cpu.c revision 1.84 1 /* $NetBSD: cpu.c,v 1.84 2011/02/24 10:56:02 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.84 2011/02/24 10:56:02 jruoho Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70
71 #include "lapic.h"
72 #include "ioapic.h"
73
74 #ifdef i386
75 #include "npx.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kmem.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/reboot.h>
86
87 #include <uvm/uvm.h>
88
89 #include <machine/cpufunc.h>
90 #include <machine/cpuvar.h>
91 #include <machine/pmap.h>
92 #include <machine/vmparam.h>
93 #include <machine/mpbiosvar.h>
94 #include <machine/pcb.h>
95 #include <machine/specialreg.h>
96 #include <machine/segments.h>
97 #include <machine/gdt.h>
98 #include <machine/mtrr.h>
99 #include <machine/pio.h>
100 #include <machine/cpu_counter.h>
101
102 #ifdef i386
103 #include <machine/tlog.h>
104 #endif
105
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109
110 #include <dev/ic/mc146818reg.h>
111 #include <i386/isa/nvram.h>
112 #include <dev/isa/isareg.h>
113
114 #include "tsc.h"
115
116 #if MAXCPUS > 32
117 #error cpu_info contains 32bit bitmasks
118 #endif
119
120 int cpu_match(device_t, cfdata_t, void *);
121 void cpu_attach(device_t, device_t, void *);
122 int cpu_rescan(device_t, const char *, const int *);
123 void cpu_childdetached(device_t, device_t);
124
125
126 static bool cpu_suspend(device_t, const pmf_qual_t *);
127 static bool cpu_resume(device_t, const pmf_qual_t *);
128 static bool cpu_shutdown(device_t, int);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, paddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141
142 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
143 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
144
145 /*
146 * Statically-allocated CPU info for the primary CPU (or the only
147 * CPU, on uniprocessors). The CPU info list is initialized to
148 * point at it.
149 */
150 #ifdef TRAPLOG
151 struct tlog tlog_primary;
152 #endif
153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 .ci_dev = 0,
155 .ci_self = &cpu_info_primary,
156 .ci_idepth = -1,
157 .ci_curlwp = &lwp0,
158 .ci_curldt = -1,
159 #ifdef TRAPLOG
160 .ci_tlog_base = &tlog_primary,
161 #endif /* !TRAPLOG */
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165
166 static void cpu_set_tss_gates(struct cpu_info *);
167
168 #ifdef i386
169 static void tss_init(struct i386tss *, void *, void *);
170 #endif
171
172 static void cpu_init_idle_lwp(struct cpu_info *);
173
174 uint32_t cpus_attached = 0;
175 uint32_t cpus_running = 0;
176
177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 * [0] basic features %edx
179 * [1] basic features %ecx
180 * [2] extended features %edx
181 * [3] extended features %ecx
182 * [4] VIA padlock features
183 */
184
185 extern char x86_64_doubleflt_stack[];
186
187 bool x86_mp_online;
188 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189 static vaddr_t cmos_data_mapping;
190 struct cpu_info *cpu_starting;
191
192 void cpu_hatch(void *);
193 static void cpu_boot_secondary(struct cpu_info *ci);
194 static void cpu_start_secondary(struct cpu_info *ci);
195 static void cpu_copy_trampoline(void);
196
197 /*
198 * Runs once per boot once multiprocessor goo has been detected and
199 * the local APIC on the boot processor has been mapped.
200 *
201 * Called from lapic_boot_init() (from mpbios_scan()).
202 */
203 void
204 cpu_init_first(void)
205 {
206
207 cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 cpu_copy_trampoline();
209
210 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
211 if (cmos_data_mapping == 0)
212 panic("No KVA for page 0");
213 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
214 pmap_update(pmap_kernel());
215 }
216
217 int
218 cpu_match(device_t parent, cfdata_t match, void *aux)
219 {
220
221 return 1;
222 }
223
224 static void
225 cpu_vm_init(struct cpu_info *ci)
226 {
227 int ncolors = 2, i;
228
229 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
230 struct x86_cache_info *cai;
231 int tcolors;
232
233 cai = &ci->ci_cinfo[i];
234
235 tcolors = atop(cai->cai_totalsize);
236 switch(cai->cai_associativity) {
237 case 0xff:
238 tcolors = 1; /* fully associative */
239 break;
240 case 0:
241 case 1:
242 break;
243 default:
244 tcolors /= cai->cai_associativity;
245 }
246 ncolors = max(ncolors, tcolors);
247 /*
248 * If the desired number of colors is not a power of
249 * two, it won't be good. Find the greatest power of
250 * two which is an even divisor of the number of colors,
251 * to preserve even coloring of pages.
252 */
253 if (ncolors & (ncolors - 1) ) {
254 int try, picked = 1;
255 for (try = 1; try < ncolors; try *= 2) {
256 if (ncolors % try == 0) picked = try;
257 }
258 if (picked == 1) {
259 panic("desired number of cache colors %d is "
260 " > 1, but not even!", ncolors);
261 }
262 ncolors = picked;
263 }
264 }
265
266 /*
267 * Knowing the size of the largest cache on this CPU, re-color
268 * our pages.
269 */
270 if (ncolors <= uvmexp.ncolors)
271 return;
272 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
273 uvm_page_recolor(ncolors);
274 }
275
276
277 void
278 cpu_attach(device_t parent, device_t self, void *aux)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpu_attach_args *caa = aux;
282 struct cpu_info *ci;
283 uintptr_t ptr;
284 int cpunum = caa->cpu_number;
285 static bool again;
286
287 sc->sc_dev = self;
288
289 if (cpus_attached == ~0) {
290 aprint_error(": increase MAXCPUS\n");
291 return;
292 }
293
294 /*
295 * If we're an Application Processor, allocate a cpu_info
296 * structure, otherwise use the primary's.
297 */
298 if (caa->cpu_role == CPU_ROLE_AP) {
299 if ((boothowto & RB_MD1) != 0) {
300 aprint_error(": multiprocessor boot disabled\n");
301 if (!pmf_device_register(self, NULL, NULL))
302 aprint_error_dev(self,
303 "couldn't establish power handler\n");
304 return;
305 }
306 aprint_naive(": Application Processor\n");
307 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
308 KM_SLEEP);
309 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
310 ci->ci_curldt = -1;
311 #ifdef TRAPLOG
312 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
313 #endif
314 } else {
315 aprint_naive(": %s Processor\n",
316 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
317 ci = &cpu_info_primary;
318 if (cpunum != lapic_cpu_number()) {
319 /* XXX should be done earlier. */
320 uint32_t reg;
321 aprint_verbose("\n");
322 aprint_verbose_dev(self, "running CPU at apic %d"
323 " instead of at expected %d", lapic_cpu_number(),
324 cpunum);
325 reg = i82489_readreg(LAPIC_ID);
326 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
327 (cpunum << LAPIC_ID_SHIFT));
328 }
329 if (cpunum != lapic_cpu_number()) {
330 aprint_error_dev(self, "unable to reset apic id\n");
331 }
332 }
333
334 ci->ci_self = ci;
335 sc->sc_info = ci;
336 ci->ci_dev = self;
337 ci->ci_acpiid = caa->cpu_id;
338 ci->ci_cpuid = caa->cpu_number;
339 ci->ci_func = caa->cpu_func;
340
341 /* Must be before mi_cpu_attach(). */
342 cpu_vm_init(ci);
343
344 if (caa->cpu_role == CPU_ROLE_AP) {
345 int error;
346
347 error = mi_cpu_attach(ci);
348 if (error != 0) {
349 aprint_normal("\n");
350 aprint_error_dev(self,
351 "mi_cpu_attach failed with %d\n", error);
352 return;
353 }
354 cpu_init_tss(ci);
355 } else {
356 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
357 }
358
359 ci->ci_cpumask = (1 << cpu_index(ci));
360 pmap_reference(pmap_kernel());
361 ci->ci_pmap = pmap_kernel();
362 ci->ci_tlbstate = TLBSTATE_STALE;
363
364 /*
365 * Boot processor may not be attached first, but the below
366 * must be done to allow booting other processors.
367 */
368 if (!again) {
369 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
370 /* Basic init. */
371 cpu_intr_init(ci);
372 cpu_get_tsc_freq(ci);
373 cpu_init(ci);
374 cpu_set_tss_gates(ci);
375 pmap_cpu_init_late(ci);
376 if (caa->cpu_role != CPU_ROLE_SP) {
377 /* Enable lapic. */
378 lapic_enable();
379 lapic_set_lvt();
380 lapic_calibrate_timer(ci);
381 }
382 /* Make sure DELAY() is initialized. */
383 DELAY(1);
384 again = true;
385 }
386
387 /* further PCB init done later. */
388
389 switch (caa->cpu_role) {
390 case CPU_ROLE_SP:
391 atomic_or_32(&ci->ci_flags, CPUF_SP);
392 cpu_identify(ci);
393 x86_errata();
394 x86_cpu_idle_init();
395 break;
396
397 case CPU_ROLE_BP:
398 atomic_or_32(&ci->ci_flags, CPUF_BSP);
399 cpu_identify(ci);
400 x86_errata();
401 x86_cpu_idle_init();
402 break;
403
404 case CPU_ROLE_AP:
405 /*
406 * report on an AP
407 */
408 cpu_intr_init(ci);
409 gdt_alloc_cpu(ci);
410 cpu_set_tss_gates(ci);
411 pmap_cpu_init_early(ci);
412 pmap_cpu_init_late(ci);
413 cpu_start_secondary(ci);
414 if (ci->ci_flags & CPUF_PRESENT) {
415 struct cpu_info *tmp;
416
417 cpu_identify(ci);
418 tmp = cpu_info_list;
419 while (tmp->ci_next)
420 tmp = tmp->ci_next;
421
422 tmp->ci_next = ci;
423 }
424 break;
425
426 default:
427 aprint_normal("\n");
428 panic("unknown processor type??\n");
429 }
430
431 pat_init(ci);
432 atomic_or_32(&cpus_attached, ci->ci_cpumask);
433
434 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
435 aprint_error_dev(self, "couldn't establish power handler\n");
436
437 if (mp_verbose) {
438 struct lwp *l = ci->ci_data.cpu_idlelwp;
439 struct pcb *pcb = lwp_getpcb(l);
440
441 aprint_verbose_dev(self,
442 "idle lwp at %p, idle sp at %p\n",
443 l,
444 #ifdef i386
445 (void *)pcb->pcb_esp
446 #else
447 (void *)pcb->pcb_rsp
448 #endif
449 );
450 }
451
452 cpu_rescan(self, NULL, NULL);
453 }
454
455 int
456 cpu_rescan(device_t self, const char *ifattr, const int *locators)
457 {
458 struct cpu_softc *sc = device_private(self);
459 struct cpufeature_attach_args cfaa;
460 struct cpu_info *ci = sc->sc_info;
461
462 memset(&cfaa, 0, sizeof(cfaa));
463 cfaa.ci = ci;
464
465 if (ifattr_match(ifattr, "cpufeaturebus")) {
466
467 if (ci->ci_frequency == NULL) {
468 cfaa.name = "est";
469 ci->ci_frequency = config_found_ia(self,
470 "cpufeaturebus", &cfaa, NULL);
471 }
472
473 if (ci->ci_frequency == NULL) {
474 cfaa.name = "powernow";
475 ci->ci_frequency = config_found_ia(self,
476 "cpufeaturebus", &cfaa, NULL);
477 }
478
479 if (ci->ci_padlock == NULL) {
480 cfaa.name = "padlock";
481 ci->ci_padlock = config_found_ia(self,
482 "cpufeaturebus", &cfaa, NULL);
483 }
484
485 if (ci->ci_tempsensor == NULL) {
486 cfaa.name = "coretemp";
487 ci->ci_tempsensor = config_found_ia(self,
488 "cpufeaturebus", &cfaa, NULL);
489 }
490 }
491
492 return 0;
493 }
494
495 void
496 cpu_childdetached(device_t self, device_t child)
497 {
498 struct cpu_softc *sc = device_private(self);
499 struct cpu_info *ci = sc->sc_info;
500
501 if (ci->ci_frequency == child)
502 ci->ci_frequency = NULL;
503
504 if (ci->ci_padlock == child)
505 ci->ci_padlock = NULL;
506
507 if (ci->ci_tempsensor == child)
508 ci->ci_tempsensor = NULL;
509 }
510
511 /*
512 * Initialize the processor appropriately.
513 */
514
515 void
516 cpu_init(struct cpu_info *ci)
517 {
518
519 lcr0(rcr0() | CR0_WP);
520
521 /*
522 * On a P6 or above, enable global TLB caching if the
523 * hardware supports it.
524 */
525 if (cpu_feature[0] & CPUID_PGE)
526 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
527
528 /*
529 * If we have FXSAVE/FXRESTOR, use them.
530 */
531 if (cpu_feature[0] & CPUID_FXSR) {
532 lcr4(rcr4() | CR4_OSFXSR);
533
534 /*
535 * If we have SSE/SSE2, enable XMM exceptions.
536 */
537 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
538 lcr4(rcr4() | CR4_OSXMMEXCPT);
539 }
540
541 #ifdef MTRR
542 /*
543 * On a P6 or above, initialize MTRR's if the hardware supports them.
544 */
545 if (cpu_feature[0] & CPUID_MTRR) {
546 if ((ci->ci_flags & CPUF_AP) == 0)
547 i686_mtrr_init_first();
548 mtrr_init_cpu(ci);
549 }
550
551 #ifdef i386
552 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
553 /*
554 * Must be a K6-2 Step >= 7 or a K6-III.
555 */
556 if (CPUID2FAMILY(ci->ci_signature) == 5) {
557 if (CPUID2MODEL(ci->ci_signature) > 8 ||
558 (CPUID2MODEL(ci->ci_signature) == 8 &&
559 CPUID2STEPPING(ci->ci_signature) >= 7)) {
560 mtrr_funcs = &k6_mtrr_funcs;
561 k6_mtrr_init_first();
562 mtrr_init_cpu(ci);
563 }
564 }
565 }
566 #endif /* i386 */
567 #endif /* MTRR */
568
569 atomic_or_32(&cpus_running, ci->ci_cpumask);
570
571 if (ci != &cpu_info_primary) {
572 /* Synchronize TSC again, and check for drift. */
573 wbinvd();
574 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
575 tsc_sync_ap(ci);
576 } else {
577 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
578 }
579 }
580
581 void
582 cpu_boot_secondary_processors(void)
583 {
584 struct cpu_info *ci;
585 u_long i;
586
587 /* Now that we know the number of CPUs, patch the text segment. */
588 x86_patch(false);
589
590 for (i=0; i < maxcpus; i++) {
591 ci = cpu_lookup(i);
592 if (ci == NULL)
593 continue;
594 if (ci->ci_data.cpu_idlelwp == NULL)
595 continue;
596 if ((ci->ci_flags & CPUF_PRESENT) == 0)
597 continue;
598 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
599 continue;
600 cpu_boot_secondary(ci);
601 }
602
603 x86_mp_online = true;
604
605 /* Now that we know about the TSC, attach the timecounter. */
606 tsc_tc_init();
607
608 /* Enable zeroing of pages in the idle loop if we have SSE2. */
609 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
610 }
611
612 static void
613 cpu_init_idle_lwp(struct cpu_info *ci)
614 {
615 struct lwp *l = ci->ci_data.cpu_idlelwp;
616 struct pcb *pcb = lwp_getpcb(l);
617
618 pcb->pcb_cr0 = rcr0();
619 }
620
621 void
622 cpu_init_idle_lwps(void)
623 {
624 struct cpu_info *ci;
625 u_long i;
626
627 for (i = 0; i < maxcpus; i++) {
628 ci = cpu_lookup(i);
629 if (ci == NULL)
630 continue;
631 if (ci->ci_data.cpu_idlelwp == NULL)
632 continue;
633 if ((ci->ci_flags & CPUF_PRESENT) == 0)
634 continue;
635 cpu_init_idle_lwp(ci);
636 }
637 }
638
639 void
640 cpu_start_secondary(struct cpu_info *ci)
641 {
642 extern paddr_t mp_pdirpa;
643 u_long psl;
644 int i;
645
646 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
647 atomic_or_32(&ci->ci_flags, CPUF_AP);
648 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
649 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
650 return;
651 }
652
653 /*
654 * Wait for it to become ready. Setting cpu_starting opens the
655 * initial gate and allows the AP to start soft initialization.
656 */
657 KASSERT(cpu_starting == NULL);
658 cpu_starting = ci;
659 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
660 #ifdef MPDEBUG
661 extern int cpu_trace[3];
662 static int otrace[3];
663 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
664 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
665 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
666 memcpy(otrace, cpu_trace, sizeof(otrace));
667 }
668 #endif
669 i8254_delay(10);
670 }
671
672 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
673 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
674 #if defined(MPDEBUG) && defined(DDB)
675 printf("dropping into debugger; continue from here to resume boot\n");
676 Debugger();
677 #endif
678 } else {
679 /*
680 * Synchronize time stamp counters. Invalidate cache and do
681 * twice to try and minimize possible cache effects. Disable
682 * interrupts to try and rule out any external interference.
683 */
684 psl = x86_read_psl();
685 x86_disable_intr();
686 wbinvd();
687 tsc_sync_bp(ci);
688 x86_write_psl(psl);
689 }
690
691 CPU_START_CLEANUP(ci);
692 cpu_starting = NULL;
693 }
694
695 void
696 cpu_boot_secondary(struct cpu_info *ci)
697 {
698 int64_t drift;
699 u_long psl;
700 int i;
701
702 atomic_or_32(&ci->ci_flags, CPUF_GO);
703 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
704 i8254_delay(10);
705 }
706 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
707 aprint_error_dev(ci->ci_dev, "failed to start\n");
708 #if defined(MPDEBUG) && defined(DDB)
709 printf("dropping into debugger; continue from here to resume boot\n");
710 Debugger();
711 #endif
712 } else {
713 /* Synchronize TSC again, check for drift. */
714 drift = ci->ci_data.cpu_cc_skew;
715 psl = x86_read_psl();
716 x86_disable_intr();
717 wbinvd();
718 tsc_sync_bp(ci);
719 x86_write_psl(psl);
720 drift -= ci->ci_data.cpu_cc_skew;
721 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
722 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
723 tsc_sync_drift(drift);
724 }
725 }
726
727 /*
728 * The CPU ends up here when its ready to run
729 * This is called from code in mptramp.s; at this point, we are running
730 * in the idle pcb/idle stack of the new CPU. When this function returns,
731 * this processor will enter the idle loop and start looking for work.
732 */
733 void
734 cpu_hatch(void *v)
735 {
736 struct cpu_info *ci = (struct cpu_info *)v;
737 struct pcb *pcb;
738 int s, i;
739
740 cpu_init_msrs(ci, true);
741 cpu_probe(ci);
742
743 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
744 /* cpu_get_tsc_freq(ci); */
745
746 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
747
748 /*
749 * Synchronize time stamp counters. Invalidate cache and do twice
750 * to try and minimize possible cache effects. Note that interrupts
751 * are off at this point.
752 */
753 wbinvd();
754 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
755 tsc_sync_ap(ci);
756
757 /*
758 * Wait to be brought online. Use 'monitor/mwait' if available,
759 * in order to make the TSC drift as much as possible. so that
760 * we can detect it later. If not available, try 'pause'.
761 * We'd like to use 'hlt', but we have interrupts off.
762 */
763 while ((ci->ci_flags & CPUF_GO) == 0) {
764 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
765 x86_monitor(&ci->ci_flags, 0, 0);
766 if ((ci->ci_flags & CPUF_GO) != 0) {
767 continue;
768 }
769 x86_mwait(0, 0);
770 } else {
771 for (i = 10000; i != 0; i--) {
772 x86_pause();
773 }
774 }
775 }
776
777 /* Because the text may have been patched in x86_patch(). */
778 wbinvd();
779 x86_flush();
780
781 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
782
783 #ifdef PAE
784 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
785 for (i = 0 ; i < PDP_SIZE; i++) {
786 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
787 }
788 lcr3(ci->ci_pae_l3_pdirpa);
789 #else
790 lcr3(pmap_pdirpa(pmap_kernel(), 0));
791 #endif
792
793 pcb = lwp_getpcb(curlwp);
794 pcb->pcb_cr3 = rcr3();
795 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
796 lcr0(pcb->pcb_cr0);
797
798 cpu_init_idt();
799 gdt_init_cpu(ci);
800 lapic_enable();
801 lapic_set_lvt();
802 lapic_initclocks();
803
804 #ifdef i386
805 #if NNPX > 0
806 npxinit(ci);
807 #endif
808 #else
809 fpuinit(ci);
810 #endif
811 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
812 ltr(ci->ci_tss_sel);
813
814 cpu_init(ci);
815 cpu_get_tsc_freq(ci);
816
817 s = splhigh();
818 #ifdef i386
819 lapic_tpr = 0;
820 #else
821 lcr8(0);
822 #endif
823 x86_enable_intr();
824 splx(s);
825 x86_errata();
826
827 aprint_debug_dev(ci->ci_dev, "running\n");
828 }
829
830 #if defined(DDB)
831
832 #include <ddb/db_output.h>
833 #include <machine/db_machdep.h>
834
835 /*
836 * Dump CPU information from ddb.
837 */
838 void
839 cpu_debug_dump(void)
840 {
841 struct cpu_info *ci;
842 CPU_INFO_ITERATOR cii;
843
844 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
845 for (CPU_INFO_FOREACH(cii, ci)) {
846 db_printf("%p %s %ld %x %x %10p %10p\n",
847 ci,
848 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
849 (long)ci->ci_cpuid,
850 ci->ci_flags, ci->ci_ipis,
851 ci->ci_curlwp,
852 ci->ci_fpcurlwp);
853 }
854 }
855 #endif
856
857 static void
858 cpu_copy_trampoline(void)
859 {
860 /*
861 * Copy boot code.
862 */
863 extern u_char cpu_spinup_trampoline[];
864 extern u_char cpu_spinup_trampoline_end[];
865
866 vaddr_t mp_trampoline_vaddr;
867
868 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
869 UVM_KMF_VAONLY);
870
871 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
872 VM_PROT_READ | VM_PROT_WRITE, 0);
873 pmap_update(pmap_kernel());
874 memcpy((void *)mp_trampoline_vaddr,
875 cpu_spinup_trampoline,
876 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
877
878 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
879 pmap_update(pmap_kernel());
880 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
881 }
882
883 #ifdef i386
884 static void
885 tss_init(struct i386tss *tss, void *stack, void *func)
886 {
887 KASSERT(curcpu()->ci_pmap == pmap_kernel());
888
889 memset(tss, 0, sizeof *tss);
890 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
891 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
892 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
893 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
894 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
895 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
896 /* %cr3 contains the value associated to pmap_kernel */
897 tss->tss_cr3 = rcr3();
898 tss->tss_esp = (int)((char *)stack + USPACE - 16);
899 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
900 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
901 tss->__tss_eip = (int)func;
902 }
903
904 /* XXX */
905 #define IDTVEC(name) __CONCAT(X, name)
906 typedef void (vector)(void);
907 extern vector IDTVEC(tss_trap08);
908 #ifdef DDB
909 extern vector Xintrddbipi;
910 extern int ddb_vec;
911 #endif
912
913 static void
914 cpu_set_tss_gates(struct cpu_info *ci)
915 {
916 struct segment_descriptor sd;
917
918 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
919 UVM_KMF_WIRED);
920 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
921 IDTVEC(tss_trap08));
922 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
923 SDT_SYS386TSS, SEL_KPL, 0, 0);
924 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
925 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
926 GSEL(GTRAPTSS_SEL, SEL_KPL));
927
928 #if defined(DDB)
929 /*
930 * Set up separate handler for the DDB IPI, so that it doesn't
931 * stomp on a possibly corrupted stack.
932 *
933 * XXX overwriting the gate set in db_machine_init.
934 * Should rearrange the code so that it's set only once.
935 */
936 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
937 UVM_KMF_WIRED);
938 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
939
940 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
941 SDT_SYS386TSS, SEL_KPL, 0, 0);
942 ci->ci_gdt[GIPITSS_SEL].sd = sd;
943
944 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
945 GSEL(GIPITSS_SEL, SEL_KPL));
946 #endif
947 }
948 #else
949 static void
950 cpu_set_tss_gates(struct cpu_info *ci)
951 {
952
953 }
954 #endif /* i386 */
955
956 int
957 mp_cpu_start(struct cpu_info *ci, paddr_t target)
958 {
959 unsigned short dwordptr[2];
960 int error;
961
962 /*
963 * Bootstrap code must be addressable in real mode
964 * and it must be page aligned.
965 */
966 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
967
968 /*
969 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
970 */
971
972 outb(IO_RTC, NVRAM_RESET);
973 outb(IO_RTC+1, NVRAM_RESET_JUMP);
974
975 /*
976 * "and the warm reset vector (DWORD based at 40:67) to point
977 * to the AP startup code ..."
978 */
979
980 dwordptr[0] = 0;
981 dwordptr[1] = target >> 4;
982
983 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
984
985 if ((cpu_feature[0] & CPUID_APIC) == 0) {
986 aprint_error("mp_cpu_start: CPU does not have APIC\n");
987 return ENODEV;
988 }
989
990 /*
991 * ... prior to executing the following sequence:". We'll also add in
992 * local cache flush, in case the BIOS has left the AP with its cache
993 * disabled. It may not be able to cope with MP coherency.
994 */
995 wbinvd();
996
997 if (ci->ci_flags & CPUF_AP) {
998 error = x86_ipi_init(ci->ci_cpuid);
999 if (error != 0) {
1000 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1001 __func__);
1002 return error;
1003 }
1004 i8254_delay(10000);
1005
1006 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1007 if (error != 0) {
1008 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1009 __func__);
1010 return error;
1011 }
1012 i8254_delay(200);
1013
1014 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1015 if (error != 0) {
1016 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1017 __func__);
1018 return error;
1019 }
1020 i8254_delay(200);
1021 }
1022
1023 return 0;
1024 }
1025
1026 void
1027 mp_cpu_start_cleanup(struct cpu_info *ci)
1028 {
1029 /*
1030 * Ensure the NVRAM reset byte contains something vaguely sane.
1031 */
1032
1033 outb(IO_RTC, NVRAM_RESET);
1034 outb(IO_RTC+1, NVRAM_RESET_RST);
1035 }
1036
1037 #ifdef __x86_64__
1038 typedef void (vector)(void);
1039 extern vector Xsyscall, Xsyscall32;
1040 #endif
1041
1042 void
1043 cpu_init_msrs(struct cpu_info *ci, bool full)
1044 {
1045 #ifdef __x86_64__
1046 wrmsr(MSR_STAR,
1047 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1048 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1049 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1050 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1051 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1052
1053 if (full) {
1054 wrmsr(MSR_FSBASE, 0);
1055 wrmsr(MSR_GSBASE, (uint64_t)ci);
1056 wrmsr(MSR_KERNELGSBASE, 0);
1057 }
1058 #endif /* __x86_64__ */
1059
1060 if (cpu_feature[2] & CPUID_NOX)
1061 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1062 }
1063
1064 void
1065 cpu_offline_md(void)
1066 {
1067 int s;
1068
1069 s = splhigh();
1070 #ifdef i386
1071 #if NNPX > 0
1072 npxsave_cpu(true);
1073 #endif
1074 #else
1075 fpusave_cpu(true);
1076 #endif
1077 splx(s);
1078 }
1079
1080 /* XXX joerg restructure and restart CPUs individually */
1081 static bool
1082 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1083 {
1084 struct cpu_softc *sc = device_private(dv);
1085 struct cpu_info *ci = sc->sc_info;
1086 int err;
1087
1088 if (ci->ci_flags & CPUF_PRIMARY)
1089 return true;
1090 if (ci->ci_data.cpu_idlelwp == NULL)
1091 return true;
1092 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1093 return true;
1094
1095 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1096
1097 if (sc->sc_wasonline) {
1098 mutex_enter(&cpu_lock);
1099 err = cpu_setstate(ci, false);
1100 mutex_exit(&cpu_lock);
1101
1102 if (err)
1103 return false;
1104 }
1105
1106 return true;
1107 }
1108
1109 static bool
1110 cpu_resume(device_t dv, const pmf_qual_t *qual)
1111 {
1112 struct cpu_softc *sc = device_private(dv);
1113 struct cpu_info *ci = sc->sc_info;
1114 int err = 0;
1115
1116 if (ci->ci_flags & CPUF_PRIMARY)
1117 return true;
1118 if (ci->ci_data.cpu_idlelwp == NULL)
1119 return true;
1120 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1121 return true;
1122
1123 if (sc->sc_wasonline) {
1124 mutex_enter(&cpu_lock);
1125 err = cpu_setstate(ci, true);
1126 mutex_exit(&cpu_lock);
1127 }
1128
1129 return err == 0;
1130 }
1131
1132 static bool
1133 cpu_shutdown(device_t dv, int how)
1134 {
1135 return cpu_suspend(dv, NULL);
1136 }
1137
1138 void
1139 cpu_get_tsc_freq(struct cpu_info *ci)
1140 {
1141 uint64_t last_tsc;
1142
1143 if (cpu_hascounter()) {
1144 last_tsc = cpu_counter_serializing();
1145 i8254_delay(100000);
1146 ci->ci_data.cpu_cc_freq =
1147 (cpu_counter_serializing() - last_tsc) * 10;
1148 }
1149 }
1150
1151 void
1152 x86_cpu_idle_mwait(void)
1153 {
1154 struct cpu_info *ci = curcpu();
1155
1156 KASSERT(ci->ci_ilevel == IPL_NONE);
1157
1158 x86_monitor(&ci->ci_want_resched, 0, 0);
1159 if (__predict_false(ci->ci_want_resched)) {
1160 return;
1161 }
1162 x86_mwait(0, 0);
1163 }
1164
1165 void
1166 x86_cpu_idle_halt(void)
1167 {
1168 struct cpu_info *ci = curcpu();
1169
1170 KASSERT(ci->ci_ilevel == IPL_NONE);
1171
1172 x86_disable_intr();
1173 if (!__predict_false(ci->ci_want_resched)) {
1174 x86_stihlt();
1175 } else {
1176 x86_enable_intr();
1177 }
1178 }
1179
1180 /*
1181 * Loads pmap for the current CPU.
1182 */
1183 void
1184 cpu_load_pmap(struct pmap *pmap)
1185 {
1186 #ifdef PAE
1187 int i, s;
1188 struct cpu_info *ci;
1189
1190 s = splvm(); /* just to be safe */
1191 ci = curcpu();
1192 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1193 for (i = 0 ; i < PDP_SIZE; i++) {
1194 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1195 }
1196 splx(s);
1197 tlbflush();
1198 #else /* PAE */
1199 lcr3(pmap_pdirpa(pmap, 0));
1200 #endif /* PAE */
1201 }
1202