cpu.c revision 1.55 1 /* $NetBSD: cpu.c,v 1.55 2008/06/02 14:41:41 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.55 2008/06/02 14:41:41 ad Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70
71 #include "lapic.h"
72 #include "ioapic.h"
73
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/user.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/cpu.h>
81 #include <sys/atomic.h>
82 #include <sys/reboot.h>
83
84 #include <uvm/uvm_extern.h>
85
86 #include <machine/cpufunc.h>
87 #include <machine/cpuvar.h>
88 #include <machine/pmap.h>
89 #include <machine/vmparam.h>
90 #include <machine/mpbiosvar.h>
91 #include <machine/pcb.h>
92 #include <machine/specialreg.h>
93 #include <machine/segments.h>
94 #include <machine/gdt.h>
95 #include <machine/mtrr.h>
96 #include <machine/pio.h>
97 #include <machine/cpu_counter.h>
98
99 #ifdef i386
100 #include <machine/tlog.h>
101 #endif
102
103 #include <machine/apicvar.h>
104 #include <machine/i82489reg.h>
105 #include <machine/i82489var.h>
106
107 #include <dev/ic/mc146818reg.h>
108 #include <i386/isa/nvram.h>
109 #include <dev/isa/isareg.h>
110
111 #include "tsc.h"
112
113 #if MAXCPUS > 32
114 #error cpu_info contains 32bit bitmasks
115 #endif
116
117 int cpu_match(device_t, cfdata_t, void *);
118 void cpu_attach(device_t, device_t, void *);
119
120 static bool cpu_suspend(device_t PMF_FN_PROTO);
121 static bool cpu_resume(device_t PMF_FN_PROTO);
122
123 struct cpu_softc {
124 device_t sc_dev; /* device tree glue */
125 struct cpu_info *sc_info; /* pointer to CPU info */
126 bool sc_wasonline;
127 };
128
129 int mp_cpu_start(struct cpu_info *, paddr_t);
130 void mp_cpu_start_cleanup(struct cpu_info *);
131 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
132 mp_cpu_start_cleanup };
133
134
135 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
136 cpu_match, cpu_attach, NULL, NULL);
137
138 /*
139 * Statically-allocated CPU info for the primary CPU (or the only
140 * CPU, on uniprocessors). The CPU info list is initialized to
141 * point at it.
142 */
143 #ifdef TRAPLOG
144 struct tlog tlog_primary;
145 #endif
146 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
147 .ci_dev = 0,
148 .ci_self = &cpu_info_primary,
149 .ci_idepth = -1,
150 .ci_curlwp = &lwp0,
151 .ci_curldt = -1,
152 #ifdef TRAPLOG
153 .ci_tlog_base = &tlog_primary,
154 #endif /* !TRAPLOG */
155 };
156
157 struct cpu_info *cpu_info_list = &cpu_info_primary;
158
159 static void cpu_set_tss_gates(struct cpu_info *);
160
161 #ifdef i386
162 static void tss_init(struct i386tss *, void *, void *);
163 #endif
164
165 static void cpu_init_idle_lwp(struct cpu_info *);
166
167 uint32_t cpus_attached = 0;
168 uint32_t cpus_running = 0;
169
170 extern char x86_64_doubleflt_stack[];
171
172 bool x86_mp_online;
173 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
174 static vaddr_t cmos_data_mapping;
175 struct cpu_info *cpu_starting;
176
177 void cpu_hatch(void *);
178 static void cpu_boot_secondary(struct cpu_info *ci);
179 static void cpu_start_secondary(struct cpu_info *ci);
180 static void cpu_copy_trampoline(void);
181
182 /*
183 * Runs once per boot once multiprocessor goo has been detected and
184 * the local APIC on the boot processor has been mapped.
185 *
186 * Called from lapic_boot_init() (from mpbios_scan()).
187 */
188 void
189 cpu_init_first(void)
190 {
191
192 cpu_info_primary.ci_cpuid = lapic_cpu_number();
193 cpu_copy_trampoline();
194
195 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
196 if (cmos_data_mapping == 0)
197 panic("No KVA for page 0");
198 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
199 pmap_update(pmap_kernel());
200 }
201
202 int
203 cpu_match(device_t parent, cfdata_t match, void *aux)
204 {
205
206 return 1;
207 }
208
209 static void
210 cpu_vm_init(struct cpu_info *ci)
211 {
212 int ncolors = 2, i;
213
214 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
215 struct x86_cache_info *cai;
216 int tcolors;
217
218 cai = &ci->ci_cinfo[i];
219
220 tcolors = atop(cai->cai_totalsize);
221 switch(cai->cai_associativity) {
222 case 0xff:
223 tcolors = 1; /* fully associative */
224 break;
225 case 0:
226 case 1:
227 break;
228 default:
229 tcolors /= cai->cai_associativity;
230 }
231 ncolors = max(ncolors, tcolors);
232 /*
233 * If the desired number of colors is not a power of
234 * two, it won't be good. Find the greatest power of
235 * two which is an even divisor of the number of colors,
236 * to preserve even coloring of pages.
237 */
238 if (ncolors & (ncolors - 1) ) {
239 int try, picked = 1;
240 for (try = 1; try < ncolors; try *= 2) {
241 if (ncolors % try == 0) picked = try;
242 }
243 if (picked == 1) {
244 panic("desired number of cache colors %d is "
245 " > 1, but not even!", ncolors);
246 }
247 ncolors = picked;
248 }
249 }
250
251 /*
252 * Knowing the size of the largest cache on this CPU, re-color
253 * our pages.
254 */
255 if (ncolors <= uvmexp.ncolors)
256 return;
257 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
258 uvm_page_recolor(ncolors);
259 }
260
261
262 void
263 cpu_attach(device_t parent, device_t self, void *aux)
264 {
265 struct cpu_softc *sc = device_private(self);
266 struct cpu_attach_args *caa = aux;
267 struct cpu_info *ci;
268 uintptr_t ptr;
269 int cpunum = caa->cpu_number;
270 static bool again;
271
272 sc->sc_dev = self;
273
274 if (cpus_attached == ~0) {
275 aprint_error(": increase MAXCPUS\n");
276 return;
277 }
278
279 /*
280 * If we're an Application Processor, allocate a cpu_info
281 * structure, otherwise use the primary's.
282 */
283 if (caa->cpu_role == CPU_ROLE_AP) {
284 if ((boothowto & RB_MD1) != 0) {
285 aprint_error(": multiprocessor boot disabled\n");
286 return;
287 }
288 aprint_naive(": Application Processor\n");
289 ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
290 M_DEVBUF, M_WAITOK);
291 ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
292 ~(CACHE_LINE_SIZE - 1));
293 memset(ci, 0, sizeof(*ci));
294 ci->ci_curldt = -1;
295 #ifdef TRAPLOG
296 ci->ci_tlog_base = malloc(sizeof(struct tlog),
297 M_DEVBUF, M_WAITOK);
298 #endif
299 } else {
300 aprint_naive(": %s Processor\n",
301 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
302 ci = &cpu_info_primary;
303 if (cpunum != lapic_cpu_number()) {
304 /* XXX should be done earlier. */
305 uint32_t reg;
306 aprint_verbose("\n");
307 aprint_verbose_dev(self, "running CPU at apic %d"
308 " instead of at expected %d", lapic_cpu_number(),
309 cpunum);
310 reg = i82489_readreg(LAPIC_ID);
311 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
312 (cpunum << LAPIC_ID_SHIFT));
313 }
314 if (cpunum != lapic_cpu_number()) {
315 aprint_error_dev(self, "unable to reset apic id\n");
316 }
317 }
318
319 ci->ci_self = ci;
320 sc->sc_info = ci;
321 ci->ci_dev = self;
322 ci->ci_cpuid = caa->cpu_number;
323 ci->ci_func = caa->cpu_func;
324
325 /* Must be before mi_cpu_attach(). */
326 cpu_vm_init(ci);
327
328 if (caa->cpu_role == CPU_ROLE_AP) {
329 int error;
330
331 error = mi_cpu_attach(ci);
332 if (error != 0) {
333 aprint_normal("\n");
334 aprint_error_dev(self,
335 "mi_cpu_attach failed with %d\n", error);
336 return;
337 }
338 cpu_init_tss(ci);
339 } else {
340 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
341 }
342
343 ci->ci_cpumask = (1 << cpu_index(ci));
344 pmap_reference(pmap_kernel());
345 ci->ci_pmap = pmap_kernel();
346 ci->ci_tlbstate = TLBSTATE_STALE;
347
348 /*
349 * Boot processor may not be attached first, but the below
350 * must be done to allow booting other processors.
351 */
352 if (!again) {
353 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
354 /* Basic init. */
355 cpu_intr_init(ci);
356 cpu_get_tsc_freq(ci);
357 cpu_init(ci);
358 cpu_set_tss_gates(ci);
359 pmap_cpu_init_late(ci);
360 if (caa->cpu_role != CPU_ROLE_SP) {
361 /* Enable lapic. */
362 lapic_enable();
363 lapic_set_lvt();
364 lapic_calibrate_timer(ci);
365 }
366 /* Make sure DELAY() is initialized. */
367 DELAY(1);
368 again = true;
369 }
370
371 /* further PCB init done later. */
372
373 switch (caa->cpu_role) {
374 case CPU_ROLE_SP:
375 atomic_or_32(&ci->ci_flags, CPUF_SP);
376 cpu_identify(ci);
377 x86_errata();
378 x86_cpu_idle_init();
379 break;
380
381 case CPU_ROLE_BP:
382 atomic_or_32(&ci->ci_flags, CPUF_BSP);
383 cpu_identify(ci);
384 x86_errata();
385 x86_cpu_idle_init();
386 break;
387
388 case CPU_ROLE_AP:
389 /*
390 * report on an AP
391 */
392 cpu_intr_init(ci);
393 gdt_alloc_cpu(ci);
394 cpu_set_tss_gates(ci);
395 pmap_cpu_init_early(ci);
396 pmap_cpu_init_late(ci);
397 cpu_start_secondary(ci);
398 if (ci->ci_flags & CPUF_PRESENT) {
399 cpu_identify(ci);
400 ci->ci_next = cpu_info_list->ci_next;
401 cpu_info_list->ci_next = ci;
402 }
403 break;
404
405 default:
406 aprint_normal("\n");
407 panic("unknown processor type??\n");
408 }
409
410 atomic_or_32(&cpus_attached, ci->ci_cpumask);
411
412 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
413 aprint_error_dev(self, "couldn't establish power handler\n");
414
415 if (mp_verbose) {
416 struct lwp *l = ci->ci_data.cpu_idlelwp;
417
418 aprint_verbose_dev(self,
419 "idle lwp at %p, idle sp at %p\n",
420 l,
421 #ifdef i386
422 (void *)l->l_addr->u_pcb.pcb_esp
423 #else
424 (void *)l->l_addr->u_pcb.pcb_rsp
425 #endif
426 );
427 }
428 }
429
430 /*
431 * Initialize the processor appropriately.
432 */
433
434 void
435 cpu_init(struct cpu_info *ci)
436 {
437
438 lcr0(rcr0() | CR0_WP);
439
440 /*
441 * On a P6 or above, enable global TLB caching if the
442 * hardware supports it.
443 */
444 if (cpu_feature & CPUID_PGE)
445 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
446
447 /*
448 * If we have FXSAVE/FXRESTOR, use them.
449 */
450 if (cpu_feature & CPUID_FXSR) {
451 lcr4(rcr4() | CR4_OSFXSR);
452
453 /*
454 * If we have SSE/SSE2, enable XMM exceptions.
455 */
456 if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
457 lcr4(rcr4() | CR4_OSXMMEXCPT);
458 }
459
460 #ifdef MTRR
461 /*
462 * On a P6 or above, initialize MTRR's if the hardware supports them.
463 */
464 if (cpu_feature & CPUID_MTRR) {
465 if ((ci->ci_flags & CPUF_AP) == 0)
466 i686_mtrr_init_first();
467 mtrr_init_cpu(ci);
468 }
469
470 #ifdef i386
471 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
472 /*
473 * Must be a K6-2 Step >= 7 or a K6-III.
474 */
475 if (CPUID2FAMILY(ci->ci_signature) == 5) {
476 if (CPUID2MODEL(ci->ci_signature) > 8 ||
477 (CPUID2MODEL(ci->ci_signature) == 8 &&
478 CPUID2STEPPING(ci->ci_signature) >= 7)) {
479 mtrr_funcs = &k6_mtrr_funcs;
480 k6_mtrr_init_first();
481 mtrr_init_cpu(ci);
482 }
483 }
484 }
485 #endif /* i386 */
486 #endif /* MTRR */
487
488 atomic_or_32(&cpus_running, ci->ci_cpumask);
489
490 if (ci != &cpu_info_primary) {
491 /* Synchronize TSC again, and check for drift. */
492 wbinvd();
493 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
494 tsc_sync_ap(ci);
495 tsc_sync_ap(ci);
496 } else {
497 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
498 }
499 }
500
501 void
502 cpu_boot_secondary_processors(void)
503 {
504 struct cpu_info *ci;
505 u_long i;
506
507 /* Now that we know the number of CPUs, patch the text segment. */
508 x86_patch();
509
510 for (i=0; i < maxcpus; i++) {
511 ci = cpu_lookup_byindex(i);
512 if (ci == NULL)
513 continue;
514 if (ci->ci_data.cpu_idlelwp == NULL)
515 continue;
516 if ((ci->ci_flags & CPUF_PRESENT) == 0)
517 continue;
518 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
519 continue;
520 cpu_boot_secondary(ci);
521 }
522
523 x86_mp_online = true;
524
525 /* Now that we know about the TSC, attach the timecounter. */
526 tsc_tc_init();
527
528 /* Enable zeroing of pages in the idle loop if we have SSE2. */
529 vm_page_zero_enable = ((cpu_feature & CPUID_SSE2) != 0);
530 }
531
532 static void
533 cpu_init_idle_lwp(struct cpu_info *ci)
534 {
535 struct lwp *l = ci->ci_data.cpu_idlelwp;
536 struct pcb *pcb = &l->l_addr->u_pcb;
537
538 pcb->pcb_cr0 = rcr0();
539 }
540
541 void
542 cpu_init_idle_lwps(void)
543 {
544 struct cpu_info *ci;
545 u_long i;
546
547 for (i = 0; i < maxcpus; i++) {
548 ci = cpu_lookup_byindex(i);
549 if (ci == NULL)
550 continue;
551 if (ci->ci_data.cpu_idlelwp == NULL)
552 continue;
553 if ((ci->ci_flags & CPUF_PRESENT) == 0)
554 continue;
555 cpu_init_idle_lwp(ci);
556 }
557 }
558
559 void
560 cpu_start_secondary(struct cpu_info *ci)
561 {
562 extern paddr_t mp_pdirpa;
563 u_long psl;
564 int i;
565
566 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
567 atomic_or_32(&ci->ci_flags, CPUF_AP);
568 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
569 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
570 return;
571 }
572
573 /*
574 * Wait for it to become ready. Setting cpu_starting opens the
575 * initial gate and allows the AP to start soft initialization.
576 */
577 KASSERT(cpu_starting == NULL);
578 cpu_starting = ci;
579 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
580 #ifdef MPDEBUG
581 extern int cpu_trace[3];
582 static int otrace[3];
583 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
584 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
585 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
586 memcpy(otrace, cpu_trace, sizeof(otrace));
587 }
588 #endif
589 i8254_delay(10);
590 }
591
592 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
593 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
594 #if defined(MPDEBUG) && defined(DDB)
595 printf("dropping into debugger; continue from here to resume boot\n");
596 Debugger();
597 #endif
598 } else {
599 /*
600 * Synchronize time stamp counters. Invalidate cache and do twice
601 * to try and minimize possible cache effects. Disable interrupts
602 * to try and rule out any external interference.
603 */
604 psl = x86_read_psl();
605 x86_disable_intr();
606 wbinvd();
607 tsc_sync_bp(ci);
608 tsc_sync_bp(ci);
609 x86_write_psl(psl);
610 }
611
612 CPU_START_CLEANUP(ci);
613 cpu_starting = NULL;
614 }
615
616 void
617 cpu_boot_secondary(struct cpu_info *ci)
618 {
619 int64_t drift;
620 u_long psl;
621 int i;
622
623 atomic_or_32(&ci->ci_flags, CPUF_GO);
624 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
625 i8254_delay(10);
626 }
627 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
628 aprint_error_dev(ci->ci_dev, "failed to start\n");
629 #if defined(MPDEBUG) && defined(DDB)
630 printf("dropping into debugger; continue from here to resume boot\n");
631 Debugger();
632 #endif
633 } else {
634 /* Synchronize TSC again, check for drift. */
635 drift = ci->ci_data.cpu_cc_skew;
636 psl = x86_read_psl();
637 x86_disable_intr();
638 wbinvd();
639 tsc_sync_bp(ci);
640 tsc_sync_bp(ci);
641 x86_write_psl(psl);
642 drift -= ci->ci_data.cpu_cc_skew;
643 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
644 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
645 tsc_sync_drift(drift);
646 }
647 }
648
649 /*
650 * The CPU ends up here when its ready to run
651 * This is called from code in mptramp.s; at this point, we are running
652 * in the idle pcb/idle stack of the new CPU. When this function returns,
653 * this processor will enter the idle loop and start looking for work.
654 */
655 void
656 cpu_hatch(void *v)
657 {
658 struct cpu_info *ci = (struct cpu_info *)v;
659 int s, i;
660
661 #ifdef __x86_64__
662 cpu_init_msrs(ci, true);
663 #endif
664 cpu_probe(ci);
665
666 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
667 /* cpu_get_tsc_freq(ci); */
668
669 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
670
671 /*
672 * Synchronize time stamp counters. Invalidate cache and do twice
673 * to try and minimize possible cache effects. Note that interrupts
674 * are off at this point.
675 */
676 wbinvd();
677 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
678 tsc_sync_ap(ci);
679 tsc_sync_ap(ci);
680
681 /*
682 * Wait to be brought online. Use 'monitor/mwait' if available,
683 * in order to make the TSC drift as much as possible. so that
684 * we can detect it later. If not available, try 'pause'.
685 * We'd like to use 'hlt', but we have interrupts off.
686 */
687 while ((ci->ci_flags & CPUF_GO) == 0) {
688 if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
689 x86_monitor(&ci->ci_flags, 0, 0);
690 if ((ci->ci_flags & CPUF_GO) != 0) {
691 continue;
692 }
693 x86_mwait(0, 0);
694 } else {
695 for (i = 10000; i != 0; i--) {
696 x86_pause();
697 }
698 }
699 }
700
701 /* Because the text may have been patched in x86_patch(). */
702 wbinvd();
703 x86_flush();
704
705 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
706
707 lcr3(pmap_kernel()->pm_pdirpa);
708 curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
709 lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
710 cpu_init_idt();
711 gdt_init_cpu(ci);
712 lapic_enable();
713 lapic_set_lvt();
714 lapic_initclocks();
715
716 #ifdef i386
717 npxinit(ci);
718 #else
719 fpuinit(ci);
720 #endif
721 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
722 ltr(ci->ci_tss_sel);
723
724 cpu_init(ci);
725 cpu_get_tsc_freq(ci);
726
727 s = splhigh();
728 #ifdef i386
729 lapic_tpr = 0;
730 #else
731 lcr8(0);
732 #endif
733 x86_enable_intr();
734 splx(s);
735 x86_errata();
736
737 aprint_debug_dev(ci->ci_dev, "running\n");
738 }
739
740 #if defined(DDB)
741
742 #include <ddb/db_output.h>
743 #include <machine/db_machdep.h>
744
745 /*
746 * Dump CPU information from ddb.
747 */
748 void
749 cpu_debug_dump(void)
750 {
751 struct cpu_info *ci;
752 CPU_INFO_ITERATOR cii;
753
754 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
755 for (CPU_INFO_FOREACH(cii, ci)) {
756 db_printf("%p %s %ld %x %x %10p %10p\n",
757 ci,
758 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
759 (long)ci->ci_cpuid,
760 ci->ci_flags, ci->ci_ipis,
761 ci->ci_curlwp,
762 ci->ci_fpcurlwp);
763 }
764 }
765 #endif
766
767 static void
768 cpu_copy_trampoline(void)
769 {
770 /*
771 * Copy boot code.
772 */
773 extern u_char cpu_spinup_trampoline[];
774 extern u_char cpu_spinup_trampoline_end[];
775
776 vaddr_t mp_trampoline_vaddr;
777
778 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
779 UVM_KMF_VAONLY);
780
781 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
782 VM_PROT_READ | VM_PROT_WRITE);
783 pmap_update(pmap_kernel());
784 memcpy((void *)mp_trampoline_vaddr,
785 cpu_spinup_trampoline,
786 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
787
788 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
789 pmap_update(pmap_kernel());
790 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
791 }
792
793 #ifdef i386
794 static void
795 tss_init(struct i386tss *tss, void *stack, void *func)
796 {
797 memset(tss, 0, sizeof *tss);
798 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
799 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
800 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
801 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
802 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
803 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
804 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
805 tss->tss_esp = (int)((char *)stack + USPACE - 16);
806 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
807 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
808 tss->__tss_eip = (int)func;
809 }
810
811 /* XXX */
812 #define IDTVEC(name) __CONCAT(X, name)
813 typedef void (vector)(void);
814 extern vector IDTVEC(tss_trap08);
815 #ifdef DDB
816 extern vector Xintrddbipi;
817 extern int ddb_vec;
818 #endif
819
820 static void
821 cpu_set_tss_gates(struct cpu_info *ci)
822 {
823 struct segment_descriptor sd;
824
825 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
826 UVM_KMF_WIRED);
827 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
828 IDTVEC(tss_trap08));
829 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
830 SDT_SYS386TSS, SEL_KPL, 0, 0);
831 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
832 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
833 GSEL(GTRAPTSS_SEL, SEL_KPL));
834
835 #if defined(DDB)
836 /*
837 * Set up separate handler for the DDB IPI, so that it doesn't
838 * stomp on a possibly corrupted stack.
839 *
840 * XXX overwriting the gate set in db_machine_init.
841 * Should rearrange the code so that it's set only once.
842 */
843 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
844 UVM_KMF_WIRED);
845 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
846
847 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
848 SDT_SYS386TSS, SEL_KPL, 0, 0);
849 ci->ci_gdt[GIPITSS_SEL].sd = sd;
850
851 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
852 GSEL(GIPITSS_SEL, SEL_KPL));
853 #endif
854 }
855 #else
856 static void
857 cpu_set_tss_gates(struct cpu_info *ci)
858 {
859
860 }
861 #endif /* i386 */
862
863 int
864 mp_cpu_start(struct cpu_info *ci, paddr_t target)
865 {
866 unsigned short dwordptr[2];
867 int error;
868
869 /*
870 * Bootstrap code must be addressable in real mode
871 * and it must be page aligned.
872 */
873 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
874
875 /*
876 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
877 */
878
879 outb(IO_RTC, NVRAM_RESET);
880 outb(IO_RTC+1, NVRAM_RESET_JUMP);
881
882 /*
883 * "and the warm reset vector (DWORD based at 40:67) to point
884 * to the AP startup code ..."
885 */
886
887 dwordptr[0] = 0;
888 dwordptr[1] = target >> 4;
889
890 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
891
892 if ((cpu_feature & CPUID_APIC) == 0) {
893 aprint_error("mp_cpu_start: CPU does not have APIC\n");
894 return ENODEV;
895 }
896
897 /*
898 * ... prior to executing the following sequence:". We'll also add in
899 * local cache flush, in case the BIOS has left the AP with its cache
900 * disabled. It may not be able to cope with MP coherency.
901 */
902 wbinvd();
903
904 if (ci->ci_flags & CPUF_AP) {
905 error = x86_ipi_init(ci->ci_cpuid);
906 if (error != 0) {
907 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
908 __func__);
909 return error;
910 }
911 i8254_delay(10000);
912
913 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
914 if (error != 0) {
915 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
916 __func__);
917 return error;
918 }
919 i8254_delay(200);
920
921 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
922 if (error != 0) {
923 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
924 __func__);
925 return error;
926 }
927 i8254_delay(200);
928 }
929
930 return 0;
931 }
932
933 void
934 mp_cpu_start_cleanup(struct cpu_info *ci)
935 {
936 /*
937 * Ensure the NVRAM reset byte contains something vaguely sane.
938 */
939
940 outb(IO_RTC, NVRAM_RESET);
941 outb(IO_RTC+1, NVRAM_RESET_RST);
942 }
943
944 #ifdef __x86_64__
945 typedef void (vector)(void);
946 extern vector Xsyscall, Xsyscall32;
947
948 void
949 cpu_init_msrs(struct cpu_info *ci, bool full)
950 {
951 wrmsr(MSR_STAR,
952 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
953 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
954 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
955 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
956 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
957
958 if (full) {
959 wrmsr(MSR_FSBASE, 0);
960 wrmsr(MSR_GSBASE, (uint64_t)ci);
961 wrmsr(MSR_KERNELGSBASE, 0);
962 }
963
964 if (cpu_feature & CPUID_NOX)
965 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
966 }
967 #endif /* __x86_64__ */
968
969 void
970 cpu_offline_md(void)
971 {
972 int s;
973
974 s = splhigh();
975 #ifdef __i386__
976 npxsave_cpu(true);
977 #else
978 fpusave_cpu(true);
979 #endif
980 splx(s);
981 }
982
983 /* XXX joerg restructure and restart CPUs individually */
984 static bool
985 cpu_suspend(device_t dv PMF_FN_ARGS)
986 {
987 struct cpu_softc *sc = device_private(dv);
988 struct cpu_info *ci = sc->sc_info;
989 int err;
990
991 if (ci->ci_flags & CPUF_PRIMARY)
992 return true;
993 if (ci->ci_data.cpu_idlelwp == NULL)
994 return true;
995 if ((ci->ci_flags & CPUF_PRESENT) == 0)
996 return true;
997
998 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
999
1000 if (sc->sc_wasonline) {
1001 mutex_enter(&cpu_lock);
1002 err = cpu_setonline(ci, false);
1003 mutex_exit(&cpu_lock);
1004
1005 if (err)
1006 return false;
1007 }
1008
1009 return true;
1010 }
1011
1012 static bool
1013 cpu_resume(device_t dv PMF_FN_ARGS)
1014 {
1015 struct cpu_softc *sc = device_private(dv);
1016 struct cpu_info *ci = sc->sc_info;
1017 int err = 0;
1018
1019 if (ci->ci_flags & CPUF_PRIMARY)
1020 return true;
1021 if (ci->ci_data.cpu_idlelwp == NULL)
1022 return true;
1023 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1024 return true;
1025
1026 if (sc->sc_wasonline) {
1027 mutex_enter(&cpu_lock);
1028 err = cpu_setonline(ci, true);
1029 mutex_exit(&cpu_lock);
1030 }
1031
1032 return err == 0;
1033 }
1034
1035 void
1036 cpu_get_tsc_freq(struct cpu_info *ci)
1037 {
1038 uint64_t last_tsc;
1039
1040 if (ci->ci_feature_flags & CPUID_TSC) {
1041 last_tsc = rdmsr(MSR_TSC);
1042 i8254_delay(100000);
1043 ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
1044 }
1045 }
1046
1047 void
1048 x86_cpu_idle_mwait(void)
1049 {
1050 struct cpu_info *ci = curcpu();
1051
1052 KASSERT(ci->ci_ilevel == IPL_NONE);
1053
1054 x86_monitor(&ci->ci_want_resched, 0, 0);
1055 if (__predict_false(ci->ci_want_resched)) {
1056 return;
1057 }
1058 x86_mwait(0, 0);
1059 }
1060
1061 void
1062 x86_cpu_idle_halt(void)
1063 {
1064 struct cpu_info *ci = curcpu();
1065
1066 KASSERT(ci->ci_ilevel == IPL_NONE);
1067
1068 x86_disable_intr();
1069 if (!__predict_false(ci->ci_want_resched)) {
1070 x86_stihlt();
1071 } else {
1072 x86_enable_intr();
1073 }
1074 }
1075