Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.78
      1 /*	$NetBSD: cpu.c,v 1.78 2010/11/06 11:46:04 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.78 2010/11/06 11:46:04 uebayasi Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/reboot.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 #include <machine/cpufunc.h>
     90 #include <machine/cpuvar.h>
     91 #include <machine/pmap.h>
     92 #include <machine/vmparam.h>
     93 #include <machine/mpbiosvar.h>
     94 #include <machine/pcb.h>
     95 #include <machine/specialreg.h>
     96 #include <machine/segments.h>
     97 #include <machine/gdt.h>
     98 #include <machine/mtrr.h>
     99 #include <machine/pio.h>
    100 #include <machine/cpu_counter.h>
    101 
    102 #ifdef i386
    103 #include <machine/tlog.h>
    104 #endif
    105 
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 
    110 #include <dev/ic/mc146818reg.h>
    111 #include <i386/isa/nvram.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #include "tsc.h"
    115 
    116 #if MAXCPUS > 32
    117 #error cpu_info contains 32bit bitmasks
    118 #endif
    119 
    120 int     cpu_match(device_t, cfdata_t, void *);
    121 void    cpu_attach(device_t, device_t, void *);
    122 
    123 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    124 static bool	cpu_resume(device_t, const pmf_qual_t *);
    125 
    126 struct cpu_softc {
    127 	device_t sc_dev;		/* device tree glue */
    128 	struct cpu_info *sc_info;	/* pointer to CPU info */
    129 	bool sc_wasonline;
    130 };
    131 
    132 int mp_cpu_start(struct cpu_info *, paddr_t);
    133 void mp_cpu_start_cleanup(struct cpu_info *);
    134 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    135 					    mp_cpu_start_cleanup };
    136 
    137 
    138 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    139     cpu_match, cpu_attach, NULL, NULL);
    140 
    141 /*
    142  * Statically-allocated CPU info for the primary CPU (or the only
    143  * CPU, on uniprocessors).  The CPU info list is initialized to
    144  * point at it.
    145  */
    146 #ifdef TRAPLOG
    147 struct tlog tlog_primary;
    148 #endif
    149 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    150 	.ci_dev = 0,
    151 	.ci_self = &cpu_info_primary,
    152 	.ci_idepth = -1,
    153 	.ci_curlwp = &lwp0,
    154 	.ci_curldt = -1,
    155 #ifdef TRAPLOG
    156 	.ci_tlog_base = &tlog_primary,
    157 #endif /* !TRAPLOG */
    158 };
    159 
    160 struct cpu_info *cpu_info_list = &cpu_info_primary;
    161 
    162 static void	cpu_set_tss_gates(struct cpu_info *);
    163 
    164 #ifdef i386
    165 static void	tss_init(struct i386tss *, void *, void *);
    166 #endif
    167 
    168 static void	cpu_init_idle_lwp(struct cpu_info *);
    169 
    170 uint32_t cpus_attached = 0;
    171 uint32_t cpus_running = 0;
    172 
    173 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    174 			  *	[0] basic features %edx
    175 			  *	[1] basic features %ecx
    176 			  *	[2] extended features %edx
    177 			  *	[3] extended features %ecx
    178 			  *	[4] VIA padlock features
    179 			  */
    180 
    181 extern char x86_64_doubleflt_stack[];
    182 
    183 bool x86_mp_online;
    184 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    185 static vaddr_t cmos_data_mapping;
    186 struct cpu_info *cpu_starting;
    187 
    188 void    	cpu_hatch(void *);
    189 static void    	cpu_boot_secondary(struct cpu_info *ci);
    190 static void    	cpu_start_secondary(struct cpu_info *ci);
    191 static void	cpu_copy_trampoline(void);
    192 
    193 /*
    194  * Runs once per boot once multiprocessor goo has been detected and
    195  * the local APIC on the boot processor has been mapped.
    196  *
    197  * Called from lapic_boot_init() (from mpbios_scan()).
    198  */
    199 void
    200 cpu_init_first(void)
    201 {
    202 
    203 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    204 	cpu_copy_trampoline();
    205 
    206 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    207 	if (cmos_data_mapping == 0)
    208 		panic("No KVA for page 0");
    209 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    210 	pmap_update(pmap_kernel());
    211 }
    212 
    213 int
    214 cpu_match(device_t parent, cfdata_t match, void *aux)
    215 {
    216 
    217 	return 1;
    218 }
    219 
    220 static void
    221 cpu_vm_init(struct cpu_info *ci)
    222 {
    223 	int ncolors = 2, i;
    224 
    225 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    226 		struct x86_cache_info *cai;
    227 		int tcolors;
    228 
    229 		cai = &ci->ci_cinfo[i];
    230 
    231 		tcolors = atop(cai->cai_totalsize);
    232 		switch(cai->cai_associativity) {
    233 		case 0xff:
    234 			tcolors = 1; /* fully associative */
    235 			break;
    236 		case 0:
    237 		case 1:
    238 			break;
    239 		default:
    240 			tcolors /= cai->cai_associativity;
    241 		}
    242 		ncolors = max(ncolors, tcolors);
    243 		/*
    244 		 * If the desired number of colors is not a power of
    245 		 * two, it won't be good.  Find the greatest power of
    246 		 * two which is an even divisor of the number of colors,
    247 		 * to preserve even coloring of pages.
    248 		 */
    249 		if (ncolors & (ncolors - 1) ) {
    250 			int try, picked = 1;
    251 			for (try = 1; try < ncolors; try *= 2) {
    252 				if (ncolors % try == 0) picked = try;
    253 			}
    254 			if (picked == 1) {
    255 				panic("desired number of cache colors %d is "
    256 			      	" > 1, but not even!", ncolors);
    257 			}
    258 			ncolors = picked;
    259 		}
    260 	}
    261 
    262 	/*
    263 	 * Knowing the size of the largest cache on this CPU, re-color
    264 	 * our pages.
    265 	 */
    266 	if (ncolors <= uvmexp.ncolors)
    267 		return;
    268 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    269 	uvm_page_recolor(ncolors);
    270 }
    271 
    272 
    273 void
    274 cpu_attach(device_t parent, device_t self, void *aux)
    275 {
    276 	struct cpu_softc *sc = device_private(self);
    277 	struct cpu_attach_args *caa = aux;
    278 	struct cpu_info *ci;
    279 	uintptr_t ptr;
    280 	int cpunum = caa->cpu_number;
    281 	static bool again;
    282 
    283 	sc->sc_dev = self;
    284 
    285 	if (cpus_attached == ~0) {
    286 		aprint_error(": increase MAXCPUS\n");
    287 		return;
    288 	}
    289 
    290 	/*
    291 	 * If we're an Application Processor, allocate a cpu_info
    292 	 * structure, otherwise use the primary's.
    293 	 */
    294 	if (caa->cpu_role == CPU_ROLE_AP) {
    295 		if ((boothowto & RB_MD1) != 0) {
    296 			aprint_error(": multiprocessor boot disabled\n");
    297 			if (!pmf_device_register(self, NULL, NULL))
    298 				aprint_error_dev(self,
    299 				    "couldn't establish power handler\n");
    300 			return;
    301 		}
    302 		aprint_naive(": Application Processor\n");
    303 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    304 		    KM_SLEEP);
    305 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    306 		ci->ci_curldt = -1;
    307 #ifdef TRAPLOG
    308 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    309 #endif
    310 	} else {
    311 		aprint_naive(": %s Processor\n",
    312 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    313 		ci = &cpu_info_primary;
    314 		if (cpunum != lapic_cpu_number()) {
    315 			/* XXX should be done earlier. */
    316 			uint32_t reg;
    317 			aprint_verbose("\n");
    318 			aprint_verbose_dev(self, "running CPU at apic %d"
    319 			    " instead of at expected %d", lapic_cpu_number(),
    320 			    cpunum);
    321 			reg = i82489_readreg(LAPIC_ID);
    322 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    323 			    (cpunum << LAPIC_ID_SHIFT));
    324 		}
    325 		if (cpunum != lapic_cpu_number()) {
    326 			aprint_error_dev(self, "unable to reset apic id\n");
    327 		}
    328 	}
    329 
    330 	ci->ci_self = ci;
    331 	sc->sc_info = ci;
    332 	ci->ci_dev = self;
    333 	ci->ci_acpiid = caa->cpu_id;
    334 	ci->ci_cpuid = caa->cpu_number;
    335 	ci->ci_func = caa->cpu_func;
    336 
    337 	/* Must be before mi_cpu_attach(). */
    338 	cpu_vm_init(ci);
    339 
    340 	if (caa->cpu_role == CPU_ROLE_AP) {
    341 		int error;
    342 
    343 		error = mi_cpu_attach(ci);
    344 		if (error != 0) {
    345 			aprint_normal("\n");
    346 			aprint_error_dev(self,
    347 			    "mi_cpu_attach failed with %d\n", error);
    348 			return;
    349 		}
    350 		cpu_init_tss(ci);
    351 	} else {
    352 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    353 	}
    354 
    355 	ci->ci_cpumask = (1 << cpu_index(ci));
    356 	pmap_reference(pmap_kernel());
    357 	ci->ci_pmap = pmap_kernel();
    358 	ci->ci_tlbstate = TLBSTATE_STALE;
    359 
    360 	/*
    361 	 * Boot processor may not be attached first, but the below
    362 	 * must be done to allow booting other processors.
    363 	 */
    364 	if (!again) {
    365 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    366 		/* Basic init. */
    367 		cpu_intr_init(ci);
    368 		cpu_get_tsc_freq(ci);
    369 		cpu_init(ci);
    370 		cpu_set_tss_gates(ci);
    371 		pmap_cpu_init_late(ci);
    372 		if (caa->cpu_role != CPU_ROLE_SP) {
    373 			/* Enable lapic. */
    374 			lapic_enable();
    375 			lapic_set_lvt();
    376 			lapic_calibrate_timer(ci);
    377 		}
    378 		/* Make sure DELAY() is initialized. */
    379 		DELAY(1);
    380 		again = true;
    381 	}
    382 
    383 	/* further PCB init done later. */
    384 
    385 	switch (caa->cpu_role) {
    386 	case CPU_ROLE_SP:
    387 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    388 		cpu_identify(ci);
    389 		x86_errata();
    390 		x86_cpu_idle_init();
    391 		break;
    392 
    393 	case CPU_ROLE_BP:
    394 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    395 		cpu_identify(ci);
    396 		x86_errata();
    397 		x86_cpu_idle_init();
    398 		break;
    399 
    400 	case CPU_ROLE_AP:
    401 		/*
    402 		 * report on an AP
    403 		 */
    404 		cpu_intr_init(ci);
    405 		gdt_alloc_cpu(ci);
    406 		cpu_set_tss_gates(ci);
    407 		pmap_cpu_init_early(ci);
    408 		pmap_cpu_init_late(ci);
    409 		cpu_start_secondary(ci);
    410 		if (ci->ci_flags & CPUF_PRESENT) {
    411 			struct cpu_info *tmp;
    412 
    413 			cpu_identify(ci);
    414 			tmp = cpu_info_list;
    415 			while (tmp->ci_next)
    416 				tmp = tmp->ci_next;
    417 
    418 			tmp->ci_next = ci;
    419 		}
    420 		break;
    421 
    422 	default:
    423 		aprint_normal("\n");
    424 		panic("unknown processor type??\n");
    425 	}
    426 
    427 	pat_init(ci);
    428 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    429 
    430 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    431 		aprint_error_dev(self, "couldn't establish power handler\n");
    432 
    433 	if (mp_verbose) {
    434 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    435 		struct pcb *pcb = lwp_getpcb(l);
    436 
    437 		aprint_verbose_dev(self,
    438 		    "idle lwp at %p, idle sp at %p\n",
    439 		    l,
    440 #ifdef i386
    441 		    (void *)pcb->pcb_esp
    442 #else
    443 		    (void *)pcb->pcb_rsp
    444 #endif
    445 		);
    446 	}
    447 }
    448 
    449 /*
    450  * Initialize the processor appropriately.
    451  */
    452 
    453 void
    454 cpu_init(struct cpu_info *ci)
    455 {
    456 
    457 	lcr0(rcr0() | CR0_WP);
    458 
    459 	/*
    460 	 * On a P6 or above, enable global TLB caching if the
    461 	 * hardware supports it.
    462 	 */
    463 	if (cpu_feature[0] & CPUID_PGE)
    464 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    465 
    466 	/*
    467 	 * If we have FXSAVE/FXRESTOR, use them.
    468 	 */
    469 	if (cpu_feature[0] & CPUID_FXSR) {
    470 		lcr4(rcr4() | CR4_OSFXSR);
    471 
    472 		/*
    473 		 * If we have SSE/SSE2, enable XMM exceptions.
    474 		 */
    475 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    476 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    477 	}
    478 
    479 #ifdef MTRR
    480 	/*
    481 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    482 	 */
    483 	if (cpu_feature[0] & CPUID_MTRR) {
    484 		if ((ci->ci_flags & CPUF_AP) == 0)
    485 			i686_mtrr_init_first();
    486 		mtrr_init_cpu(ci);
    487 	}
    488 
    489 #ifdef i386
    490 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    491 		/*
    492 		 * Must be a K6-2 Step >= 7 or a K6-III.
    493 		 */
    494 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    495 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    496 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    497 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    498 				mtrr_funcs = &k6_mtrr_funcs;
    499 				k6_mtrr_init_first();
    500 				mtrr_init_cpu(ci);
    501 			}
    502 		}
    503 	}
    504 #endif	/* i386 */
    505 #endif /* MTRR */
    506 
    507 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    508 
    509 	if (ci != &cpu_info_primary) {
    510 		/* Synchronize TSC again, and check for drift. */
    511 		wbinvd();
    512 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    513 		tsc_sync_ap(ci);
    514 	} else {
    515 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    516 	}
    517 }
    518 
    519 void
    520 cpu_boot_secondary_processors(void)
    521 {
    522 	struct cpu_info *ci;
    523 	u_long i;
    524 
    525 	/* Now that we know the number of CPUs, patch the text segment. */
    526 	x86_patch(false);
    527 
    528 	for (i=0; i < maxcpus; i++) {
    529 		ci = cpu_lookup(i);
    530 		if (ci == NULL)
    531 			continue;
    532 		if (ci->ci_data.cpu_idlelwp == NULL)
    533 			continue;
    534 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    535 			continue;
    536 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    537 			continue;
    538 		cpu_boot_secondary(ci);
    539 	}
    540 
    541 	x86_mp_online = true;
    542 
    543 	/* Now that we know about the TSC, attach the timecounter. */
    544 	tsc_tc_init();
    545 
    546 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    547 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    548 }
    549 
    550 static void
    551 cpu_init_idle_lwp(struct cpu_info *ci)
    552 {
    553 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    554 	struct pcb *pcb = lwp_getpcb(l);
    555 
    556 	pcb->pcb_cr0 = rcr0();
    557 }
    558 
    559 void
    560 cpu_init_idle_lwps(void)
    561 {
    562 	struct cpu_info *ci;
    563 	u_long i;
    564 
    565 	for (i = 0; i < maxcpus; i++) {
    566 		ci = cpu_lookup(i);
    567 		if (ci == NULL)
    568 			continue;
    569 		if (ci->ci_data.cpu_idlelwp == NULL)
    570 			continue;
    571 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    572 			continue;
    573 		cpu_init_idle_lwp(ci);
    574 	}
    575 }
    576 
    577 void
    578 cpu_start_secondary(struct cpu_info *ci)
    579 {
    580 	extern paddr_t mp_pdirpa;
    581 	u_long psl;
    582 	int i;
    583 
    584 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    585 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    586 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    587 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    588 		return;
    589 	}
    590 
    591 	/*
    592 	 * Wait for it to become ready.   Setting cpu_starting opens the
    593 	 * initial gate and allows the AP to start soft initialization.
    594 	 */
    595 	KASSERT(cpu_starting == NULL);
    596 	cpu_starting = ci;
    597 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    598 #ifdef MPDEBUG
    599 		extern int cpu_trace[3];
    600 		static int otrace[3];
    601 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    602 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    603 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    604 			memcpy(otrace, cpu_trace, sizeof(otrace));
    605 		}
    606 #endif
    607 		i8254_delay(10);
    608 	}
    609 
    610 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    611 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    612 #if defined(MPDEBUG) && defined(DDB)
    613 		printf("dropping into debugger; continue from here to resume boot\n");
    614 		Debugger();
    615 #endif
    616 	} else {
    617 		/*
    618 		 * Synchronize time stamp counters. Invalidate cache and do
    619 		 * twice to try and minimize possible cache effects. Disable
    620 		 * interrupts to try and rule out any external interference.
    621 		 */
    622 		psl = x86_read_psl();
    623 		x86_disable_intr();
    624 		wbinvd();
    625 		tsc_sync_bp(ci);
    626 		x86_write_psl(psl);
    627 	}
    628 
    629 	CPU_START_CLEANUP(ci);
    630 	cpu_starting = NULL;
    631 }
    632 
    633 void
    634 cpu_boot_secondary(struct cpu_info *ci)
    635 {
    636 	int64_t drift;
    637 	u_long psl;
    638 	int i;
    639 
    640 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    641 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    642 		i8254_delay(10);
    643 	}
    644 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    645 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    646 #if defined(MPDEBUG) && defined(DDB)
    647 		printf("dropping into debugger; continue from here to resume boot\n");
    648 		Debugger();
    649 #endif
    650 	} else {
    651 		/* Synchronize TSC again, check for drift. */
    652 		drift = ci->ci_data.cpu_cc_skew;
    653 		psl = x86_read_psl();
    654 		x86_disable_intr();
    655 		wbinvd();
    656 		tsc_sync_bp(ci);
    657 		x86_write_psl(psl);
    658 		drift -= ci->ci_data.cpu_cc_skew;
    659 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    660 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    661 		tsc_sync_drift(drift);
    662 	}
    663 }
    664 
    665 /*
    666  * The CPU ends up here when its ready to run
    667  * This is called from code in mptramp.s; at this point, we are running
    668  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    669  * this processor will enter the idle loop and start looking for work.
    670  */
    671 void
    672 cpu_hatch(void *v)
    673 {
    674 	struct cpu_info *ci = (struct cpu_info *)v;
    675 	struct pcb *pcb;
    676 	int s, i;
    677 
    678 	cpu_init_msrs(ci, true);
    679 	cpu_probe(ci);
    680 
    681 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    682 	/* cpu_get_tsc_freq(ci); */
    683 
    684 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    685 
    686 	/*
    687 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    688 	 * to try and minimize possible cache effects.  Note that interrupts
    689 	 * are off at this point.
    690 	 */
    691 	wbinvd();
    692 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    693 	tsc_sync_ap(ci);
    694 
    695 	/*
    696 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    697 	 * in order to make the TSC drift as much as possible. so that
    698 	 * we can detect it later.  If not available, try 'pause'.
    699 	 * We'd like to use 'hlt', but we have interrupts off.
    700 	 */
    701 	while ((ci->ci_flags & CPUF_GO) == 0) {
    702 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    703 			x86_monitor(&ci->ci_flags, 0, 0);
    704 			if ((ci->ci_flags & CPUF_GO) != 0) {
    705 				continue;
    706 			}
    707 			x86_mwait(0, 0);
    708 		} else {
    709 			for (i = 10000; i != 0; i--) {
    710 				x86_pause();
    711 			}
    712 		}
    713 	}
    714 
    715 	/* Because the text may have been patched in x86_patch(). */
    716 	wbinvd();
    717 	x86_flush();
    718 
    719 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    720 
    721 #ifdef PAE
    722 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    723 	for (i = 0 ; i < PDP_SIZE; i++) {
    724 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    725 	}
    726 	lcr3(ci->ci_pae_l3_pdirpa);
    727 #else
    728 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    729 #endif
    730 
    731 	pcb = lwp_getpcb(curlwp);
    732 	pcb->pcb_cr3 = rcr3();
    733 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    734 	lcr0(pcb->pcb_cr0);
    735 
    736 	cpu_init_idt();
    737 	gdt_init_cpu(ci);
    738 	lapic_enable();
    739 	lapic_set_lvt();
    740 	lapic_initclocks();
    741 
    742 #ifdef i386
    743 #if NNPX > 0
    744 	npxinit(ci);
    745 #endif
    746 #else
    747 	fpuinit(ci);
    748 #endif
    749 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    750 	ltr(ci->ci_tss_sel);
    751 
    752 	cpu_init(ci);
    753 	cpu_get_tsc_freq(ci);
    754 
    755 	s = splhigh();
    756 #ifdef i386
    757 	lapic_tpr = 0;
    758 #else
    759 	lcr8(0);
    760 #endif
    761 	x86_enable_intr();
    762 	splx(s);
    763 	x86_errata();
    764 
    765 	aprint_debug_dev(ci->ci_dev, "running\n");
    766 }
    767 
    768 #if defined(DDB)
    769 
    770 #include <ddb/db_output.h>
    771 #include <machine/db_machdep.h>
    772 
    773 /*
    774  * Dump CPU information from ddb.
    775  */
    776 void
    777 cpu_debug_dump(void)
    778 {
    779 	struct cpu_info *ci;
    780 	CPU_INFO_ITERATOR cii;
    781 
    782 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    783 	for (CPU_INFO_FOREACH(cii, ci)) {
    784 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    785 		    ci,
    786 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    787 		    (long)ci->ci_cpuid,
    788 		    ci->ci_flags, ci->ci_ipis,
    789 		    ci->ci_curlwp,
    790 		    ci->ci_fpcurlwp);
    791 	}
    792 }
    793 #endif
    794 
    795 static void
    796 cpu_copy_trampoline(void)
    797 {
    798 	/*
    799 	 * Copy boot code.
    800 	 */
    801 	extern u_char cpu_spinup_trampoline[];
    802 	extern u_char cpu_spinup_trampoline_end[];
    803 
    804 	vaddr_t mp_trampoline_vaddr;
    805 
    806 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    807 	    UVM_KMF_VAONLY);
    808 
    809 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    810 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    811 	pmap_update(pmap_kernel());
    812 	memcpy((void *)mp_trampoline_vaddr,
    813 	    cpu_spinup_trampoline,
    814 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    815 
    816 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    817 	pmap_update(pmap_kernel());
    818 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    819 }
    820 
    821 #ifdef i386
    822 static void
    823 tss_init(struct i386tss *tss, void *stack, void *func)
    824 {
    825 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    826 
    827 	memset(tss, 0, sizeof *tss);
    828 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    829 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    830 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    831 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    832 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    833 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    834 	/* %cr3 contains the value associated to pmap_kernel */
    835 	tss->tss_cr3 = rcr3();
    836 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    837 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    838 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    839 	tss->__tss_eip = (int)func;
    840 }
    841 
    842 /* XXX */
    843 #define IDTVEC(name)	__CONCAT(X, name)
    844 typedef void (vector)(void);
    845 extern vector IDTVEC(tss_trap08);
    846 #ifdef DDB
    847 extern vector Xintrddbipi;
    848 extern int ddb_vec;
    849 #endif
    850 
    851 static void
    852 cpu_set_tss_gates(struct cpu_info *ci)
    853 {
    854 	struct segment_descriptor sd;
    855 
    856 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    857 	    UVM_KMF_WIRED);
    858 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    859 	    IDTVEC(tss_trap08));
    860 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    861 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    862 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    863 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    864 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    865 
    866 #if defined(DDB)
    867 	/*
    868 	 * Set up separate handler for the DDB IPI, so that it doesn't
    869 	 * stomp on a possibly corrupted stack.
    870 	 *
    871 	 * XXX overwriting the gate set in db_machine_init.
    872 	 * Should rearrange the code so that it's set only once.
    873 	 */
    874 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    875 	    UVM_KMF_WIRED);
    876 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    877 
    878 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    879 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    880 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    881 
    882 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    883 	    GSEL(GIPITSS_SEL, SEL_KPL));
    884 #endif
    885 }
    886 #else
    887 static void
    888 cpu_set_tss_gates(struct cpu_info *ci)
    889 {
    890 
    891 }
    892 #endif	/* i386 */
    893 
    894 int
    895 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    896 {
    897 	unsigned short dwordptr[2];
    898 	int error;
    899 
    900 	/*
    901 	 * Bootstrap code must be addressable in real mode
    902 	 * and it must be page aligned.
    903 	 */
    904 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    905 
    906 	/*
    907 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    908 	 */
    909 
    910 	outb(IO_RTC, NVRAM_RESET);
    911 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    912 
    913 	/*
    914 	 * "and the warm reset vector (DWORD based at 40:67) to point
    915 	 * to the AP startup code ..."
    916 	 */
    917 
    918 	dwordptr[0] = 0;
    919 	dwordptr[1] = target >> 4;
    920 
    921 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    922 
    923 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    924 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    925 		return ENODEV;
    926 	}
    927 
    928 	/*
    929 	 * ... prior to executing the following sequence:".  We'll also add in
    930 	 * local cache flush, in case the BIOS has left the AP with its cache
    931 	 * disabled.  It may not be able to cope with MP coherency.
    932 	 */
    933 	wbinvd();
    934 
    935 	if (ci->ci_flags & CPUF_AP) {
    936 		error = x86_ipi_init(ci->ci_cpuid);
    937 		if (error != 0) {
    938 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    939 			    __func__);
    940 			return error;
    941 		}
    942 		i8254_delay(10000);
    943 
    944 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    945 		if (error != 0) {
    946 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    947 			    __func__);
    948 			return error;
    949 		}
    950 		i8254_delay(200);
    951 
    952 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    953 		if (error != 0) {
    954 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    955 			    __func__);
    956 			return error;
    957 		}
    958 		i8254_delay(200);
    959 	}
    960 
    961 	return 0;
    962 }
    963 
    964 void
    965 mp_cpu_start_cleanup(struct cpu_info *ci)
    966 {
    967 	/*
    968 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    969 	 */
    970 
    971 	outb(IO_RTC, NVRAM_RESET);
    972 	outb(IO_RTC+1, NVRAM_RESET_RST);
    973 }
    974 
    975 #ifdef __x86_64__
    976 typedef void (vector)(void);
    977 extern vector Xsyscall, Xsyscall32;
    978 #endif
    979 
    980 void
    981 cpu_init_msrs(struct cpu_info *ci, bool full)
    982 {
    983 #ifdef __x86_64__
    984 	wrmsr(MSR_STAR,
    985 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    986 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    987 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    988 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    989 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    990 
    991 	if (full) {
    992 		wrmsr(MSR_FSBASE, 0);
    993 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    994 		wrmsr(MSR_KERNELGSBASE, 0);
    995 	}
    996 #endif	/* __x86_64__ */
    997 
    998 	if (cpu_feature[2] & CPUID_NOX)
    999 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1000 }
   1001 
   1002 void
   1003 cpu_offline_md(void)
   1004 {
   1005 	int s;
   1006 
   1007 	s = splhigh();
   1008 #ifdef i386
   1009 #if NNPX > 0
   1010 	npxsave_cpu(true);
   1011 #endif
   1012 #else
   1013 	fpusave_cpu(true);
   1014 #endif
   1015 	splx(s);
   1016 }
   1017 
   1018 /* XXX joerg restructure and restart CPUs individually */
   1019 static bool
   1020 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1021 {
   1022 	struct cpu_softc *sc = device_private(dv);
   1023 	struct cpu_info *ci = sc->sc_info;
   1024 	int err;
   1025 
   1026 	if (ci->ci_flags & CPUF_PRIMARY)
   1027 		return true;
   1028 	if (ci->ci_data.cpu_idlelwp == NULL)
   1029 		return true;
   1030 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1031 		return true;
   1032 
   1033 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1034 
   1035 	if (sc->sc_wasonline) {
   1036 		mutex_enter(&cpu_lock);
   1037 		err = cpu_setstate(ci, false);
   1038 		mutex_exit(&cpu_lock);
   1039 
   1040 		if (err)
   1041 			return false;
   1042 	}
   1043 
   1044 	return true;
   1045 }
   1046 
   1047 static bool
   1048 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1049 {
   1050 	struct cpu_softc *sc = device_private(dv);
   1051 	struct cpu_info *ci = sc->sc_info;
   1052 	int err = 0;
   1053 
   1054 	if (ci->ci_flags & CPUF_PRIMARY)
   1055 		return true;
   1056 	if (ci->ci_data.cpu_idlelwp == NULL)
   1057 		return true;
   1058 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1059 		return true;
   1060 
   1061 	if (sc->sc_wasonline) {
   1062 		mutex_enter(&cpu_lock);
   1063 		err = cpu_setstate(ci, true);
   1064 		mutex_exit(&cpu_lock);
   1065 	}
   1066 
   1067 	return err == 0;
   1068 }
   1069 
   1070 void
   1071 cpu_get_tsc_freq(struct cpu_info *ci)
   1072 {
   1073 	uint64_t last_tsc;
   1074 
   1075 	if (cpu_hascounter()) {
   1076 		last_tsc = rdmsr(MSR_TSC);
   1077 		i8254_delay(100000);
   1078 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1079 	}
   1080 }
   1081 
   1082 void
   1083 x86_cpu_idle_mwait(void)
   1084 {
   1085 	struct cpu_info *ci = curcpu();
   1086 
   1087 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1088 
   1089 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1090 	if (__predict_false(ci->ci_want_resched)) {
   1091 		return;
   1092 	}
   1093 	x86_mwait(0, 0);
   1094 }
   1095 
   1096 void
   1097 x86_cpu_idle_halt(void)
   1098 {
   1099 	struct cpu_info *ci = curcpu();
   1100 
   1101 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1102 
   1103 	x86_disable_intr();
   1104 	if (!__predict_false(ci->ci_want_resched)) {
   1105 		x86_stihlt();
   1106 	} else {
   1107 		x86_enable_intr();
   1108 	}
   1109 }
   1110 
   1111 /*
   1112  * Loads pmap for the current CPU.
   1113  */
   1114 void
   1115 cpu_load_pmap(struct pmap *pmap)
   1116 {
   1117 #ifdef PAE
   1118 	int i, s;
   1119 	struct cpu_info *ci;
   1120 
   1121 	s = splvm(); /* just to be safe */
   1122 	ci = curcpu();
   1123 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1124 	for (i = 0 ; i < PDP_SIZE; i++) {
   1125 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1126 	}
   1127 	splx(s);
   1128 	tlbflush();
   1129 #else /* PAE */
   1130 	lcr3(pmap_pdirpa(pmap, 0));
   1131 #endif /* PAE */
   1132 }
   1133