Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.70
      1 /*	$NetBSD: cpu.c,v 1.70 2010/04/18 23:47:51 jym Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.70 2010/04/18 23:47:51 jym Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/reboot.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <machine/cpufunc.h>
     90 #include <machine/cpuvar.h>
     91 #include <machine/pmap.h>
     92 #include <machine/vmparam.h>
     93 #include <machine/mpbiosvar.h>
     94 #include <machine/pcb.h>
     95 #include <machine/specialreg.h>
     96 #include <machine/segments.h>
     97 #include <machine/gdt.h>
     98 #include <machine/mtrr.h>
     99 #include <machine/pio.h>
    100 #include <machine/cpu_counter.h>
    101 
    102 #ifdef i386
    103 #include <machine/tlog.h>
    104 #endif
    105 
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 
    110 #include <dev/ic/mc146818reg.h>
    111 #include <i386/isa/nvram.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #include "tsc.h"
    115 
    116 #if MAXCPUS > 32
    117 #error cpu_info contains 32bit bitmasks
    118 #endif
    119 
    120 int     cpu_match(device_t, cfdata_t, void *);
    121 void    cpu_attach(device_t, device_t, void *);
    122 
    123 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    124 static bool	cpu_resume(device_t, const pmf_qual_t *);
    125 
    126 struct cpu_softc {
    127 	device_t sc_dev;		/* device tree glue */
    128 	struct cpu_info *sc_info;	/* pointer to CPU info */
    129 	bool sc_wasonline;
    130 };
    131 
    132 int mp_cpu_start(struct cpu_info *, paddr_t);
    133 void mp_cpu_start_cleanup(struct cpu_info *);
    134 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    135 					    mp_cpu_start_cleanup };
    136 
    137 
    138 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    139     cpu_match, cpu_attach, NULL, NULL);
    140 
    141 /*
    142  * Statically-allocated CPU info for the primary CPU (or the only
    143  * CPU, on uniprocessors).  The CPU info list is initialized to
    144  * point at it.
    145  */
    146 #ifdef TRAPLOG
    147 struct tlog tlog_primary;
    148 #endif
    149 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    150 	.ci_dev = 0,
    151 	.ci_self = &cpu_info_primary,
    152 	.ci_idepth = -1,
    153 	.ci_curlwp = &lwp0,
    154 	.ci_curldt = -1,
    155 #ifdef TRAPLOG
    156 	.ci_tlog_base = &tlog_primary,
    157 #endif /* !TRAPLOG */
    158 };
    159 
    160 struct cpu_info *cpu_info_list = &cpu_info_primary;
    161 
    162 static void	cpu_set_tss_gates(struct cpu_info *);
    163 
    164 #ifdef i386
    165 static void	tss_init(struct i386tss *, void *, void *);
    166 #endif
    167 
    168 static void	cpu_init_idle_lwp(struct cpu_info *);
    169 
    170 uint32_t cpus_attached = 0;
    171 uint32_t cpus_running = 0;
    172 
    173 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    174 			  *	[0] basic features %edx
    175 			  *	[1] basic features %ecx
    176 			  *	[2] extended features %edx
    177 			  *	[3] extended features %ecx
    178 			  *	[4] VIA padlock features
    179 			  */
    180 
    181 extern char x86_64_doubleflt_stack[];
    182 
    183 bool x86_mp_online;
    184 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    185 static vaddr_t cmos_data_mapping;
    186 struct cpu_info *cpu_starting;
    187 
    188 void    	cpu_hatch(void *);
    189 static void    	cpu_boot_secondary(struct cpu_info *ci);
    190 static void    	cpu_start_secondary(struct cpu_info *ci);
    191 static void	cpu_copy_trampoline(void);
    192 
    193 /*
    194  * Runs once per boot once multiprocessor goo has been detected and
    195  * the local APIC on the boot processor has been mapped.
    196  *
    197  * Called from lapic_boot_init() (from mpbios_scan()).
    198  */
    199 void
    200 cpu_init_first(void)
    201 {
    202 
    203 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    204 	cpu_copy_trampoline();
    205 
    206 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    207 	if (cmos_data_mapping == 0)
    208 		panic("No KVA for page 0");
    209 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    210 	pmap_update(pmap_kernel());
    211 }
    212 
    213 int
    214 cpu_match(device_t parent, cfdata_t match, void *aux)
    215 {
    216 
    217 	return 1;
    218 }
    219 
    220 static void
    221 cpu_vm_init(struct cpu_info *ci)
    222 {
    223 	int ncolors = 2, i;
    224 
    225 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    226 		struct x86_cache_info *cai;
    227 		int tcolors;
    228 
    229 		cai = &ci->ci_cinfo[i];
    230 
    231 		tcolors = atop(cai->cai_totalsize);
    232 		switch(cai->cai_associativity) {
    233 		case 0xff:
    234 			tcolors = 1; /* fully associative */
    235 			break;
    236 		case 0:
    237 		case 1:
    238 			break;
    239 		default:
    240 			tcolors /= cai->cai_associativity;
    241 		}
    242 		ncolors = max(ncolors, tcolors);
    243 		/*
    244 		 * If the desired number of colors is not a power of
    245 		 * two, it won't be good.  Find the greatest power of
    246 		 * two which is an even divisor of the number of colors,
    247 		 * to preserve even coloring of pages.
    248 		 */
    249 		if (ncolors & (ncolors - 1) ) {
    250 			int try, picked = 1;
    251 			for (try = 1; try < ncolors; try *= 2) {
    252 				if (ncolors % try == 0) picked = try;
    253 			}
    254 			if (picked == 1) {
    255 				panic("desired number of cache colors %d is "
    256 			      	" > 1, but not even!", ncolors);
    257 			}
    258 			ncolors = picked;
    259 		}
    260 	}
    261 
    262 	/*
    263 	 * Knowing the size of the largest cache on this CPU, re-color
    264 	 * our pages.
    265 	 */
    266 	if (ncolors <= uvmexp.ncolors)
    267 		return;
    268 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    269 	uvm_page_recolor(ncolors);
    270 }
    271 
    272 
    273 void
    274 cpu_attach(device_t parent, device_t self, void *aux)
    275 {
    276 	struct cpu_softc *sc = device_private(self);
    277 	struct cpu_attach_args *caa = aux;
    278 	struct cpu_info *ci;
    279 	uintptr_t ptr;
    280 	int cpunum = caa->cpu_number;
    281 	static bool again;
    282 
    283 	sc->sc_dev = self;
    284 
    285 	if (cpus_attached == ~0) {
    286 		aprint_error(": increase MAXCPUS\n");
    287 		return;
    288 	}
    289 
    290 	/*
    291 	 * If we're an Application Processor, allocate a cpu_info
    292 	 * structure, otherwise use the primary's.
    293 	 */
    294 	if (caa->cpu_role == CPU_ROLE_AP) {
    295 		if ((boothowto & RB_MD1) != 0) {
    296 			aprint_error(": multiprocessor boot disabled\n");
    297 			if (!pmf_device_register(self, NULL, NULL))
    298 				aprint_error_dev(self,
    299 				    "couldn't establish power handler\n");
    300 			return;
    301 		}
    302 		aprint_naive(": Application Processor\n");
    303 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    304 		    KM_SLEEP);
    305 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    306 		memset(ci, 0, sizeof(*ci));
    307 		ci->ci_curldt = -1;
    308 #ifdef TRAPLOG
    309 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    310 #endif
    311 	} else {
    312 		aprint_naive(": %s Processor\n",
    313 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    314 		ci = &cpu_info_primary;
    315 		if (cpunum != lapic_cpu_number()) {
    316 			/* XXX should be done earlier. */
    317 			uint32_t reg;
    318 			aprint_verbose("\n");
    319 			aprint_verbose_dev(self, "running CPU at apic %d"
    320 			    " instead of at expected %d", lapic_cpu_number(),
    321 			    cpunum);
    322 			reg = i82489_readreg(LAPIC_ID);
    323 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    324 			    (cpunum << LAPIC_ID_SHIFT));
    325 		}
    326 		if (cpunum != lapic_cpu_number()) {
    327 			aprint_error_dev(self, "unable to reset apic id\n");
    328 		}
    329 	}
    330 
    331 	ci->ci_self = ci;
    332 	sc->sc_info = ci;
    333 	ci->ci_dev = self;
    334 	ci->ci_cpuid = caa->cpu_number;
    335 	ci->ci_func = caa->cpu_func;
    336 
    337 	/* Must be before mi_cpu_attach(). */
    338 	cpu_vm_init(ci);
    339 
    340 	if (caa->cpu_role == CPU_ROLE_AP) {
    341 		int error;
    342 
    343 		error = mi_cpu_attach(ci);
    344 		if (error != 0) {
    345 			aprint_normal("\n");
    346 			aprint_error_dev(self,
    347 			    "mi_cpu_attach failed with %d\n", error);
    348 			return;
    349 		}
    350 		cpu_init_tss(ci);
    351 	} else {
    352 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    353 	}
    354 
    355 	ci->ci_cpumask = (1 << cpu_index(ci));
    356 	pmap_reference(pmap_kernel());
    357 	ci->ci_pmap = pmap_kernel();
    358 	ci->ci_tlbstate = TLBSTATE_STALE;
    359 
    360 	/*
    361 	 * Boot processor may not be attached first, but the below
    362 	 * must be done to allow booting other processors.
    363 	 */
    364 	if (!again) {
    365 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    366 		/* Basic init. */
    367 		cpu_intr_init(ci);
    368 		cpu_get_tsc_freq(ci);
    369 		cpu_init(ci);
    370 		cpu_set_tss_gates(ci);
    371 		pmap_cpu_init_late(ci);
    372 		if (caa->cpu_role != CPU_ROLE_SP) {
    373 			/* Enable lapic. */
    374 			lapic_enable();
    375 			lapic_set_lvt();
    376 			lapic_calibrate_timer(ci);
    377 		}
    378 		/* Make sure DELAY() is initialized. */
    379 		DELAY(1);
    380 		again = true;
    381 	}
    382 
    383 	/* further PCB init done later. */
    384 
    385 	switch (caa->cpu_role) {
    386 	case CPU_ROLE_SP:
    387 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    388 		cpu_identify(ci);
    389 		x86_errata();
    390 		x86_cpu_idle_init();
    391 		break;
    392 
    393 	case CPU_ROLE_BP:
    394 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    395 		cpu_identify(ci);
    396 		x86_errata();
    397 		x86_cpu_idle_init();
    398 		break;
    399 
    400 	case CPU_ROLE_AP:
    401 		/*
    402 		 * report on an AP
    403 		 */
    404 		cpu_intr_init(ci);
    405 		gdt_alloc_cpu(ci);
    406 		cpu_set_tss_gates(ci);
    407 		pmap_cpu_init_early(ci);
    408 		pmap_cpu_init_late(ci);
    409 		cpu_start_secondary(ci);
    410 		if (ci->ci_flags & CPUF_PRESENT) {
    411 			struct cpu_info *tmp;
    412 
    413 			cpu_identify(ci);
    414 			tmp = cpu_info_list;
    415 			while (tmp->ci_next)
    416 				tmp = tmp->ci_next;
    417 
    418 			tmp->ci_next = ci;
    419 		}
    420 		break;
    421 
    422 	default:
    423 		aprint_normal("\n");
    424 		panic("unknown processor type??\n");
    425 	}
    426 
    427 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    428 
    429 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    430 		aprint_error_dev(self, "couldn't establish power handler\n");
    431 
    432 	if (mp_verbose) {
    433 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    434 		struct pcb *pcb = lwp_getpcb(l);
    435 
    436 		aprint_verbose_dev(self,
    437 		    "idle lwp at %p, idle sp at %p\n",
    438 		    l,
    439 #ifdef i386
    440 		    (void *)pcb->pcb_esp
    441 #else
    442 		    (void *)pcb->pcb_rsp
    443 #endif
    444 		);
    445 	}
    446 }
    447 
    448 /*
    449  * Initialize the processor appropriately.
    450  */
    451 
    452 void
    453 cpu_init(struct cpu_info *ci)
    454 {
    455 
    456 	lcr0(rcr0() | CR0_WP);
    457 
    458 	/*
    459 	 * On a P6 or above, enable global TLB caching if the
    460 	 * hardware supports it.
    461 	 */
    462 	if (cpu_feature[0] & CPUID_PGE)
    463 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    464 
    465 	/*
    466 	 * If we have FXSAVE/FXRESTOR, use them.
    467 	 */
    468 	if (cpu_feature[0] & CPUID_FXSR) {
    469 		lcr4(rcr4() | CR4_OSFXSR);
    470 
    471 		/*
    472 		 * If we have SSE/SSE2, enable XMM exceptions.
    473 		 */
    474 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    475 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    476 	}
    477 
    478 #ifdef MTRR
    479 	/*
    480 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    481 	 */
    482 	if (cpu_feature[0] & CPUID_MTRR) {
    483 		if ((ci->ci_flags & CPUF_AP) == 0)
    484 			i686_mtrr_init_first();
    485 		mtrr_init_cpu(ci);
    486 	}
    487 
    488 #ifdef i386
    489 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    490 		/*
    491 		 * Must be a K6-2 Step >= 7 or a K6-III.
    492 		 */
    493 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    494 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    495 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    496 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    497 				mtrr_funcs = &k6_mtrr_funcs;
    498 				k6_mtrr_init_first();
    499 				mtrr_init_cpu(ci);
    500 			}
    501 		}
    502 	}
    503 #endif	/* i386 */
    504 #endif /* MTRR */
    505 
    506 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    507 
    508 	if (ci != &cpu_info_primary) {
    509 		/* Synchronize TSC again, and check for drift. */
    510 		wbinvd();
    511 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    512 		tsc_sync_ap(ci);
    513 	} else {
    514 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    515 	}
    516 }
    517 
    518 void
    519 cpu_boot_secondary_processors(void)
    520 {
    521 	struct cpu_info *ci;
    522 	u_long i;
    523 
    524 	/* Now that we know the number of CPUs, patch the text segment. */
    525 	x86_patch(false);
    526 
    527 	for (i=0; i < maxcpus; i++) {
    528 		ci = cpu_lookup(i);
    529 		if (ci == NULL)
    530 			continue;
    531 		if (ci->ci_data.cpu_idlelwp == NULL)
    532 			continue;
    533 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    534 			continue;
    535 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    536 			continue;
    537 		cpu_boot_secondary(ci);
    538 	}
    539 
    540 	x86_mp_online = true;
    541 
    542 	/* Now that we know about the TSC, attach the timecounter. */
    543 	tsc_tc_init();
    544 
    545 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    546 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    547 }
    548 
    549 static void
    550 cpu_init_idle_lwp(struct cpu_info *ci)
    551 {
    552 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    553 	struct pcb *pcb = lwp_getpcb(l);
    554 
    555 	pcb->pcb_cr0 = rcr0();
    556 }
    557 
    558 void
    559 cpu_init_idle_lwps(void)
    560 {
    561 	struct cpu_info *ci;
    562 	u_long i;
    563 
    564 	for (i = 0; i < maxcpus; i++) {
    565 		ci = cpu_lookup(i);
    566 		if (ci == NULL)
    567 			continue;
    568 		if (ci->ci_data.cpu_idlelwp == NULL)
    569 			continue;
    570 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    571 			continue;
    572 		cpu_init_idle_lwp(ci);
    573 	}
    574 }
    575 
    576 void
    577 cpu_start_secondary(struct cpu_info *ci)
    578 {
    579 	extern paddr_t mp_pdirpa;
    580 	u_long psl;
    581 	int i;
    582 
    583 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    584 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    585 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    586 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    587 		return;
    588 	}
    589 
    590 	/*
    591 	 * Wait for it to become ready.   Setting cpu_starting opens the
    592 	 * initial gate and allows the AP to start soft initialization.
    593 	 */
    594 	KASSERT(cpu_starting == NULL);
    595 	cpu_starting = ci;
    596 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    597 #ifdef MPDEBUG
    598 		extern int cpu_trace[3];
    599 		static int otrace[3];
    600 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    601 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    602 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    603 			memcpy(otrace, cpu_trace, sizeof(otrace));
    604 		}
    605 #endif
    606 		i8254_delay(10);
    607 	}
    608 
    609 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    610 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    611 #if defined(MPDEBUG) && defined(DDB)
    612 		printf("dropping into debugger; continue from here to resume boot\n");
    613 		Debugger();
    614 #endif
    615 	} else {
    616 		/*
    617 		 * Synchronize time stamp counters. Invalidate cache and do
    618 		 * twice to try and minimize possible cache effects. Disable
    619 		 * interrupts to try and rule out any external interference.
    620 		 */
    621 		psl = x86_read_psl();
    622 		x86_disable_intr();
    623 		wbinvd();
    624 		tsc_sync_bp(ci);
    625 		x86_write_psl(psl);
    626 	}
    627 
    628 	CPU_START_CLEANUP(ci);
    629 	cpu_starting = NULL;
    630 }
    631 
    632 void
    633 cpu_boot_secondary(struct cpu_info *ci)
    634 {
    635 	int64_t drift;
    636 	u_long psl;
    637 	int i;
    638 
    639 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    640 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    641 		i8254_delay(10);
    642 	}
    643 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    644 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    645 #if defined(MPDEBUG) && defined(DDB)
    646 		printf("dropping into debugger; continue from here to resume boot\n");
    647 		Debugger();
    648 #endif
    649 	} else {
    650 		/* Synchronize TSC again, check for drift. */
    651 		drift = ci->ci_data.cpu_cc_skew;
    652 		psl = x86_read_psl();
    653 		x86_disable_intr();
    654 		wbinvd();
    655 		tsc_sync_bp(ci);
    656 		x86_write_psl(psl);
    657 		drift -= ci->ci_data.cpu_cc_skew;
    658 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    659 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    660 		tsc_sync_drift(drift);
    661 	}
    662 }
    663 
    664 /*
    665  * The CPU ends up here when its ready to run
    666  * This is called from code in mptramp.s; at this point, we are running
    667  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    668  * this processor will enter the idle loop and start looking for work.
    669  */
    670 void
    671 cpu_hatch(void *v)
    672 {
    673 	struct cpu_info *ci = (struct cpu_info *)v;
    674 	struct pcb *pcb;
    675 	int s, i;
    676 
    677 	cpu_init_msrs(ci, true);
    678 	cpu_probe(ci);
    679 
    680 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    681 	/* cpu_get_tsc_freq(ci); */
    682 
    683 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    684 
    685 	/*
    686 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    687 	 * to try and minimize possible cache effects.  Note that interrupts
    688 	 * are off at this point.
    689 	 */
    690 	wbinvd();
    691 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    692 	tsc_sync_ap(ci);
    693 
    694 	/*
    695 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    696 	 * in order to make the TSC drift as much as possible. so that
    697 	 * we can detect it later.  If not available, try 'pause'.
    698 	 * We'd like to use 'hlt', but we have interrupts off.
    699 	 */
    700 	while ((ci->ci_flags & CPUF_GO) == 0) {
    701 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    702 			x86_monitor(&ci->ci_flags, 0, 0);
    703 			if ((ci->ci_flags & CPUF_GO) != 0) {
    704 				continue;
    705 			}
    706 			x86_mwait(0, 0);
    707 		} else {
    708 			for (i = 10000; i != 0; i--) {
    709 				x86_pause();
    710 			}
    711 		}
    712 	}
    713 
    714 	/* Because the text may have been patched in x86_patch(). */
    715 	wbinvd();
    716 	x86_flush();
    717 
    718 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    719 
    720 	lcr3(pmap_kernel()->pm_pdirpa);
    721 	pcb = lwp_getpcb(curlwp);
    722 	pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
    723 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    724 	lcr0(pcb->pcb_cr0);
    725 
    726 	cpu_init_idt();
    727 	gdt_init_cpu(ci);
    728 	lapic_enable();
    729 	lapic_set_lvt();
    730 	lapic_initclocks();
    731 
    732 #ifdef i386
    733 #if NNPX > 0
    734 	npxinit(ci);
    735 #endif
    736 #else
    737 	fpuinit(ci);
    738 #endif
    739 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    740 	ltr(ci->ci_tss_sel);
    741 
    742 	cpu_init(ci);
    743 	cpu_get_tsc_freq(ci);
    744 
    745 	s = splhigh();
    746 #ifdef i386
    747 	lapic_tpr = 0;
    748 #else
    749 	lcr8(0);
    750 #endif
    751 	x86_enable_intr();
    752 	splx(s);
    753 	x86_errata();
    754 
    755 	aprint_debug_dev(ci->ci_dev, "running\n");
    756 }
    757 
    758 #if defined(DDB)
    759 
    760 #include <ddb/db_output.h>
    761 #include <machine/db_machdep.h>
    762 
    763 /*
    764  * Dump CPU information from ddb.
    765  */
    766 void
    767 cpu_debug_dump(void)
    768 {
    769 	struct cpu_info *ci;
    770 	CPU_INFO_ITERATOR cii;
    771 
    772 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    773 	for (CPU_INFO_FOREACH(cii, ci)) {
    774 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    775 		    ci,
    776 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    777 		    (long)ci->ci_cpuid,
    778 		    ci->ci_flags, ci->ci_ipis,
    779 		    ci->ci_curlwp,
    780 		    ci->ci_fpcurlwp);
    781 	}
    782 }
    783 #endif
    784 
    785 static void
    786 cpu_copy_trampoline(void)
    787 {
    788 	/*
    789 	 * Copy boot code.
    790 	 */
    791 	extern u_char cpu_spinup_trampoline[];
    792 	extern u_char cpu_spinup_trampoline_end[];
    793 
    794 	vaddr_t mp_trampoline_vaddr;
    795 
    796 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    797 	    UVM_KMF_VAONLY);
    798 
    799 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    800 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    801 	pmap_update(pmap_kernel());
    802 	memcpy((void *)mp_trampoline_vaddr,
    803 	    cpu_spinup_trampoline,
    804 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    805 
    806 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    807 	pmap_update(pmap_kernel());
    808 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    809 }
    810 
    811 #ifdef i386
    812 static void
    813 tss_init(struct i386tss *tss, void *stack, void *func)
    814 {
    815 	memset(tss, 0, sizeof *tss);
    816 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    817 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    818 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    819 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    820 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    821 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    822 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    823 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    824 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    825 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    826 	tss->__tss_eip = (int)func;
    827 }
    828 
    829 /* XXX */
    830 #define IDTVEC(name)	__CONCAT(X, name)
    831 typedef void (vector)(void);
    832 extern vector IDTVEC(tss_trap08);
    833 #ifdef DDB
    834 extern vector Xintrddbipi;
    835 extern int ddb_vec;
    836 #endif
    837 
    838 static void
    839 cpu_set_tss_gates(struct cpu_info *ci)
    840 {
    841 	struct segment_descriptor sd;
    842 
    843 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    844 	    UVM_KMF_WIRED);
    845 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    846 	    IDTVEC(tss_trap08));
    847 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    848 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    849 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    850 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    851 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    852 
    853 #if defined(DDB)
    854 	/*
    855 	 * Set up separate handler for the DDB IPI, so that it doesn't
    856 	 * stomp on a possibly corrupted stack.
    857 	 *
    858 	 * XXX overwriting the gate set in db_machine_init.
    859 	 * Should rearrange the code so that it's set only once.
    860 	 */
    861 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    862 	    UVM_KMF_WIRED);
    863 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    864 
    865 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    866 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    867 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    868 
    869 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    870 	    GSEL(GIPITSS_SEL, SEL_KPL));
    871 #endif
    872 }
    873 #else
    874 static void
    875 cpu_set_tss_gates(struct cpu_info *ci)
    876 {
    877 
    878 }
    879 #endif	/* i386 */
    880 
    881 int
    882 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    883 {
    884 	unsigned short dwordptr[2];
    885 	int error;
    886 
    887 	/*
    888 	 * Bootstrap code must be addressable in real mode
    889 	 * and it must be page aligned.
    890 	 */
    891 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    892 
    893 	/*
    894 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    895 	 */
    896 
    897 	outb(IO_RTC, NVRAM_RESET);
    898 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    899 
    900 	/*
    901 	 * "and the warm reset vector (DWORD based at 40:67) to point
    902 	 * to the AP startup code ..."
    903 	 */
    904 
    905 	dwordptr[0] = 0;
    906 	dwordptr[1] = target >> 4;
    907 
    908 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    909 
    910 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    911 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    912 		return ENODEV;
    913 	}
    914 
    915 	/*
    916 	 * ... prior to executing the following sequence:".  We'll also add in
    917 	 * local cache flush, in case the BIOS has left the AP with its cache
    918 	 * disabled.  It may not be able to cope with MP coherency.
    919 	 */
    920 	wbinvd();
    921 
    922 	if (ci->ci_flags & CPUF_AP) {
    923 		error = x86_ipi_init(ci->ci_cpuid);
    924 		if (error != 0) {
    925 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    926 			    __func__);
    927 			return error;
    928 		}
    929 		i8254_delay(10000);
    930 
    931 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    932 		if (error != 0) {
    933 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    934 			    __func__);
    935 			return error;
    936 		}
    937 		i8254_delay(200);
    938 
    939 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    940 		if (error != 0) {
    941 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    942 			    __func__);
    943 			return error;
    944 		}
    945 		i8254_delay(200);
    946 	}
    947 
    948 	return 0;
    949 }
    950 
    951 void
    952 mp_cpu_start_cleanup(struct cpu_info *ci)
    953 {
    954 	/*
    955 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    956 	 */
    957 
    958 	outb(IO_RTC, NVRAM_RESET);
    959 	outb(IO_RTC+1, NVRAM_RESET_RST);
    960 }
    961 
    962 #ifdef __x86_64__
    963 typedef void (vector)(void);
    964 extern vector Xsyscall, Xsyscall32;
    965 #endif
    966 
    967 void
    968 cpu_init_msrs(struct cpu_info *ci, bool full)
    969 {
    970 #ifdef __x86_64__
    971 	wrmsr(MSR_STAR,
    972 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    973 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    974 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    975 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    976 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    977 
    978 	if (full) {
    979 		wrmsr(MSR_FSBASE, 0);
    980 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    981 		wrmsr(MSR_KERNELGSBASE, 0);
    982 	}
    983 #endif	/* __x86_64__ */
    984 
    985 	if (cpu_feature[2] & CPUID_NOX)
    986 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    987 }
    988 
    989 void
    990 cpu_offline_md(void)
    991 {
    992 	int s;
    993 
    994 	s = splhigh();
    995 #ifdef i386
    996 #if NNPX > 0
    997 	npxsave_cpu(true);
    998 #endif
    999 #else
   1000 	fpusave_cpu(true);
   1001 #endif
   1002 	splx(s);
   1003 }
   1004 
   1005 /* XXX joerg restructure and restart CPUs individually */
   1006 static bool
   1007 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1008 {
   1009 	struct cpu_softc *sc = device_private(dv);
   1010 	struct cpu_info *ci = sc->sc_info;
   1011 	int err;
   1012 
   1013 	if (ci->ci_flags & CPUF_PRIMARY)
   1014 		return true;
   1015 	if (ci->ci_data.cpu_idlelwp == NULL)
   1016 		return true;
   1017 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1018 		return true;
   1019 
   1020 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1021 
   1022 	if (sc->sc_wasonline) {
   1023 		mutex_enter(&cpu_lock);
   1024 		err = cpu_setstate(ci, false);
   1025 		mutex_exit(&cpu_lock);
   1026 
   1027 		if (err)
   1028 			return false;
   1029 	}
   1030 
   1031 	return true;
   1032 }
   1033 
   1034 static bool
   1035 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1036 {
   1037 	struct cpu_softc *sc = device_private(dv);
   1038 	struct cpu_info *ci = sc->sc_info;
   1039 	int err = 0;
   1040 
   1041 	if (ci->ci_flags & CPUF_PRIMARY)
   1042 		return true;
   1043 	if (ci->ci_data.cpu_idlelwp == NULL)
   1044 		return true;
   1045 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1046 		return true;
   1047 
   1048 	if (sc->sc_wasonline) {
   1049 		mutex_enter(&cpu_lock);
   1050 		err = cpu_setstate(ci, true);
   1051 		mutex_exit(&cpu_lock);
   1052 	}
   1053 
   1054 	return err == 0;
   1055 }
   1056 
   1057 void
   1058 cpu_get_tsc_freq(struct cpu_info *ci)
   1059 {
   1060 	uint64_t last_tsc;
   1061 
   1062 	if (cpu_hascounter()) {
   1063 		last_tsc = rdmsr(MSR_TSC);
   1064 		i8254_delay(100000);
   1065 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1066 	}
   1067 }
   1068 
   1069 void
   1070 x86_cpu_idle_mwait(void)
   1071 {
   1072 	struct cpu_info *ci = curcpu();
   1073 
   1074 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1075 
   1076 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1077 	if (__predict_false(ci->ci_want_resched)) {
   1078 		return;
   1079 	}
   1080 	x86_mwait(0, 0);
   1081 }
   1082 
   1083 void
   1084 x86_cpu_idle_halt(void)
   1085 {
   1086 	struct cpu_info *ci = curcpu();
   1087 
   1088 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1089 
   1090 	x86_disable_intr();
   1091 	if (!__predict_false(ci->ci_want_resched)) {
   1092 		x86_stihlt();
   1093 	} else {
   1094 		x86_enable_intr();
   1095 	}
   1096 }
   1097