Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.65
      1 /*	$NetBSD: cpu.c,v 1.65 2009/11/21 03:11:01 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.65 2009/11/21 03:11:01 rmind Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/reboot.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <machine/cpufunc.h>
     90 #include <machine/cpuvar.h>
     91 #include <machine/pmap.h>
     92 #include <machine/vmparam.h>
     93 #include <machine/mpbiosvar.h>
     94 #include <machine/pcb.h>
     95 #include <machine/specialreg.h>
     96 #include <machine/segments.h>
     97 #include <machine/gdt.h>
     98 #include <machine/mtrr.h>
     99 #include <machine/pio.h>
    100 #include <machine/cpu_counter.h>
    101 
    102 #ifdef i386
    103 #include <machine/tlog.h>
    104 #endif
    105 
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 
    110 #include <dev/ic/mc146818reg.h>
    111 #include <i386/isa/nvram.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #include "tsc.h"
    115 
    116 #if MAXCPUS > 32
    117 #error cpu_info contains 32bit bitmasks
    118 #endif
    119 
    120 int     cpu_match(device_t, cfdata_t, void *);
    121 void    cpu_attach(device_t, device_t, void *);
    122 
    123 static bool	cpu_suspend(device_t PMF_FN_PROTO);
    124 static bool	cpu_resume(device_t PMF_FN_PROTO);
    125 
    126 struct cpu_softc {
    127 	device_t sc_dev;		/* device tree glue */
    128 	struct cpu_info *sc_info;	/* pointer to CPU info */
    129 	bool sc_wasonline;
    130 };
    131 
    132 int mp_cpu_start(struct cpu_info *, paddr_t);
    133 void mp_cpu_start_cleanup(struct cpu_info *);
    134 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    135 					    mp_cpu_start_cleanup };
    136 
    137 
    138 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    139     cpu_match, cpu_attach, NULL, NULL);
    140 
    141 /*
    142  * Statically-allocated CPU info for the primary CPU (or the only
    143  * CPU, on uniprocessors).  The CPU info list is initialized to
    144  * point at it.
    145  */
    146 #ifdef TRAPLOG
    147 struct tlog tlog_primary;
    148 #endif
    149 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    150 	.ci_dev = 0,
    151 	.ci_self = &cpu_info_primary,
    152 	.ci_idepth = -1,
    153 	.ci_curlwp = &lwp0,
    154 	.ci_curldt = -1,
    155 #ifdef TRAPLOG
    156 	.ci_tlog_base = &tlog_primary,
    157 #endif /* !TRAPLOG */
    158 };
    159 
    160 struct cpu_info *cpu_info_list = &cpu_info_primary;
    161 
    162 static void	cpu_set_tss_gates(struct cpu_info *);
    163 
    164 #ifdef i386
    165 static void	tss_init(struct i386tss *, void *, void *);
    166 #endif
    167 
    168 static void	cpu_init_idle_lwp(struct cpu_info *);
    169 
    170 uint32_t cpus_attached = 0;
    171 uint32_t cpus_running = 0;
    172 
    173 extern char x86_64_doubleflt_stack[];
    174 
    175 bool x86_mp_online;
    176 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    177 static vaddr_t cmos_data_mapping;
    178 struct cpu_info *cpu_starting;
    179 
    180 void    	cpu_hatch(void *);
    181 static void    	cpu_boot_secondary(struct cpu_info *ci);
    182 static void    	cpu_start_secondary(struct cpu_info *ci);
    183 static void	cpu_copy_trampoline(void);
    184 
    185 /*
    186  * Runs once per boot once multiprocessor goo has been detected and
    187  * the local APIC on the boot processor has been mapped.
    188  *
    189  * Called from lapic_boot_init() (from mpbios_scan()).
    190  */
    191 void
    192 cpu_init_first(void)
    193 {
    194 
    195 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    196 	cpu_copy_trampoline();
    197 
    198 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    199 	if (cmos_data_mapping == 0)
    200 		panic("No KVA for page 0");
    201 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    202 	pmap_update(pmap_kernel());
    203 }
    204 
    205 int
    206 cpu_match(device_t parent, cfdata_t match, void *aux)
    207 {
    208 
    209 	return 1;
    210 }
    211 
    212 static void
    213 cpu_vm_init(struct cpu_info *ci)
    214 {
    215 	int ncolors = 2, i;
    216 
    217 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    218 		struct x86_cache_info *cai;
    219 		int tcolors;
    220 
    221 		cai = &ci->ci_cinfo[i];
    222 
    223 		tcolors = atop(cai->cai_totalsize);
    224 		switch(cai->cai_associativity) {
    225 		case 0xff:
    226 			tcolors = 1; /* fully associative */
    227 			break;
    228 		case 0:
    229 		case 1:
    230 			break;
    231 		default:
    232 			tcolors /= cai->cai_associativity;
    233 		}
    234 		ncolors = max(ncolors, tcolors);
    235 		/*
    236 		 * If the desired number of colors is not a power of
    237 		 * two, it won't be good.  Find the greatest power of
    238 		 * two which is an even divisor of the number of colors,
    239 		 * to preserve even coloring of pages.
    240 		 */
    241 		if (ncolors & (ncolors - 1) ) {
    242 			int try, picked = 1;
    243 			for (try = 1; try < ncolors; try *= 2) {
    244 				if (ncolors % try == 0) picked = try;
    245 			}
    246 			if (picked == 1) {
    247 				panic("desired number of cache colors %d is "
    248 			      	" > 1, but not even!", ncolors);
    249 			}
    250 			ncolors = picked;
    251 		}
    252 	}
    253 
    254 	/*
    255 	 * Knowing the size of the largest cache on this CPU, re-color
    256 	 * our pages.
    257 	 */
    258 	if (ncolors <= uvmexp.ncolors)
    259 		return;
    260 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    261 	uvm_page_recolor(ncolors);
    262 }
    263 
    264 
    265 void
    266 cpu_attach(device_t parent, device_t self, void *aux)
    267 {
    268 	struct cpu_softc *sc = device_private(self);
    269 	struct cpu_attach_args *caa = aux;
    270 	struct cpu_info *ci;
    271 	uintptr_t ptr;
    272 	int cpunum = caa->cpu_number;
    273 	static bool again;
    274 
    275 	sc->sc_dev = self;
    276 
    277 	if (cpus_attached == ~0) {
    278 		aprint_error(": increase MAXCPUS\n");
    279 		return;
    280 	}
    281 
    282 	/*
    283 	 * If we're an Application Processor, allocate a cpu_info
    284 	 * structure, otherwise use the primary's.
    285 	 */
    286 	if (caa->cpu_role == CPU_ROLE_AP) {
    287 		if ((boothowto & RB_MD1) != 0) {
    288 			aprint_error(": multiprocessor boot disabled\n");
    289 			if (!pmf_device_register(self, NULL, NULL))
    290 				aprint_error_dev(self,
    291 				    "couldn't establish power handler\n");
    292 			return;
    293 		}
    294 		aprint_naive(": Application Processor\n");
    295 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    296 		    KM_SLEEP);
    297 		ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
    298 		    ~(CACHE_LINE_SIZE - 1));
    299 		memset(ci, 0, sizeof(*ci));
    300 		ci->ci_curldt = -1;
    301 #ifdef TRAPLOG
    302 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    303 #endif
    304 	} else {
    305 		aprint_naive(": %s Processor\n",
    306 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    307 		ci = &cpu_info_primary;
    308 		if (cpunum != lapic_cpu_number()) {
    309 			/* XXX should be done earlier. */
    310 			uint32_t reg;
    311 			aprint_verbose("\n");
    312 			aprint_verbose_dev(self, "running CPU at apic %d"
    313 			    " instead of at expected %d", lapic_cpu_number(),
    314 			    cpunum);
    315 			reg = i82489_readreg(LAPIC_ID);
    316 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    317 			    (cpunum << LAPIC_ID_SHIFT));
    318 		}
    319 		if (cpunum != lapic_cpu_number()) {
    320 			aprint_error_dev(self, "unable to reset apic id\n");
    321 		}
    322 	}
    323 
    324 	ci->ci_self = ci;
    325 	sc->sc_info = ci;
    326 	ci->ci_dev = self;
    327 	ci->ci_cpuid = caa->cpu_number;
    328 	ci->ci_func = caa->cpu_func;
    329 
    330 	/* Must be before mi_cpu_attach(). */
    331 	cpu_vm_init(ci);
    332 
    333 	if (caa->cpu_role == CPU_ROLE_AP) {
    334 		int error;
    335 
    336 		error = mi_cpu_attach(ci);
    337 		if (error != 0) {
    338 			aprint_normal("\n");
    339 			aprint_error_dev(self,
    340 			    "mi_cpu_attach failed with %d\n", error);
    341 			return;
    342 		}
    343 		cpu_init_tss(ci);
    344 	} else {
    345 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    346 	}
    347 
    348 	ci->ci_cpumask = (1 << cpu_index(ci));
    349 	pmap_reference(pmap_kernel());
    350 	ci->ci_pmap = pmap_kernel();
    351 	ci->ci_tlbstate = TLBSTATE_STALE;
    352 
    353 	/*
    354 	 * Boot processor may not be attached first, but the below
    355 	 * must be done to allow booting other processors.
    356 	 */
    357 	if (!again) {
    358 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    359 		/* Basic init. */
    360 		cpu_intr_init(ci);
    361 		cpu_get_tsc_freq(ci);
    362 		cpu_init(ci);
    363 		cpu_set_tss_gates(ci);
    364 		pmap_cpu_init_late(ci);
    365 		if (caa->cpu_role != CPU_ROLE_SP) {
    366 			/* Enable lapic. */
    367 			lapic_enable();
    368 			lapic_set_lvt();
    369 			lapic_calibrate_timer(ci);
    370 		}
    371 		/* Make sure DELAY() is initialized. */
    372 		DELAY(1);
    373 		again = true;
    374 	}
    375 
    376 	/* further PCB init done later. */
    377 
    378 	switch (caa->cpu_role) {
    379 	case CPU_ROLE_SP:
    380 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    381 		cpu_identify(ci);
    382 		x86_errata();
    383 		x86_cpu_idle_init();
    384 		break;
    385 
    386 	case CPU_ROLE_BP:
    387 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    388 		cpu_identify(ci);
    389 		x86_errata();
    390 		x86_cpu_idle_init();
    391 		break;
    392 
    393 	case CPU_ROLE_AP:
    394 		/*
    395 		 * report on an AP
    396 		 */
    397 		cpu_intr_init(ci);
    398 		gdt_alloc_cpu(ci);
    399 		cpu_set_tss_gates(ci);
    400 		pmap_cpu_init_early(ci);
    401 		pmap_cpu_init_late(ci);
    402 		cpu_start_secondary(ci);
    403 		if (ci->ci_flags & CPUF_PRESENT) {
    404 			struct cpu_info *tmp;
    405 
    406 			cpu_identify(ci);
    407 			tmp = cpu_info_list;
    408 			while (tmp->ci_next)
    409 				tmp = tmp->ci_next;
    410 
    411 			tmp->ci_next = ci;
    412 		}
    413 		break;
    414 
    415 	default:
    416 		aprint_normal("\n");
    417 		panic("unknown processor type??\n");
    418 	}
    419 
    420 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    421 
    422 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    423 		aprint_error_dev(self, "couldn't establish power handler\n");
    424 
    425 	if (mp_verbose) {
    426 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    427 		struct pcb *pcb = lwp_getpcb(l);
    428 
    429 		aprint_verbose_dev(self,
    430 		    "idle lwp at %p, idle sp at %p\n",
    431 		    l,
    432 #ifdef i386
    433 		    (void *)pcb->pcb_esp
    434 #else
    435 		    (void *)pcb->pcb_rsp
    436 #endif
    437 		);
    438 	}
    439 }
    440 
    441 /*
    442  * Initialize the processor appropriately.
    443  */
    444 
    445 void
    446 cpu_init(struct cpu_info *ci)
    447 {
    448 
    449 	lcr0(rcr0() | CR0_WP);
    450 
    451 	/*
    452 	 * On a P6 or above, enable global TLB caching if the
    453 	 * hardware supports it.
    454 	 */
    455 	if (cpu_feature & CPUID_PGE)
    456 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    457 
    458 	/*
    459 	 * If we have FXSAVE/FXRESTOR, use them.
    460 	 */
    461 	if (cpu_feature & CPUID_FXSR) {
    462 		lcr4(rcr4() | CR4_OSFXSR);
    463 
    464 		/*
    465 		 * If we have SSE/SSE2, enable XMM exceptions.
    466 		 */
    467 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    468 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    469 	}
    470 
    471 #ifdef MTRR
    472 	/*
    473 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    474 	 */
    475 	if (cpu_feature & CPUID_MTRR) {
    476 		if ((ci->ci_flags & CPUF_AP) == 0)
    477 			i686_mtrr_init_first();
    478 		mtrr_init_cpu(ci);
    479 	}
    480 
    481 #ifdef i386
    482 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    483 		/*
    484 		 * Must be a K6-2 Step >= 7 or a K6-III.
    485 		 */
    486 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    487 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    488 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    489 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    490 				mtrr_funcs = &k6_mtrr_funcs;
    491 				k6_mtrr_init_first();
    492 				mtrr_init_cpu(ci);
    493 			}
    494 		}
    495 	}
    496 #endif	/* i386 */
    497 #endif /* MTRR */
    498 
    499 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    500 
    501 	if (ci != &cpu_info_primary) {
    502 		/* Synchronize TSC again, and check for drift. */
    503 		wbinvd();
    504 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    505 		tsc_sync_ap(ci);
    506 	} else {
    507 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    508 	}
    509 }
    510 
    511 void
    512 cpu_boot_secondary_processors(void)
    513 {
    514 	struct cpu_info *ci;
    515 	u_long i;
    516 
    517 	/* Now that we know the number of CPUs, patch the text segment. */
    518 	x86_patch(false);
    519 
    520 	for (i=0; i < maxcpus; i++) {
    521 		ci = cpu_lookup(i);
    522 		if (ci == NULL)
    523 			continue;
    524 		if (ci->ci_data.cpu_idlelwp == NULL)
    525 			continue;
    526 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    527 			continue;
    528 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    529 			continue;
    530 		cpu_boot_secondary(ci);
    531 	}
    532 
    533 	x86_mp_online = true;
    534 
    535 	/* Now that we know about the TSC, attach the timecounter. */
    536 	tsc_tc_init();
    537 
    538 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    539 	vm_page_zero_enable = ((cpu_feature & CPUID_SSE2) != 0);
    540 }
    541 
    542 static void
    543 cpu_init_idle_lwp(struct cpu_info *ci)
    544 {
    545 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    546 	struct pcb *pcb = lwp_getpcb(l);
    547 
    548 	pcb->pcb_cr0 = rcr0();
    549 }
    550 
    551 void
    552 cpu_init_idle_lwps(void)
    553 {
    554 	struct cpu_info *ci;
    555 	u_long i;
    556 
    557 	for (i = 0; i < maxcpus; i++) {
    558 		ci = cpu_lookup(i);
    559 		if (ci == NULL)
    560 			continue;
    561 		if (ci->ci_data.cpu_idlelwp == NULL)
    562 			continue;
    563 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    564 			continue;
    565 		cpu_init_idle_lwp(ci);
    566 	}
    567 }
    568 
    569 void
    570 cpu_start_secondary(struct cpu_info *ci)
    571 {
    572 	extern paddr_t mp_pdirpa;
    573 	u_long psl;
    574 	int i;
    575 
    576 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    577 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    578 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    579 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    580 		return;
    581 	}
    582 
    583 	/*
    584 	 * Wait for it to become ready.   Setting cpu_starting opens the
    585 	 * initial gate and allows the AP to start soft initialization.
    586 	 */
    587 	KASSERT(cpu_starting == NULL);
    588 	cpu_starting = ci;
    589 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    590 #ifdef MPDEBUG
    591 		extern int cpu_trace[3];
    592 		static int otrace[3];
    593 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    594 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    595 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    596 			memcpy(otrace, cpu_trace, sizeof(otrace));
    597 		}
    598 #endif
    599 		i8254_delay(10);
    600 	}
    601 
    602 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    603 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    604 #if defined(MPDEBUG) && defined(DDB)
    605 		printf("dropping into debugger; continue from here to resume boot\n");
    606 		Debugger();
    607 #endif
    608 	} else {
    609 		/*
    610 		 * Synchronize time stamp counters.  Invalidate cache and do twice
    611 		 * to try and minimize possible cache effects.  Disable interrupts
    612 		 * to try and rule out any external interference.
    613 		 */
    614 		psl = x86_read_psl();
    615 		x86_disable_intr();
    616 		wbinvd();
    617 		tsc_sync_bp(ci);
    618 		x86_write_psl(psl);
    619 	}
    620 
    621 	CPU_START_CLEANUP(ci);
    622 	cpu_starting = NULL;
    623 }
    624 
    625 void
    626 cpu_boot_secondary(struct cpu_info *ci)
    627 {
    628 	int64_t drift;
    629 	u_long psl;
    630 	int i;
    631 
    632 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    633 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    634 		i8254_delay(10);
    635 	}
    636 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    637 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    638 #if defined(MPDEBUG) && defined(DDB)
    639 		printf("dropping into debugger; continue from here to resume boot\n");
    640 		Debugger();
    641 #endif
    642 	} else {
    643 		/* Synchronize TSC again, check for drift. */
    644 		drift = ci->ci_data.cpu_cc_skew;
    645 		psl = x86_read_psl();
    646 		x86_disable_intr();
    647 		wbinvd();
    648 		tsc_sync_bp(ci);
    649 		x86_write_psl(psl);
    650 		drift -= ci->ci_data.cpu_cc_skew;
    651 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    652 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    653 		tsc_sync_drift(drift);
    654 	}
    655 }
    656 
    657 /*
    658  * The CPU ends up here when its ready to run
    659  * This is called from code in mptramp.s; at this point, we are running
    660  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    661  * this processor will enter the idle loop and start looking for work.
    662  */
    663 void
    664 cpu_hatch(void *v)
    665 {
    666 	struct cpu_info *ci = (struct cpu_info *)v;
    667 	struct pcb *pcb;
    668 	int s, i;
    669 
    670 #ifdef __x86_64__
    671 	cpu_init_msrs(ci, true);
    672 #endif
    673 	cpu_probe(ci);
    674 
    675 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    676 	/* cpu_get_tsc_freq(ci); */
    677 
    678 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    679 
    680 	/*
    681 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    682 	 * to try and minimize possible cache effects.  Note that interrupts
    683 	 * are off at this point.
    684 	 */
    685 	wbinvd();
    686 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    687 	tsc_sync_ap(ci);
    688 
    689 	/*
    690 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    691 	 * in order to make the TSC drift as much as possible. so that
    692 	 * we can detect it later.  If not available, try 'pause'.
    693 	 * We'd like to use 'hlt', but we have interrupts off.
    694 	 */
    695 	while ((ci->ci_flags & CPUF_GO) == 0) {
    696 		if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
    697 			x86_monitor(&ci->ci_flags, 0, 0);
    698 			if ((ci->ci_flags & CPUF_GO) != 0) {
    699 				continue;
    700 			}
    701 			x86_mwait(0, 0);
    702 		} else {
    703 			for (i = 10000; i != 0; i--) {
    704 				x86_pause();
    705 			}
    706 		}
    707 	}
    708 
    709 	/* Because the text may have been patched in x86_patch(). */
    710 	wbinvd();
    711 	x86_flush();
    712 
    713 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    714 
    715 	lcr3(pmap_kernel()->pm_pdirpa);
    716 	pcb = lwp_getpcb(curlwp);
    717 	pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
    718 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    719 	lcr0(pcb->pcb_cr0);
    720 
    721 	cpu_init_idt();
    722 	gdt_init_cpu(ci);
    723 	lapic_enable();
    724 	lapic_set_lvt();
    725 	lapic_initclocks();
    726 
    727 #ifdef i386
    728 #if NNPX > 0
    729 	npxinit(ci);
    730 #endif
    731 #else
    732 	fpuinit(ci);
    733 #endif
    734 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    735 	ltr(ci->ci_tss_sel);
    736 
    737 	cpu_init(ci);
    738 	cpu_get_tsc_freq(ci);
    739 
    740 	s = splhigh();
    741 #ifdef i386
    742 	lapic_tpr = 0;
    743 #else
    744 	lcr8(0);
    745 #endif
    746 	x86_enable_intr();
    747 	splx(s);
    748 	x86_errata();
    749 
    750 	aprint_debug_dev(ci->ci_dev, "running\n");
    751 }
    752 
    753 #if defined(DDB)
    754 
    755 #include <ddb/db_output.h>
    756 #include <machine/db_machdep.h>
    757 
    758 /*
    759  * Dump CPU information from ddb.
    760  */
    761 void
    762 cpu_debug_dump(void)
    763 {
    764 	struct cpu_info *ci;
    765 	CPU_INFO_ITERATOR cii;
    766 
    767 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    768 	for (CPU_INFO_FOREACH(cii, ci)) {
    769 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    770 		    ci,
    771 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    772 		    (long)ci->ci_cpuid,
    773 		    ci->ci_flags, ci->ci_ipis,
    774 		    ci->ci_curlwp,
    775 		    ci->ci_fpcurlwp);
    776 	}
    777 }
    778 #endif
    779 
    780 static void
    781 cpu_copy_trampoline(void)
    782 {
    783 	/*
    784 	 * Copy boot code.
    785 	 */
    786 	extern u_char cpu_spinup_trampoline[];
    787 	extern u_char cpu_spinup_trampoline_end[];
    788 
    789 	vaddr_t mp_trampoline_vaddr;
    790 
    791 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    792 	    UVM_KMF_VAONLY);
    793 
    794 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    795 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    796 	pmap_update(pmap_kernel());
    797 	memcpy((void *)mp_trampoline_vaddr,
    798 	    cpu_spinup_trampoline,
    799 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    800 
    801 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    802 	pmap_update(pmap_kernel());
    803 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    804 }
    805 
    806 #ifdef i386
    807 static void
    808 tss_init(struct i386tss *tss, void *stack, void *func)
    809 {
    810 	memset(tss, 0, sizeof *tss);
    811 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    812 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    813 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    814 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    815 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    816 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    817 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    818 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    819 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    820 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    821 	tss->__tss_eip = (int)func;
    822 }
    823 
    824 /* XXX */
    825 #define IDTVEC(name)	__CONCAT(X, name)
    826 typedef void (vector)(void);
    827 extern vector IDTVEC(tss_trap08);
    828 #ifdef DDB
    829 extern vector Xintrddbipi;
    830 extern int ddb_vec;
    831 #endif
    832 
    833 static void
    834 cpu_set_tss_gates(struct cpu_info *ci)
    835 {
    836 	struct segment_descriptor sd;
    837 
    838 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    839 	    UVM_KMF_WIRED);
    840 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    841 	    IDTVEC(tss_trap08));
    842 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    843 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    844 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    845 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    846 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    847 
    848 #if defined(DDB)
    849 	/*
    850 	 * Set up separate handler for the DDB IPI, so that it doesn't
    851 	 * stomp on a possibly corrupted stack.
    852 	 *
    853 	 * XXX overwriting the gate set in db_machine_init.
    854 	 * Should rearrange the code so that it's set only once.
    855 	 */
    856 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    857 	    UVM_KMF_WIRED);
    858 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    859 
    860 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    861 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    862 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    863 
    864 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    865 	    GSEL(GIPITSS_SEL, SEL_KPL));
    866 #endif
    867 }
    868 #else
    869 static void
    870 cpu_set_tss_gates(struct cpu_info *ci)
    871 {
    872 
    873 }
    874 #endif	/* i386 */
    875 
    876 int
    877 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    878 {
    879 	unsigned short dwordptr[2];
    880 	int error;
    881 
    882 	/*
    883 	 * Bootstrap code must be addressable in real mode
    884 	 * and it must be page aligned.
    885 	 */
    886 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    887 
    888 	/*
    889 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    890 	 */
    891 
    892 	outb(IO_RTC, NVRAM_RESET);
    893 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    894 
    895 	/*
    896 	 * "and the warm reset vector (DWORD based at 40:67) to point
    897 	 * to the AP startup code ..."
    898 	 */
    899 
    900 	dwordptr[0] = 0;
    901 	dwordptr[1] = target >> 4;
    902 
    903 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    904 
    905 	if ((cpu_feature & CPUID_APIC) == 0) {
    906 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    907 		return ENODEV;
    908 	}
    909 
    910 	/*
    911 	 * ... prior to executing the following sequence:".  We'll also add in
    912 	 * local cache flush, in case the BIOS has left the AP with its cache
    913 	 * disabled.  It may not be able to cope with MP coherency.
    914 	 */
    915 	wbinvd();
    916 
    917 	if (ci->ci_flags & CPUF_AP) {
    918 		error = x86_ipi_init(ci->ci_cpuid);
    919 		if (error != 0) {
    920 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    921 			    __func__);
    922 			return error;
    923 		}
    924 		i8254_delay(10000);
    925 
    926 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    927 		if (error != 0) {
    928 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    929 			    __func__);
    930 			return error;
    931 		}
    932 		i8254_delay(200);
    933 
    934 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    935 		if (error != 0) {
    936 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    937 			    __func__);
    938 			return error;
    939 		}
    940 		i8254_delay(200);
    941 	}
    942 
    943 	return 0;
    944 }
    945 
    946 void
    947 mp_cpu_start_cleanup(struct cpu_info *ci)
    948 {
    949 	/*
    950 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    951 	 */
    952 
    953 	outb(IO_RTC, NVRAM_RESET);
    954 	outb(IO_RTC+1, NVRAM_RESET_RST);
    955 }
    956 
    957 #ifdef __x86_64__
    958 typedef void (vector)(void);
    959 extern vector Xsyscall, Xsyscall32;
    960 
    961 void
    962 cpu_init_msrs(struct cpu_info *ci, bool full)
    963 {
    964 	wrmsr(MSR_STAR,
    965 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    966 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    967 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    968 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    969 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    970 
    971 	if (full) {
    972 		wrmsr(MSR_FSBASE, 0);
    973 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    974 		wrmsr(MSR_KERNELGSBASE, 0);
    975 	}
    976 
    977 	if (cpu_feature & CPUID_NOX)
    978 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    979 }
    980 #endif	/* __x86_64__ */
    981 
    982 void
    983 cpu_offline_md(void)
    984 {
    985 	int s;
    986 
    987 	s = splhigh();
    988 #ifdef i386
    989 #if NNPX > 0
    990 	npxsave_cpu(true);
    991 #endif
    992 #else
    993 	fpusave_cpu(true);
    994 #endif
    995 	splx(s);
    996 }
    997 
    998 /* XXX joerg restructure and restart CPUs individually */
    999 static bool
   1000 cpu_suspend(device_t dv PMF_FN_ARGS)
   1001 {
   1002 	struct cpu_softc *sc = device_private(dv);
   1003 	struct cpu_info *ci = sc->sc_info;
   1004 	int err;
   1005 
   1006 	if (ci->ci_flags & CPUF_PRIMARY)
   1007 		return true;
   1008 	if (ci->ci_data.cpu_idlelwp == NULL)
   1009 		return true;
   1010 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1011 		return true;
   1012 
   1013 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1014 
   1015 	if (sc->sc_wasonline) {
   1016 		mutex_enter(&cpu_lock);
   1017 		err = cpu_setstate(ci, false);
   1018 		mutex_exit(&cpu_lock);
   1019 
   1020 		if (err)
   1021 			return false;
   1022 	}
   1023 
   1024 	return true;
   1025 }
   1026 
   1027 static bool
   1028 cpu_resume(device_t dv PMF_FN_ARGS)
   1029 {
   1030 	struct cpu_softc *sc = device_private(dv);
   1031 	struct cpu_info *ci = sc->sc_info;
   1032 	int err = 0;
   1033 
   1034 	if (ci->ci_flags & CPUF_PRIMARY)
   1035 		return true;
   1036 	if (ci->ci_data.cpu_idlelwp == NULL)
   1037 		return true;
   1038 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1039 		return true;
   1040 
   1041 	if (sc->sc_wasonline) {
   1042 		mutex_enter(&cpu_lock);
   1043 		err = cpu_setstate(ci, true);
   1044 		mutex_exit(&cpu_lock);
   1045 	}
   1046 
   1047 	return err == 0;
   1048 }
   1049 
   1050 void
   1051 cpu_get_tsc_freq(struct cpu_info *ci)
   1052 {
   1053 	uint64_t last_tsc;
   1054 
   1055 	if (ci->ci_feature_flags & CPUID_TSC) {
   1056 		last_tsc = rdmsr(MSR_TSC);
   1057 		i8254_delay(100000);
   1058 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1059 	}
   1060 }
   1061 
   1062 void
   1063 x86_cpu_idle_mwait(void)
   1064 {
   1065 	struct cpu_info *ci = curcpu();
   1066 
   1067 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1068 
   1069 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1070 	if (__predict_false(ci->ci_want_resched)) {
   1071 		return;
   1072 	}
   1073 	x86_mwait(0, 0);
   1074 }
   1075 
   1076 void
   1077 x86_cpu_idle_halt(void)
   1078 {
   1079 	struct cpu_info *ci = curcpu();
   1080 
   1081 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1082 
   1083 	x86_disable_intr();
   1084 	if (!__predict_false(ci->ci_want_resched)) {
   1085 		x86_stihlt();
   1086 	} else {
   1087 		x86_enable_intr();
   1088 	}
   1089 }
   1090