Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.79
      1 /*	$NetBSD: cpu.c,v 1.79 2011/01/11 18:25:25 jruoho Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.79 2011/01/11 18:25:25 jruoho Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/reboot.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 #include <machine/cpufunc.h>
     90 #include <machine/cpuvar.h>
     91 #include <machine/pmap.h>
     92 #include <machine/vmparam.h>
     93 #include <machine/mpbiosvar.h>
     94 #include <machine/pcb.h>
     95 #include <machine/specialreg.h>
     96 #include <machine/segments.h>
     97 #include <machine/gdt.h>
     98 #include <machine/mtrr.h>
     99 #include <machine/pio.h>
    100 #include <machine/cpu_counter.h>
    101 
    102 #ifdef i386
    103 #include <machine/tlog.h>
    104 #endif
    105 
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 
    110 #include <dev/ic/mc146818reg.h>
    111 #include <i386/isa/nvram.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #include "tsc.h"
    115 
    116 #if MAXCPUS > 32
    117 #error cpu_info contains 32bit bitmasks
    118 #endif
    119 
    120 int     cpu_match(device_t, cfdata_t, void *);
    121 void    cpu_attach(device_t, device_t, void *);
    122 
    123 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    124 static bool	cpu_resume(device_t, const pmf_qual_t *);
    125 static bool	cpu_shutdown(device_t, int);
    126 
    127 struct cpu_softc {
    128 	device_t sc_dev;		/* device tree glue */
    129 	struct cpu_info *sc_info;	/* pointer to CPU info */
    130 	bool sc_wasonline;
    131 };
    132 
    133 int mp_cpu_start(struct cpu_info *, paddr_t);
    134 void mp_cpu_start_cleanup(struct cpu_info *);
    135 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    136 					    mp_cpu_start_cleanup };
    137 
    138 
    139 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    140     cpu_match, cpu_attach, NULL, NULL);
    141 
    142 /*
    143  * Statically-allocated CPU info for the primary CPU (or the only
    144  * CPU, on uniprocessors).  The CPU info list is initialized to
    145  * point at it.
    146  */
    147 #ifdef TRAPLOG
    148 struct tlog tlog_primary;
    149 #endif
    150 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    151 	.ci_dev = 0,
    152 	.ci_self = &cpu_info_primary,
    153 	.ci_idepth = -1,
    154 	.ci_curlwp = &lwp0,
    155 	.ci_curldt = -1,
    156 #ifdef TRAPLOG
    157 	.ci_tlog_base = &tlog_primary,
    158 #endif /* !TRAPLOG */
    159 };
    160 
    161 struct cpu_info *cpu_info_list = &cpu_info_primary;
    162 
    163 static void	cpu_set_tss_gates(struct cpu_info *);
    164 
    165 #ifdef i386
    166 static void	tss_init(struct i386tss *, void *, void *);
    167 #endif
    168 
    169 static void	cpu_init_idle_lwp(struct cpu_info *);
    170 
    171 uint32_t cpus_attached = 0;
    172 uint32_t cpus_running = 0;
    173 
    174 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    175 			  *	[0] basic features %edx
    176 			  *	[1] basic features %ecx
    177 			  *	[2] extended features %edx
    178 			  *	[3] extended features %ecx
    179 			  *	[4] VIA padlock features
    180 			  */
    181 
    182 extern char x86_64_doubleflt_stack[];
    183 
    184 bool x86_mp_online;
    185 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    186 static vaddr_t cmos_data_mapping;
    187 struct cpu_info *cpu_starting;
    188 
    189 void    	cpu_hatch(void *);
    190 static void    	cpu_boot_secondary(struct cpu_info *ci);
    191 static void    	cpu_start_secondary(struct cpu_info *ci);
    192 static void	cpu_copy_trampoline(void);
    193 
    194 /*
    195  * Runs once per boot once multiprocessor goo has been detected and
    196  * the local APIC on the boot processor has been mapped.
    197  *
    198  * Called from lapic_boot_init() (from mpbios_scan()).
    199  */
    200 void
    201 cpu_init_first(void)
    202 {
    203 
    204 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    205 	cpu_copy_trampoline();
    206 
    207 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    208 	if (cmos_data_mapping == 0)
    209 		panic("No KVA for page 0");
    210 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    211 	pmap_update(pmap_kernel());
    212 }
    213 
    214 int
    215 cpu_match(device_t parent, cfdata_t match, void *aux)
    216 {
    217 
    218 	return 1;
    219 }
    220 
    221 static void
    222 cpu_vm_init(struct cpu_info *ci)
    223 {
    224 	int ncolors = 2, i;
    225 
    226 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    227 		struct x86_cache_info *cai;
    228 		int tcolors;
    229 
    230 		cai = &ci->ci_cinfo[i];
    231 
    232 		tcolors = atop(cai->cai_totalsize);
    233 		switch(cai->cai_associativity) {
    234 		case 0xff:
    235 			tcolors = 1; /* fully associative */
    236 			break;
    237 		case 0:
    238 		case 1:
    239 			break;
    240 		default:
    241 			tcolors /= cai->cai_associativity;
    242 		}
    243 		ncolors = max(ncolors, tcolors);
    244 		/*
    245 		 * If the desired number of colors is not a power of
    246 		 * two, it won't be good.  Find the greatest power of
    247 		 * two which is an even divisor of the number of colors,
    248 		 * to preserve even coloring of pages.
    249 		 */
    250 		if (ncolors & (ncolors - 1) ) {
    251 			int try, picked = 1;
    252 			for (try = 1; try < ncolors; try *= 2) {
    253 				if (ncolors % try == 0) picked = try;
    254 			}
    255 			if (picked == 1) {
    256 				panic("desired number of cache colors %d is "
    257 			      	" > 1, but not even!", ncolors);
    258 			}
    259 			ncolors = picked;
    260 		}
    261 	}
    262 
    263 	/*
    264 	 * Knowing the size of the largest cache on this CPU, re-color
    265 	 * our pages.
    266 	 */
    267 	if (ncolors <= uvmexp.ncolors)
    268 		return;
    269 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    270 	uvm_page_recolor(ncolors);
    271 }
    272 
    273 
    274 void
    275 cpu_attach(device_t parent, device_t self, void *aux)
    276 {
    277 	struct cpu_softc *sc = device_private(self);
    278 	struct cpu_attach_args *caa = aux;
    279 	struct cpu_info *ci;
    280 	uintptr_t ptr;
    281 	int cpunum = caa->cpu_number;
    282 	static bool again;
    283 
    284 	sc->sc_dev = self;
    285 
    286 	if (cpus_attached == ~0) {
    287 		aprint_error(": increase MAXCPUS\n");
    288 		return;
    289 	}
    290 
    291 	/*
    292 	 * If we're an Application Processor, allocate a cpu_info
    293 	 * structure, otherwise use the primary's.
    294 	 */
    295 	if (caa->cpu_role == CPU_ROLE_AP) {
    296 		if ((boothowto & RB_MD1) != 0) {
    297 			aprint_error(": multiprocessor boot disabled\n");
    298 			if (!pmf_device_register(self, NULL, NULL))
    299 				aprint_error_dev(self,
    300 				    "couldn't establish power handler\n");
    301 			return;
    302 		}
    303 		aprint_naive(": Application Processor\n");
    304 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    305 		    KM_SLEEP);
    306 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    307 		ci->ci_curldt = -1;
    308 #ifdef TRAPLOG
    309 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    310 #endif
    311 	} else {
    312 		aprint_naive(": %s Processor\n",
    313 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    314 		ci = &cpu_info_primary;
    315 		if (cpunum != lapic_cpu_number()) {
    316 			/* XXX should be done earlier. */
    317 			uint32_t reg;
    318 			aprint_verbose("\n");
    319 			aprint_verbose_dev(self, "running CPU at apic %d"
    320 			    " instead of at expected %d", lapic_cpu_number(),
    321 			    cpunum);
    322 			reg = i82489_readreg(LAPIC_ID);
    323 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    324 			    (cpunum << LAPIC_ID_SHIFT));
    325 		}
    326 		if (cpunum != lapic_cpu_number()) {
    327 			aprint_error_dev(self, "unable to reset apic id\n");
    328 		}
    329 	}
    330 
    331 	ci->ci_self = ci;
    332 	sc->sc_info = ci;
    333 	ci->ci_dev = self;
    334 	ci->ci_acpiid = caa->cpu_id;
    335 	ci->ci_cpuid = caa->cpu_number;
    336 	ci->ci_func = caa->cpu_func;
    337 
    338 	/* Must be before mi_cpu_attach(). */
    339 	cpu_vm_init(ci);
    340 
    341 	if (caa->cpu_role == CPU_ROLE_AP) {
    342 		int error;
    343 
    344 		error = mi_cpu_attach(ci);
    345 		if (error != 0) {
    346 			aprint_normal("\n");
    347 			aprint_error_dev(self,
    348 			    "mi_cpu_attach failed with %d\n", error);
    349 			return;
    350 		}
    351 		cpu_init_tss(ci);
    352 	} else {
    353 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    354 	}
    355 
    356 	ci->ci_cpumask = (1 << cpu_index(ci));
    357 	pmap_reference(pmap_kernel());
    358 	ci->ci_pmap = pmap_kernel();
    359 	ci->ci_tlbstate = TLBSTATE_STALE;
    360 
    361 	/*
    362 	 * Boot processor may not be attached first, but the below
    363 	 * must be done to allow booting other processors.
    364 	 */
    365 	if (!again) {
    366 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    367 		/* Basic init. */
    368 		cpu_intr_init(ci);
    369 		cpu_get_tsc_freq(ci);
    370 		cpu_init(ci);
    371 		cpu_set_tss_gates(ci);
    372 		pmap_cpu_init_late(ci);
    373 		if (caa->cpu_role != CPU_ROLE_SP) {
    374 			/* Enable lapic. */
    375 			lapic_enable();
    376 			lapic_set_lvt();
    377 			lapic_calibrate_timer(ci);
    378 		}
    379 		/* Make sure DELAY() is initialized. */
    380 		DELAY(1);
    381 		again = true;
    382 	}
    383 
    384 	/* further PCB init done later. */
    385 
    386 	switch (caa->cpu_role) {
    387 	case CPU_ROLE_SP:
    388 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    389 		cpu_identify(ci);
    390 		x86_errata();
    391 		x86_cpu_idle_init();
    392 		break;
    393 
    394 	case CPU_ROLE_BP:
    395 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    396 		cpu_identify(ci);
    397 		x86_errata();
    398 		x86_cpu_idle_init();
    399 		break;
    400 
    401 	case CPU_ROLE_AP:
    402 		/*
    403 		 * report on an AP
    404 		 */
    405 		cpu_intr_init(ci);
    406 		gdt_alloc_cpu(ci);
    407 		cpu_set_tss_gates(ci);
    408 		pmap_cpu_init_early(ci);
    409 		pmap_cpu_init_late(ci);
    410 		cpu_start_secondary(ci);
    411 		if (ci->ci_flags & CPUF_PRESENT) {
    412 			struct cpu_info *tmp;
    413 
    414 			cpu_identify(ci);
    415 			tmp = cpu_info_list;
    416 			while (tmp->ci_next)
    417 				tmp = tmp->ci_next;
    418 
    419 			tmp->ci_next = ci;
    420 		}
    421 		break;
    422 
    423 	default:
    424 		aprint_normal("\n");
    425 		panic("unknown processor type??\n");
    426 	}
    427 
    428 	pat_init(ci);
    429 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    430 
    431 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    432 		aprint_error_dev(self, "couldn't establish power handler\n");
    433 
    434 	if (mp_verbose) {
    435 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    436 		struct pcb *pcb = lwp_getpcb(l);
    437 
    438 		aprint_verbose_dev(self,
    439 		    "idle lwp at %p, idle sp at %p\n",
    440 		    l,
    441 #ifdef i386
    442 		    (void *)pcb->pcb_esp
    443 #else
    444 		    (void *)pcb->pcb_rsp
    445 #endif
    446 		);
    447 	}
    448 }
    449 
    450 /*
    451  * Initialize the processor appropriately.
    452  */
    453 
    454 void
    455 cpu_init(struct cpu_info *ci)
    456 {
    457 
    458 	lcr0(rcr0() | CR0_WP);
    459 
    460 	/*
    461 	 * On a P6 or above, enable global TLB caching if the
    462 	 * hardware supports it.
    463 	 */
    464 	if (cpu_feature[0] & CPUID_PGE)
    465 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    466 
    467 	/*
    468 	 * If we have FXSAVE/FXRESTOR, use them.
    469 	 */
    470 	if (cpu_feature[0] & CPUID_FXSR) {
    471 		lcr4(rcr4() | CR4_OSFXSR);
    472 
    473 		/*
    474 		 * If we have SSE/SSE2, enable XMM exceptions.
    475 		 */
    476 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    477 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    478 	}
    479 
    480 #ifdef MTRR
    481 	/*
    482 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    483 	 */
    484 	if (cpu_feature[0] & CPUID_MTRR) {
    485 		if ((ci->ci_flags & CPUF_AP) == 0)
    486 			i686_mtrr_init_first();
    487 		mtrr_init_cpu(ci);
    488 	}
    489 
    490 #ifdef i386
    491 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    492 		/*
    493 		 * Must be a K6-2 Step >= 7 or a K6-III.
    494 		 */
    495 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    496 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    497 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    498 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    499 				mtrr_funcs = &k6_mtrr_funcs;
    500 				k6_mtrr_init_first();
    501 				mtrr_init_cpu(ci);
    502 			}
    503 		}
    504 	}
    505 #endif	/* i386 */
    506 #endif /* MTRR */
    507 
    508 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    509 
    510 	if (ci != &cpu_info_primary) {
    511 		/* Synchronize TSC again, and check for drift. */
    512 		wbinvd();
    513 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    514 		tsc_sync_ap(ci);
    515 	} else {
    516 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    517 	}
    518 }
    519 
    520 void
    521 cpu_boot_secondary_processors(void)
    522 {
    523 	struct cpu_info *ci;
    524 	u_long i;
    525 
    526 	/* Now that we know the number of CPUs, patch the text segment. */
    527 	x86_patch(false);
    528 
    529 	for (i=0; i < maxcpus; i++) {
    530 		ci = cpu_lookup(i);
    531 		if (ci == NULL)
    532 			continue;
    533 		if (ci->ci_data.cpu_idlelwp == NULL)
    534 			continue;
    535 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    536 			continue;
    537 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    538 			continue;
    539 		cpu_boot_secondary(ci);
    540 	}
    541 
    542 	x86_mp_online = true;
    543 
    544 	/* Now that we know about the TSC, attach the timecounter. */
    545 	tsc_tc_init();
    546 
    547 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    548 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    549 }
    550 
    551 static void
    552 cpu_init_idle_lwp(struct cpu_info *ci)
    553 {
    554 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    555 	struct pcb *pcb = lwp_getpcb(l);
    556 
    557 	pcb->pcb_cr0 = rcr0();
    558 }
    559 
    560 void
    561 cpu_init_idle_lwps(void)
    562 {
    563 	struct cpu_info *ci;
    564 	u_long i;
    565 
    566 	for (i = 0; i < maxcpus; i++) {
    567 		ci = cpu_lookup(i);
    568 		if (ci == NULL)
    569 			continue;
    570 		if (ci->ci_data.cpu_idlelwp == NULL)
    571 			continue;
    572 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    573 			continue;
    574 		cpu_init_idle_lwp(ci);
    575 	}
    576 }
    577 
    578 void
    579 cpu_start_secondary(struct cpu_info *ci)
    580 {
    581 	extern paddr_t mp_pdirpa;
    582 	u_long psl;
    583 	int i;
    584 
    585 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    586 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    587 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    588 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    589 		return;
    590 	}
    591 
    592 	/*
    593 	 * Wait for it to become ready.   Setting cpu_starting opens the
    594 	 * initial gate and allows the AP to start soft initialization.
    595 	 */
    596 	KASSERT(cpu_starting == NULL);
    597 	cpu_starting = ci;
    598 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    599 #ifdef MPDEBUG
    600 		extern int cpu_trace[3];
    601 		static int otrace[3];
    602 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    603 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    604 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    605 			memcpy(otrace, cpu_trace, sizeof(otrace));
    606 		}
    607 #endif
    608 		i8254_delay(10);
    609 	}
    610 
    611 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    612 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    613 #if defined(MPDEBUG) && defined(DDB)
    614 		printf("dropping into debugger; continue from here to resume boot\n");
    615 		Debugger();
    616 #endif
    617 	} else {
    618 		/*
    619 		 * Synchronize time stamp counters. Invalidate cache and do
    620 		 * twice to try and minimize possible cache effects. Disable
    621 		 * interrupts to try and rule out any external interference.
    622 		 */
    623 		psl = x86_read_psl();
    624 		x86_disable_intr();
    625 		wbinvd();
    626 		tsc_sync_bp(ci);
    627 		x86_write_psl(psl);
    628 	}
    629 
    630 	CPU_START_CLEANUP(ci);
    631 	cpu_starting = NULL;
    632 }
    633 
    634 void
    635 cpu_boot_secondary(struct cpu_info *ci)
    636 {
    637 	int64_t drift;
    638 	u_long psl;
    639 	int i;
    640 
    641 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    642 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    643 		i8254_delay(10);
    644 	}
    645 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    646 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    647 #if defined(MPDEBUG) && defined(DDB)
    648 		printf("dropping into debugger; continue from here to resume boot\n");
    649 		Debugger();
    650 #endif
    651 	} else {
    652 		/* Synchronize TSC again, check for drift. */
    653 		drift = ci->ci_data.cpu_cc_skew;
    654 		psl = x86_read_psl();
    655 		x86_disable_intr();
    656 		wbinvd();
    657 		tsc_sync_bp(ci);
    658 		x86_write_psl(psl);
    659 		drift -= ci->ci_data.cpu_cc_skew;
    660 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    661 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    662 		tsc_sync_drift(drift);
    663 	}
    664 }
    665 
    666 /*
    667  * The CPU ends up here when its ready to run
    668  * This is called from code in mptramp.s; at this point, we are running
    669  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    670  * this processor will enter the idle loop and start looking for work.
    671  */
    672 void
    673 cpu_hatch(void *v)
    674 {
    675 	struct cpu_info *ci = (struct cpu_info *)v;
    676 	struct pcb *pcb;
    677 	int s, i;
    678 
    679 	cpu_init_msrs(ci, true);
    680 	cpu_probe(ci);
    681 
    682 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    683 	/* cpu_get_tsc_freq(ci); */
    684 
    685 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    686 
    687 	/*
    688 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    689 	 * to try and minimize possible cache effects.  Note that interrupts
    690 	 * are off at this point.
    691 	 */
    692 	wbinvd();
    693 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    694 	tsc_sync_ap(ci);
    695 
    696 	/*
    697 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    698 	 * in order to make the TSC drift as much as possible. so that
    699 	 * we can detect it later.  If not available, try 'pause'.
    700 	 * We'd like to use 'hlt', but we have interrupts off.
    701 	 */
    702 	while ((ci->ci_flags & CPUF_GO) == 0) {
    703 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    704 			x86_monitor(&ci->ci_flags, 0, 0);
    705 			if ((ci->ci_flags & CPUF_GO) != 0) {
    706 				continue;
    707 			}
    708 			x86_mwait(0, 0);
    709 		} else {
    710 			for (i = 10000; i != 0; i--) {
    711 				x86_pause();
    712 			}
    713 		}
    714 	}
    715 
    716 	/* Because the text may have been patched in x86_patch(). */
    717 	wbinvd();
    718 	x86_flush();
    719 
    720 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    721 
    722 #ifdef PAE
    723 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    724 	for (i = 0 ; i < PDP_SIZE; i++) {
    725 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    726 	}
    727 	lcr3(ci->ci_pae_l3_pdirpa);
    728 #else
    729 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    730 #endif
    731 
    732 	pcb = lwp_getpcb(curlwp);
    733 	pcb->pcb_cr3 = rcr3();
    734 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    735 	lcr0(pcb->pcb_cr0);
    736 
    737 	cpu_init_idt();
    738 	gdt_init_cpu(ci);
    739 	lapic_enable();
    740 	lapic_set_lvt();
    741 	lapic_initclocks();
    742 
    743 #ifdef i386
    744 #if NNPX > 0
    745 	npxinit(ci);
    746 #endif
    747 #else
    748 	fpuinit(ci);
    749 #endif
    750 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    751 	ltr(ci->ci_tss_sel);
    752 
    753 	cpu_init(ci);
    754 	cpu_get_tsc_freq(ci);
    755 
    756 	s = splhigh();
    757 #ifdef i386
    758 	lapic_tpr = 0;
    759 #else
    760 	lcr8(0);
    761 #endif
    762 	x86_enable_intr();
    763 	splx(s);
    764 	x86_errata();
    765 
    766 	aprint_debug_dev(ci->ci_dev, "running\n");
    767 }
    768 
    769 #if defined(DDB)
    770 
    771 #include <ddb/db_output.h>
    772 #include <machine/db_machdep.h>
    773 
    774 /*
    775  * Dump CPU information from ddb.
    776  */
    777 void
    778 cpu_debug_dump(void)
    779 {
    780 	struct cpu_info *ci;
    781 	CPU_INFO_ITERATOR cii;
    782 
    783 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    784 	for (CPU_INFO_FOREACH(cii, ci)) {
    785 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    786 		    ci,
    787 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    788 		    (long)ci->ci_cpuid,
    789 		    ci->ci_flags, ci->ci_ipis,
    790 		    ci->ci_curlwp,
    791 		    ci->ci_fpcurlwp);
    792 	}
    793 }
    794 #endif
    795 
    796 static void
    797 cpu_copy_trampoline(void)
    798 {
    799 	/*
    800 	 * Copy boot code.
    801 	 */
    802 	extern u_char cpu_spinup_trampoline[];
    803 	extern u_char cpu_spinup_trampoline_end[];
    804 
    805 	vaddr_t mp_trampoline_vaddr;
    806 
    807 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    808 	    UVM_KMF_VAONLY);
    809 
    810 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    811 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    812 	pmap_update(pmap_kernel());
    813 	memcpy((void *)mp_trampoline_vaddr,
    814 	    cpu_spinup_trampoline,
    815 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    816 
    817 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    818 	pmap_update(pmap_kernel());
    819 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    820 }
    821 
    822 #ifdef i386
    823 static void
    824 tss_init(struct i386tss *tss, void *stack, void *func)
    825 {
    826 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    827 
    828 	memset(tss, 0, sizeof *tss);
    829 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    830 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    831 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    832 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    833 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    834 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    835 	/* %cr3 contains the value associated to pmap_kernel */
    836 	tss->tss_cr3 = rcr3();
    837 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    838 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    839 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    840 	tss->__tss_eip = (int)func;
    841 }
    842 
    843 /* XXX */
    844 #define IDTVEC(name)	__CONCAT(X, name)
    845 typedef void (vector)(void);
    846 extern vector IDTVEC(tss_trap08);
    847 #ifdef DDB
    848 extern vector Xintrddbipi;
    849 extern int ddb_vec;
    850 #endif
    851 
    852 static void
    853 cpu_set_tss_gates(struct cpu_info *ci)
    854 {
    855 	struct segment_descriptor sd;
    856 
    857 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    858 	    UVM_KMF_WIRED);
    859 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    860 	    IDTVEC(tss_trap08));
    861 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    862 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    863 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    864 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    865 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    866 
    867 #if defined(DDB)
    868 	/*
    869 	 * Set up separate handler for the DDB IPI, so that it doesn't
    870 	 * stomp on a possibly corrupted stack.
    871 	 *
    872 	 * XXX overwriting the gate set in db_machine_init.
    873 	 * Should rearrange the code so that it's set only once.
    874 	 */
    875 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    876 	    UVM_KMF_WIRED);
    877 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    878 
    879 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    880 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    881 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    882 
    883 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    884 	    GSEL(GIPITSS_SEL, SEL_KPL));
    885 #endif
    886 }
    887 #else
    888 static void
    889 cpu_set_tss_gates(struct cpu_info *ci)
    890 {
    891 
    892 }
    893 #endif	/* i386 */
    894 
    895 int
    896 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    897 {
    898 	unsigned short dwordptr[2];
    899 	int error;
    900 
    901 	/*
    902 	 * Bootstrap code must be addressable in real mode
    903 	 * and it must be page aligned.
    904 	 */
    905 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    906 
    907 	/*
    908 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    909 	 */
    910 
    911 	outb(IO_RTC, NVRAM_RESET);
    912 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    913 
    914 	/*
    915 	 * "and the warm reset vector (DWORD based at 40:67) to point
    916 	 * to the AP startup code ..."
    917 	 */
    918 
    919 	dwordptr[0] = 0;
    920 	dwordptr[1] = target >> 4;
    921 
    922 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    923 
    924 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    925 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    926 		return ENODEV;
    927 	}
    928 
    929 	/*
    930 	 * ... prior to executing the following sequence:".  We'll also add in
    931 	 * local cache flush, in case the BIOS has left the AP with its cache
    932 	 * disabled.  It may not be able to cope with MP coherency.
    933 	 */
    934 	wbinvd();
    935 
    936 	if (ci->ci_flags & CPUF_AP) {
    937 		error = x86_ipi_init(ci->ci_cpuid);
    938 		if (error != 0) {
    939 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    940 			    __func__);
    941 			return error;
    942 		}
    943 		i8254_delay(10000);
    944 
    945 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    946 		if (error != 0) {
    947 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    948 			    __func__);
    949 			return error;
    950 		}
    951 		i8254_delay(200);
    952 
    953 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    954 		if (error != 0) {
    955 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    956 			    __func__);
    957 			return error;
    958 		}
    959 		i8254_delay(200);
    960 	}
    961 
    962 	return 0;
    963 }
    964 
    965 void
    966 mp_cpu_start_cleanup(struct cpu_info *ci)
    967 {
    968 	/*
    969 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    970 	 */
    971 
    972 	outb(IO_RTC, NVRAM_RESET);
    973 	outb(IO_RTC+1, NVRAM_RESET_RST);
    974 }
    975 
    976 #ifdef __x86_64__
    977 typedef void (vector)(void);
    978 extern vector Xsyscall, Xsyscall32;
    979 #endif
    980 
    981 void
    982 cpu_init_msrs(struct cpu_info *ci, bool full)
    983 {
    984 #ifdef __x86_64__
    985 	wrmsr(MSR_STAR,
    986 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    987 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    988 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    989 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    990 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    991 
    992 	if (full) {
    993 		wrmsr(MSR_FSBASE, 0);
    994 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    995 		wrmsr(MSR_KERNELGSBASE, 0);
    996 	}
    997 #endif	/* __x86_64__ */
    998 
    999 	if (cpu_feature[2] & CPUID_NOX)
   1000 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1001 }
   1002 
   1003 void
   1004 cpu_offline_md(void)
   1005 {
   1006 	int s;
   1007 
   1008 	s = splhigh();
   1009 #ifdef i386
   1010 #if NNPX > 0
   1011 	npxsave_cpu(true);
   1012 #endif
   1013 #else
   1014 	fpusave_cpu(true);
   1015 #endif
   1016 	splx(s);
   1017 }
   1018 
   1019 /* XXX joerg restructure and restart CPUs individually */
   1020 static bool
   1021 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1022 {
   1023 	struct cpu_softc *sc = device_private(dv);
   1024 	struct cpu_info *ci = sc->sc_info;
   1025 	int err;
   1026 
   1027 	if (ci->ci_flags & CPUF_PRIMARY)
   1028 		return true;
   1029 	if (ci->ci_data.cpu_idlelwp == NULL)
   1030 		return true;
   1031 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1032 		return true;
   1033 
   1034 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1035 
   1036 	if (sc->sc_wasonline) {
   1037 		mutex_enter(&cpu_lock);
   1038 		err = cpu_setstate(ci, false);
   1039 		mutex_exit(&cpu_lock);
   1040 
   1041 		if (err)
   1042 			return false;
   1043 	}
   1044 
   1045 	return true;
   1046 }
   1047 
   1048 static bool
   1049 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1050 {
   1051 	struct cpu_softc *sc = device_private(dv);
   1052 	struct cpu_info *ci = sc->sc_info;
   1053 	int err = 0;
   1054 
   1055 	if (ci->ci_flags & CPUF_PRIMARY)
   1056 		return true;
   1057 	if (ci->ci_data.cpu_idlelwp == NULL)
   1058 		return true;
   1059 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1060 		return true;
   1061 
   1062 	if (sc->sc_wasonline) {
   1063 		mutex_enter(&cpu_lock);
   1064 		err = cpu_setstate(ci, true);
   1065 		mutex_exit(&cpu_lock);
   1066 	}
   1067 
   1068 	return err == 0;
   1069 }
   1070 
   1071 static bool
   1072 cpu_shutdown(device_t dv, int how)
   1073 {
   1074 	return cpu_suspend(dv, NULL);
   1075 }
   1076 
   1077 void
   1078 cpu_get_tsc_freq(struct cpu_info *ci)
   1079 {
   1080 	uint64_t last_tsc;
   1081 
   1082 	if (cpu_hascounter()) {
   1083 		last_tsc = rdmsr(MSR_TSC);
   1084 		i8254_delay(100000);
   1085 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1086 	}
   1087 }
   1088 
   1089 void
   1090 x86_cpu_idle_mwait(void)
   1091 {
   1092 	struct cpu_info *ci = curcpu();
   1093 
   1094 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1095 
   1096 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1097 	if (__predict_false(ci->ci_want_resched)) {
   1098 		return;
   1099 	}
   1100 	x86_mwait(0, 0);
   1101 }
   1102 
   1103 void
   1104 x86_cpu_idle_halt(void)
   1105 {
   1106 	struct cpu_info *ci = curcpu();
   1107 
   1108 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1109 
   1110 	x86_disable_intr();
   1111 	if (!__predict_false(ci->ci_want_resched)) {
   1112 		x86_stihlt();
   1113 	} else {
   1114 		x86_enable_intr();
   1115 	}
   1116 }
   1117 
   1118 /*
   1119  * Loads pmap for the current CPU.
   1120  */
   1121 void
   1122 cpu_load_pmap(struct pmap *pmap)
   1123 {
   1124 #ifdef PAE
   1125 	int i, s;
   1126 	struct cpu_info *ci;
   1127 
   1128 	s = splvm(); /* just to be safe */
   1129 	ci = curcpu();
   1130 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1131 	for (i = 0 ; i < PDP_SIZE; i++) {
   1132 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1133 	}
   1134 	splx(s);
   1135 	tlbflush();
   1136 #else /* PAE */
   1137 	lcr3(pmap_pdirpa(pmap, 0));
   1138 #endif /* PAE */
   1139 }
   1140