 
    440 	/*
    441 	 * If we have FXSAVE/FXRESTOR, use them.
    442 	 */
    443 	if (cpu_feature & CPUID_FXSR) {
    444 		lcr4(rcr4() | CR4_OSFXSR);
    445 
    446 		/*
    447 		 * If we have SSE/SSE2, enable XMM exceptions.
    448 		 */
    449 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    450 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    451 	}
    452 
    453 #ifdef MTRR
    454 	/*
    455 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    456 	 */
    457 	if (cpu_feature & CPUID_MTRR) {
    458 		if ((ci->ci_flags & CPUF_AP) == 0)
    459 			i686_mtrr_init_first();
    460 		mtrr_init_cpu(ci);
    461 	}
    462 
    463 #ifdef i386
    464 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    465 		/*
    466 		 * Must be a K6-2 Step >= 7 or a K6-III.
    467 		 */
    468 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    469 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    470 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    471 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    472 				mtrr_funcs = &k6_mtrr_funcs;
    473 				k6_mtrr_init_first();
    474 				mtrr_init_cpu(ci);
    475 			}
    476 		}
    477 	}
    478 #endif	/* i386 */
    479 #endif /* MTRR */
    480 
    481 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    482 
    483 	if (ci != &cpu_info_primary) {
    484 		/* Synchronize TSC again, and check for drift. */
    485 		wbinvd();
    486 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    487 		tsc_sync_ap(ci);
    488 		tsc_sync_ap(ci);
    489 	} else {
    490 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    491 	}
    492 }
    493 
    494 void
    495 cpu_boot_secondary_processors(void)
    496 {
    497 	struct cpu_info *ci;
    498 	u_long i;
    499 
    500 	/* Now that we know the number of CPUs, patch the text segment. */
    501 	x86_patch();
    502 
    503 	for (i=0; i < X86_MAXPROCS; i++) {
    504 		ci = cpu_lookup_byindex(i);
    505 		if (ci == NULL)
    506 			continue;
    507 		if (ci->ci_data.cpu_idlelwp == NULL)
    508 			continue;
    509 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    510 			continue;
    511 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    512 			continue;
    513 		cpu_boot_secondary(ci);
    514 	}
    515 
    516 	x86_mp_online = true;
    517 
    518 	/* Now that we know about the TSC, attach the timecounter. */
    519 	tsc_tc_init();
    520 }
    521 
    522 static void
    523 cpu_init_idle_lwp(struct cpu_info *ci)
    524 {
    525 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    526 	struct pcb *pcb = &l->l_addr->u_pcb;
    527 
    528 	pcb->pcb_cr0 = rcr0();
    529 }
    530 
    531 void
    532 cpu_init_idle_lwps(void)
    533 {
    534 	struct cpu_info *ci;
    535 	u_long i;
    536 
    537 	for (i = 0; i < X86_MAXPROCS; i++) {
    538 		ci = cpu_lookup_byindex(i);
    539 		if (ci == NULL)
    540 			continue;
    541 		if (ci->ci_data.cpu_idlelwp == NULL)
    542 			continue;
    543 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    544 			continue;
    545 		cpu_init_idle_lwp(ci);
    546 	}
    547 }
    548 
    549 void
    550 cpu_start_secondary(struct cpu_info *ci)
    551 {
    552 	extern paddr_t mp_pdirpa;
    553 	u_long psl;
    554 	int i;
    555 
    556 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    557 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    558 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    559 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    560 		return;
    561 	}
    562 
    563 	/*
    564 	 * Wait for it to become ready.   Setting cpu_starting opens the
    565 	 * initial gate and allows the AP to start soft initialization.
    566 	 */
    567 	KASSERT(cpu_starting == NULL);
    568 	cpu_starting = ci;
    569 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    570 #ifdef MPDEBUG
    571 		extern int cpu_trace[3];
    572 		static int otrace[3];
    573 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    574 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    575 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    576 			memcpy(otrace, cpu_trace, sizeof(otrace));
    577 		}
    578 #endif
    579 		i8254_delay(10);
    580 	}
    581 
    582 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    583 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    584 #if defined(MPDEBUG) && defined(DDB)
    585 		printf("dropping into debugger; continue from here to resume boot\n");
    586 		Debugger();
    587 #endif
    588 	} else {
    589 		/*
    590 		 * Synchronize time stamp counters.  Invalidate cache and do twice
    591 		 * to try and minimize possible cache effects.  Disable interrupts
    592 		 * to try and rule out any external interference.
    593 		 */
    594 		psl = x86_read_psl();
    595 		x86_disable_intr();
    596 		wbinvd();
    597 		tsc_sync_bp(ci);
    598 		tsc_sync_bp(ci);
    599 		x86_write_psl(psl);
    600 	}
    601 
    602 	CPU_START_CLEANUP(ci);
    603 	cpu_starting = NULL;
    604 }
    605 
    606 void
    607 cpu_boot_secondary(struct cpu_info *ci)
    608 {
    609 	int64_t drift;
    610 	u_long psl;
    611 	int i;
    612 
    613 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    614 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    615 		i8254_delay(10);
    616 	}
    617 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    618 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    619 #if defined(MPDEBUG) && defined(DDB)
    620 		printf("dropping into debugger; continue from here to resume boot\n");
    621 		Debugger();
    622 #endif
    623 	} else {
    624 		/* Synchronize TSC again, check for drift. */
    625 		drift = ci->ci_data.cpu_cc_skew;
    626 		psl = x86_read_psl();
    627 		x86_disable_intr();
    628 		wbinvd();
    629 		tsc_sync_bp(ci);
    630 		tsc_sync_bp(ci);
    631 		x86_write_psl(psl);
    632 		drift -= ci->ci_data.cpu_cc_skew;
    633 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    634 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    635 		tsc_sync_drift(drift);
    636 	}
    637 }
    638 
    639 /*
    640  * The CPU ends up here when its ready to run
    641  * This is called from code in mptramp.s; at this point, we are running
    642  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    643  * this processor will enter the idle loop and start looking for work.
    644  */
    645 void
    646 cpu_hatch(void *v)
    647 {
    648 	struct cpu_info *ci = (struct cpu_info *)v;
    649 	int s, i;
    650 
    651 #ifdef __x86_64__
    652 	cpu_init_msrs(ci, true);
    653 #endif
    654 	cpu_probe(ci);
    655 
    656 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    657 	/* cpu_get_tsc_freq(ci); */
    658 
    659 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    660 
    661 	/*
    662 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    663 	 * to try and minimize possible cache effects.  Note that interrupts
    664 	 * are off at this point.
    665 	 */
    666 	wbinvd();
    667 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    668 	tsc_sync_ap(ci);
    669 	tsc_sync_ap(ci);
    670 
    671 	/*
    672 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    673 	 * in order to make the TSC drift as much as possible. so that
    674 	 * we can detect it later.  If not available, try 'pause'.
    675 	 * We'd like to use 'hlt', but we have interrupts off.
    676 	 */
    677 	while ((ci->ci_flags & CPUF_GO) == 0) {
    678 		if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
    679 			x86_monitor(&ci->ci_flags, 0, 0);
    680 			if ((ci->ci_flags & CPUF_GO) != 0) {
    681 				continue;
    682 			}
    683 			x86_mwait(0, 0);
    684 		} else {
    685 			for (i = 10000; i != 0; i--) {
    686 				x86_pause();
    687 			}
    688 		}
    689 	}
    690 
    691 	/* Because the text may have been patched in x86_patch(). */
    692 	wbinvd();
    693 	x86_flush();
    694 
    695 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    696 
    697 	lcr3(pmap_kernel()->pm_pdirpa);
    698 	curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
    699 	lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
    700 	cpu_init_idt();
    701 	gdt_init_cpu(ci);
    702 	lapic_enable();
    703 	lapic_set_lvt();
    704 	lapic_initclocks();
    705 
    706 #ifdef i386
    707 	npxinit(ci);
    708 #else
    709 	fpuinit(ci);
    710 #endif
    711 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    712 	ltr(ci->ci_tss_sel);
    713 
    714 	cpu_init(ci);
    715 	cpu_get_tsc_freq(ci);
    716 
    717 	s = splhigh();
    718 #ifdef i386
    719 	lapic_tpr = 0;
    720 #else
    721 	lcr8(0);
    722 #endif
    723 	x86_enable_intr();
    724 	splx(s);
    725 	x86_errata();
    726 
    727 	aprint_debug_dev(ci->ci_dev, "running\n");
    728 }
    729 
    730 #if defined(DDB)
    731 
    732 #include <ddb/db_output.h>
    733 #include <machine/db_machdep.h>
    734 
    735 /*
    736  * Dump CPU information from ddb.
    737  */
    738 void
    739 cpu_debug_dump(void)
    740 {
    741 	struct cpu_info *ci;
    742 	CPU_INFO_ITERATOR cii;
    743 
    744 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    745 	for (CPU_INFO_FOREACH(cii, ci)) {
    746 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    747 		    ci,
    748 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    749 		    (long)ci->ci_cpuid,
    750 		    ci->ci_flags, ci->ci_ipis,
    751 		    ci->ci_curlwp,
    752 		    ci->ci_fpcurlwp);
    753 	}
    754 }
    755 #endif
    756 
    757 static void
    758 cpu_copy_trampoline(void)
    759 {
    760 	/*
    761 	 * Copy boot code.
    762 	 */
    763 	extern u_char cpu_spinup_trampoline[];
    764 	extern u_char cpu_spinup_trampoline_end[];
    765 
    766 	vaddr_t mp_trampoline_vaddr;
    767 
    768 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    769 	    UVM_KMF_VAONLY);
    770 
    771 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    772 	    VM_PROT_READ | VM_PROT_WRITE);
    773 	pmap_update(pmap_kernel());
    774 	memcpy((void *)mp_trampoline_vaddr,
    775 	    cpu_spinup_trampoline,
    776 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    777 
    778 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    779 	pmap_update(pmap_kernel());
    780 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    781 }
    782 
    783 #ifdef i386
    784 static void
    785 tss_init(struct i386tss *tss, void *stack, void *func)
    786 {
    787 	memset(tss, 0, sizeof *tss);
    788 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    789 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    790 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    791 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    792 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    793 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    794 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    795 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    796 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    797 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    798 	tss->__tss_eip = (int)func;
    799 }
    800 
    801 /* XXX */
    802 #define IDTVEC(name)	__CONCAT(X, name)
    803 typedef void (vector)(void);
    804 extern vector IDTVEC(tss_trap08);
    805 #ifdef DDB
    806 extern vector Xintrddbipi;
    807 extern int ddb_vec;
    808 #endif
    809 
    810 static void
    811 cpu_set_tss_gates(struct cpu_info *ci)
    812 {
    813 	struct segment_descriptor sd;
    814 
    815 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    816 	    UVM_KMF_WIRED);
    817 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    818 	    IDTVEC(tss_trap08));
    819 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    820 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    821 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    822 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    823 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    824 
    825 #if defined(DDB)
    826 	/*
    827 	 * Set up separate handler for the DDB IPI, so that it doesn't
    828 	 * stomp on a possibly corrupted stack.
    829 	 *
    830 	 * XXX overwriting the gate set in db_machine_init.
    831 	 * Should rearrange the code so that it's set only once.
    832 	 */
    833 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    834 	    UVM_KMF_WIRED);
    835 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    836 
    837 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    838 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    839 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    840 
    841 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    842 	    GSEL(GIPITSS_SEL, SEL_KPL));
    843 #endif
    844 }
    845 #else
    846 static void
    847 cpu_set_tss_gates(struct cpu_info *ci)
    848 {
    849 
    850 }
    851 #endif	/* i386 */
    852 
    853 int
    854 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    855 {
    856 	unsigned short dwordptr[2];
    857 	int error;
    858 
    859 	/*
    860 	 * Bootstrap code must be addressable in real mode
    861 	 * and it must be page aligned.
    862 	 */
    863 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    864 
    865 	/*
    866 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    867 	 */
    868 
    869 	outb(IO_RTC, NVRAM_RESET);
    870 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    871 
    872 	/*
    873 	 * "and the warm reset vector (DWORD based at 40:67) to point
    874 	 * to the AP startup code ..."
    875 	 */
    876 
    877 	dwordptr[0] = 0;
    878 	dwordptr[1] = target >> 4;
    879 
    880 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    881 
    882 	if ((cpu_feature & CPUID_APIC) == 0) {
    883 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    884 		return ENODEV;
    885 	}
    886 
    887 	/*
    888 	 * ... prior to executing the following sequence:".  We'll also add in
    889 	 * local cache flush, in case the BIOS has left the AP with its cache
    890 	 * disabled.  It may not be able to cope with MP coherency.
    891 	 */
    892 	wbinvd();
    893 
    894 	if (ci->ci_flags & CPUF_AP) {
    895 		error = x86_ipi_init(ci->ci_cpuid);
    896 		if (error != 0) {
    897 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    898 			    __func__);
    899 			return error;
    900 		}
    901 		i8254_delay(10000);
    902 
    903 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    904 		if (error != 0) {
    905 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    906 			    __func__);
    907 			return error;
    908 		}
    909 		i8254_delay(200);
    910 
    911 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    912 		if (error != 0) {
    913 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    914 			    __func__);
    915 			return error;
    916 		}
    917 		i8254_delay(200);
    918 	}
    919 
    920 	return 0;
    921 }
    922 
    923 void
    924 mp_cpu_start_cleanup(struct cpu_info *ci)
    925 {
    926 	/*
    927 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    928 	 */
    929 
    930 	outb(IO_RTC, NVRAM_RESET);
    931 	outb(IO_RTC+1, NVRAM_RESET_RST);
    932 }
    933 
    934 #ifdef __x86_64__
    935 typedef void (vector)(void);
    936 extern vector Xsyscall, Xsyscall32;
    937 
    938 void
    939 cpu_init_msrs(struct cpu_info *ci, bool full)
    940 {
    941 	wrmsr(MSR_STAR,
    942 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    943 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    944 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    945 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    946 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    947 
    948 	if (full) {
    949 		wrmsr(MSR_FSBASE, 0);
    950 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    951 		wrmsr(MSR_KERNELGSBASE, 0);
    952 	}
    953 
    954 	if (cpu_feature & CPUID_NOX)
    955 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    956 }
    957 #endif	/* __x86_64__ */
    958 
    959 void
    960 cpu_offline_md(void)
    961 {
    962 	int s;
    963 
    964 	s = splhigh();
    965 #ifdef __i386__
    966 	npxsave_cpu(true);
    967 #else
    968 	fpusave_cpu(true);
    969 #endif
    970 	splx(s);
    971 }
    972 
    973 /* XXX joerg restructure and restart CPUs individually */
    974 static bool
    975 cpu_suspend(device_t dv PMF_FN_ARGS)
    976 {
    977 	struct cpu_softc *sc = device_private(dv);
    978 	struct cpu_info *ci = sc->sc_info;
    979 	int err;
    980 
    981 	if (ci->ci_flags & CPUF_PRIMARY)
    982 		return true;
    983 	if (ci->ci_data.cpu_idlelwp == NULL)
    984 		return true;
    985 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
    986 		return true;
    987 
    988 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
    989 
    990 	if (sc->sc_wasonline) {
    991 		mutex_enter(&cpu_lock);
    992 		err = cpu_setonline(ci, false);
    993 		mutex_exit(&cpu_lock);
    994 
    995 		if (err)
    996 			return false;
    997 	}
    998 
    999 	return true;
   1000 }
   1001 
   1002 static bool
   1003 cpu_resume(device_t dv PMF_FN_ARGS)
   1004 {
   1005 	struct cpu_softc *sc = device_private(dv);
   1006 	struct cpu_info *ci = sc->sc_info;
   1007 	int err = 0;
   1008 
   1009 	if (ci->ci_flags & CPUF_PRIMARY)
   1010 		return true;
   1011 	if (ci->ci_data.cpu_idlelwp == NULL)
   1012 		return true;
   1013 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1014 		return true;
   1015 
   1016 	if (sc->sc_wasonline) {
   1017 		mutex_enter(&cpu_lock);
   1018 		err = cpu_setonline(ci, true);
   1019 		mutex_exit(&cpu_lock);
   1020 	}
   1021 
   1022 	return err == 0;
   1023 }
   1024 
   1025 void
   1026 cpu_get_tsc_freq(struct cpu_info *ci)
   1027 {
   1028 	uint64_t last_tsc;
   1029 
   1030 	if (ci->ci_feature_flags & CPUID_TSC) {
   1031 		last_tsc = rdmsr(MSR_TSC);
   1032 		i8254_delay(100000);
   1033 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1034 	}
   1035 }
   1036 
   1037 void
   1038 x86_cpu_idle_mwait(void)
   1039 {
   1040 	struct cpu_info *ci = curcpu();
   1041 
   1042 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1043 
   1044 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1045 	if (__predict_false(ci->ci_want_resched)) {
   1046 		return;
   1047 	}
   1048 	x86_mwait(0, 0);
   1049 }
   1050 
   1051 void
   1052 x86_cpu_idle_halt(void)
   1053 {
   1054 	struct cpu_info *ci = curcpu();
   1055 
   1056 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1057 
   1058 	x86_disable_intr();
   1059 	if (!__predict_false(ci->ci_want_resched)) {
   1060 		x86_stihlt();
   1061 	} else {
   1062 		x86_enable_intr();
   1063 	}
   1064 }
   1065