Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.85
      1 /*	$NetBSD: cpu.c,v 1.85 2011/02/24 13:58:39 jruoho Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.85 2011/02/24 13:58:39 jruoho Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/reboot.h>
     86 
     87 #include <uvm/uvm.h>
     88 
     89 #include <machine/cpufunc.h>
     90 #include <machine/cpuvar.h>
     91 #include <machine/pmap.h>
     92 #include <machine/vmparam.h>
     93 #include <machine/mpbiosvar.h>
     94 #include <machine/pcb.h>
     95 #include <machine/specialreg.h>
     96 #include <machine/segments.h>
     97 #include <machine/gdt.h>
     98 #include <machine/mtrr.h>
     99 #include <machine/pio.h>
    100 #include <machine/cpu_counter.h>
    101 
    102 #ifdef i386
    103 #include <machine/tlog.h>
    104 #endif
    105 
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 
    110 #include <dev/ic/mc146818reg.h>
    111 #include <i386/isa/nvram.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #include "tsc.h"
    115 
    116 #if MAXCPUS > 32
    117 #error cpu_info contains 32bit bitmasks
    118 #endif
    119 
    120 int     cpu_match(device_t, cfdata_t, void *);
    121 void    cpu_attach(device_t, device_t, void *);
    122 int	cpu_rescan(device_t, const char *, const int *);
    123 void	cpu_childdetached(device_t, device_t);
    124 
    125 
    126 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    127 static bool	cpu_resume(device_t, const pmf_qual_t *);
    128 static bool	cpu_shutdown(device_t, int);
    129 
    130 struct cpu_softc {
    131 	device_t sc_dev;		/* device tree glue */
    132 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133 	bool sc_wasonline;
    134 };
    135 
    136 int mp_cpu_start(struct cpu_info *, paddr_t);
    137 void mp_cpu_start_cleanup(struct cpu_info *);
    138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139 					    mp_cpu_start_cleanup };
    140 
    141 
    142 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    143     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    144 
    145 /*
    146  * Statically-allocated CPU info for the primary CPU (or the only
    147  * CPU, on uniprocessors).  The CPU info list is initialized to
    148  * point at it.
    149  */
    150 #ifdef TRAPLOG
    151 struct tlog tlog_primary;
    152 #endif
    153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    154 	.ci_dev = 0,
    155 	.ci_self = &cpu_info_primary,
    156 	.ci_idepth = -1,
    157 	.ci_curlwp = &lwp0,
    158 	.ci_curldt = -1,
    159 #ifdef TRAPLOG
    160 	.ci_tlog_base = &tlog_primary,
    161 #endif /* !TRAPLOG */
    162 };
    163 
    164 struct cpu_info *cpu_info_list = &cpu_info_primary;
    165 
    166 static void	cpu_set_tss_gates(struct cpu_info *);
    167 
    168 #ifdef i386
    169 static void	tss_init(struct i386tss *, void *, void *);
    170 #endif
    171 
    172 static void	cpu_init_idle_lwp(struct cpu_info *);
    173 
    174 uint32_t cpus_attached = 0;
    175 uint32_t cpus_running = 0;
    176 
    177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    178 			  *	[0] basic features %edx
    179 			  *	[1] basic features %ecx
    180 			  *	[2] extended features %edx
    181 			  *	[3] extended features %ecx
    182 			  *	[4] VIA padlock features
    183 			  */
    184 
    185 extern char x86_64_doubleflt_stack[];
    186 
    187 bool x86_mp_online;
    188 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    189 static vaddr_t cmos_data_mapping;
    190 struct cpu_info *cpu_starting;
    191 
    192 void    	cpu_hatch(void *);
    193 static void    	cpu_boot_secondary(struct cpu_info *ci);
    194 static void    	cpu_start_secondary(struct cpu_info *ci);
    195 static void	cpu_copy_trampoline(void);
    196 
    197 /*
    198  * Runs once per boot once multiprocessor goo has been detected and
    199  * the local APIC on the boot processor has been mapped.
    200  *
    201  * Called from lapic_boot_init() (from mpbios_scan()).
    202  */
    203 void
    204 cpu_init_first(void)
    205 {
    206 
    207 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    208 	cpu_copy_trampoline();
    209 
    210 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    211 	if (cmos_data_mapping == 0)
    212 		panic("No KVA for page 0");
    213 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    214 	pmap_update(pmap_kernel());
    215 }
    216 
    217 int
    218 cpu_match(device_t parent, cfdata_t match, void *aux)
    219 {
    220 
    221 	return 1;
    222 }
    223 
    224 static void
    225 cpu_vm_init(struct cpu_info *ci)
    226 {
    227 	int ncolors = 2, i;
    228 
    229 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    230 		struct x86_cache_info *cai;
    231 		int tcolors;
    232 
    233 		cai = &ci->ci_cinfo[i];
    234 
    235 		tcolors = atop(cai->cai_totalsize);
    236 		switch(cai->cai_associativity) {
    237 		case 0xff:
    238 			tcolors = 1; /* fully associative */
    239 			break;
    240 		case 0:
    241 		case 1:
    242 			break;
    243 		default:
    244 			tcolors /= cai->cai_associativity;
    245 		}
    246 		ncolors = max(ncolors, tcolors);
    247 		/*
    248 		 * If the desired number of colors is not a power of
    249 		 * two, it won't be good.  Find the greatest power of
    250 		 * two which is an even divisor of the number of colors,
    251 		 * to preserve even coloring of pages.
    252 		 */
    253 		if (ncolors & (ncolors - 1) ) {
    254 			int try, picked = 1;
    255 			for (try = 1; try < ncolors; try *= 2) {
    256 				if (ncolors % try == 0) picked = try;
    257 			}
    258 			if (picked == 1) {
    259 				panic("desired number of cache colors %d is "
    260 			      	" > 1, but not even!", ncolors);
    261 			}
    262 			ncolors = picked;
    263 		}
    264 	}
    265 
    266 	/*
    267 	 * Knowing the size of the largest cache on this CPU, re-color
    268 	 * our pages.
    269 	 */
    270 	if (ncolors <= uvmexp.ncolors)
    271 		return;
    272 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    273 	uvm_page_recolor(ncolors);
    274 }
    275 
    276 
    277 void
    278 cpu_attach(device_t parent, device_t self, void *aux)
    279 {
    280 	struct cpu_softc *sc = device_private(self);
    281 	struct cpu_attach_args *caa = aux;
    282 	struct cpu_info *ci;
    283 	uintptr_t ptr;
    284 	int cpunum = caa->cpu_number;
    285 	static bool again;
    286 
    287 	sc->sc_dev = self;
    288 
    289 	if (cpus_attached == ~0) {
    290 		aprint_error(": increase MAXCPUS\n");
    291 		return;
    292 	}
    293 
    294 	/*
    295 	 * If we're an Application Processor, allocate a cpu_info
    296 	 * structure, otherwise use the primary's.
    297 	 */
    298 	if (caa->cpu_role == CPU_ROLE_AP) {
    299 		if ((boothowto & RB_MD1) != 0) {
    300 			aprint_error(": multiprocessor boot disabled\n");
    301 			if (!pmf_device_register(self, NULL, NULL))
    302 				aprint_error_dev(self,
    303 				    "couldn't establish power handler\n");
    304 			return;
    305 		}
    306 		aprint_naive(": Application Processor\n");
    307 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    308 		    KM_SLEEP);
    309 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    310 		ci->ci_curldt = -1;
    311 #ifdef TRAPLOG
    312 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    313 #endif
    314 	} else {
    315 		aprint_naive(": %s Processor\n",
    316 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    317 		ci = &cpu_info_primary;
    318 		if (cpunum != lapic_cpu_number()) {
    319 			/* XXX should be done earlier. */
    320 			uint32_t reg;
    321 			aprint_verbose("\n");
    322 			aprint_verbose_dev(self, "running CPU at apic %d"
    323 			    " instead of at expected %d", lapic_cpu_number(),
    324 			    cpunum);
    325 			reg = i82489_readreg(LAPIC_ID);
    326 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    327 			    (cpunum << LAPIC_ID_SHIFT));
    328 		}
    329 		if (cpunum != lapic_cpu_number()) {
    330 			aprint_error_dev(self, "unable to reset apic id\n");
    331 		}
    332 	}
    333 
    334 	ci->ci_self = ci;
    335 	sc->sc_info = ci;
    336 	ci->ci_dev = self;
    337 	ci->ci_acpiid = caa->cpu_id;
    338 	ci->ci_cpuid = caa->cpu_number;
    339 	ci->ci_func = caa->cpu_func;
    340 
    341 	/* Must be before mi_cpu_attach(). */
    342 	cpu_vm_init(ci);
    343 
    344 	if (caa->cpu_role == CPU_ROLE_AP) {
    345 		int error;
    346 
    347 		error = mi_cpu_attach(ci);
    348 		if (error != 0) {
    349 			aprint_normal("\n");
    350 			aprint_error_dev(self,
    351 			    "mi_cpu_attach failed with %d\n", error);
    352 			return;
    353 		}
    354 		cpu_init_tss(ci);
    355 	} else {
    356 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    357 	}
    358 
    359 	ci->ci_cpumask = (1 << cpu_index(ci));
    360 	pmap_reference(pmap_kernel());
    361 	ci->ci_pmap = pmap_kernel();
    362 	ci->ci_tlbstate = TLBSTATE_STALE;
    363 
    364 	/*
    365 	 * Boot processor may not be attached first, but the below
    366 	 * must be done to allow booting other processors.
    367 	 */
    368 	if (!again) {
    369 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    370 		/* Basic init. */
    371 		cpu_intr_init(ci);
    372 		cpu_get_tsc_freq(ci);
    373 		cpu_init(ci);
    374 		cpu_set_tss_gates(ci);
    375 		pmap_cpu_init_late(ci);
    376 		if (caa->cpu_role != CPU_ROLE_SP) {
    377 			/* Enable lapic. */
    378 			lapic_enable();
    379 			lapic_set_lvt();
    380 			lapic_calibrate_timer(ci);
    381 		}
    382 		/* Make sure DELAY() is initialized. */
    383 		DELAY(1);
    384 		again = true;
    385 	}
    386 
    387 	/* further PCB init done later. */
    388 
    389 	switch (caa->cpu_role) {
    390 	case CPU_ROLE_SP:
    391 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    392 		cpu_identify(ci);
    393 		x86_errata();
    394 		x86_cpu_idle_init();
    395 		break;
    396 
    397 	case CPU_ROLE_BP:
    398 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    399 		cpu_identify(ci);
    400 		x86_errata();
    401 		x86_cpu_idle_init();
    402 		break;
    403 
    404 	case CPU_ROLE_AP:
    405 		/*
    406 		 * report on an AP
    407 		 */
    408 		cpu_intr_init(ci);
    409 		gdt_alloc_cpu(ci);
    410 		cpu_set_tss_gates(ci);
    411 		pmap_cpu_init_early(ci);
    412 		pmap_cpu_init_late(ci);
    413 		cpu_start_secondary(ci);
    414 		if (ci->ci_flags & CPUF_PRESENT) {
    415 			struct cpu_info *tmp;
    416 
    417 			cpu_identify(ci);
    418 			tmp = cpu_info_list;
    419 			while (tmp->ci_next)
    420 				tmp = tmp->ci_next;
    421 
    422 			tmp->ci_next = ci;
    423 		}
    424 		break;
    425 
    426 	default:
    427 		aprint_normal("\n");
    428 		panic("unknown processor type??\n");
    429 	}
    430 
    431 	pat_init(ci);
    432 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    433 
    434 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    435 		aprint_error_dev(self, "couldn't establish power handler\n");
    436 
    437 	if (mp_verbose) {
    438 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    439 		struct pcb *pcb = lwp_getpcb(l);
    440 
    441 		aprint_verbose_dev(self,
    442 		    "idle lwp at %p, idle sp at %p\n",
    443 		    l,
    444 #ifdef i386
    445 		    (void *)pcb->pcb_esp
    446 #else
    447 		    (void *)pcb->pcb_rsp
    448 #endif
    449 		);
    450 	}
    451 
    452 	cpu_rescan(self, NULL, NULL);
    453 }
    454 
    455 int
    456 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    457 {
    458 	struct cpu_softc *sc = device_private(self);
    459 	struct cpufeature_attach_args cfaa;
    460 	struct cpu_info *ci = sc->sc_info;
    461 
    462 	memset(&cfaa, 0, sizeof(cfaa));
    463 	cfaa.ci = ci;
    464 
    465 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    466 
    467 		if (ci->ci_frequency == NULL) {
    468 			cfaa.name = "est";
    469 			ci->ci_frequency = config_found_ia(self,
    470 			    "cpufeaturebus", &cfaa, NULL);
    471 		}
    472 
    473 		if (ci->ci_frequency == NULL) {
    474 			cfaa.name = "powernow";
    475 			ci->ci_frequency = config_found_ia(self,
    476 			    "cpufeaturebus", &cfaa, NULL);
    477 		}
    478 
    479 		if (ci->ci_padlock == NULL) {
    480 			cfaa.name = "padlock";
    481 			ci->ci_padlock = config_found_ia(self,
    482 			    "cpufeaturebus", &cfaa, NULL);
    483 		}
    484 
    485 		if (ci->ci_tempsensor == NULL) {
    486 			cfaa.name = "coretemp";
    487 			ci->ci_tempsensor = config_found_ia(self,
    488 			    "cpufeaturebus", &cfaa, NULL);
    489 		}
    490 
    491 		if (ci->ci_tempsensor == NULL) {
    492 			cfaa.name = "viac7temp";
    493 			ci->ci_tempsensor = config_found_ia(self,
    494 			    "cpufeaturebus", &cfaa, NULL);
    495 		}
    496 	}
    497 
    498 	return 0;
    499 }
    500 
    501 void
    502 cpu_childdetached(device_t self, device_t child)
    503 {
    504 	struct cpu_softc *sc = device_private(self);
    505 	struct cpu_info *ci = sc->sc_info;
    506 
    507 	if (ci->ci_frequency == child)
    508 		ci->ci_frequency = NULL;
    509 
    510 	if (ci->ci_padlock == child)
    511 		ci->ci_padlock = NULL;
    512 
    513 	if (ci->ci_tempsensor == child)
    514 		ci->ci_tempsensor = NULL;
    515 }
    516 
    517 /*
    518  * Initialize the processor appropriately.
    519  */
    520 
    521 void
    522 cpu_init(struct cpu_info *ci)
    523 {
    524 
    525 	lcr0(rcr0() | CR0_WP);
    526 
    527 	/*
    528 	 * On a P6 or above, enable global TLB caching if the
    529 	 * hardware supports it.
    530 	 */
    531 	if (cpu_feature[0] & CPUID_PGE)
    532 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    533 
    534 	/*
    535 	 * If we have FXSAVE/FXRESTOR, use them.
    536 	 */
    537 	if (cpu_feature[0] & CPUID_FXSR) {
    538 		lcr4(rcr4() | CR4_OSFXSR);
    539 
    540 		/*
    541 		 * If we have SSE/SSE2, enable XMM exceptions.
    542 		 */
    543 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    544 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    545 	}
    546 
    547 #ifdef MTRR
    548 	/*
    549 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    550 	 */
    551 	if (cpu_feature[0] & CPUID_MTRR) {
    552 		if ((ci->ci_flags & CPUF_AP) == 0)
    553 			i686_mtrr_init_first();
    554 		mtrr_init_cpu(ci);
    555 	}
    556 
    557 #ifdef i386
    558 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    559 		/*
    560 		 * Must be a K6-2 Step >= 7 or a K6-III.
    561 		 */
    562 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    563 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    564 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    565 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    566 				mtrr_funcs = &k6_mtrr_funcs;
    567 				k6_mtrr_init_first();
    568 				mtrr_init_cpu(ci);
    569 			}
    570 		}
    571 	}
    572 #endif	/* i386 */
    573 #endif /* MTRR */
    574 
    575 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    576 
    577 	if (ci != &cpu_info_primary) {
    578 		/* Synchronize TSC again, and check for drift. */
    579 		wbinvd();
    580 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    581 		tsc_sync_ap(ci);
    582 	} else {
    583 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    584 	}
    585 }
    586 
    587 void
    588 cpu_boot_secondary_processors(void)
    589 {
    590 	struct cpu_info *ci;
    591 	u_long i;
    592 
    593 	/* Now that we know the number of CPUs, patch the text segment. */
    594 	x86_patch(false);
    595 
    596 	for (i=0; i < maxcpus; i++) {
    597 		ci = cpu_lookup(i);
    598 		if (ci == NULL)
    599 			continue;
    600 		if (ci->ci_data.cpu_idlelwp == NULL)
    601 			continue;
    602 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    603 			continue;
    604 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    605 			continue;
    606 		cpu_boot_secondary(ci);
    607 	}
    608 
    609 	x86_mp_online = true;
    610 
    611 	/* Now that we know about the TSC, attach the timecounter. */
    612 	tsc_tc_init();
    613 
    614 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    615 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    616 }
    617 
    618 static void
    619 cpu_init_idle_lwp(struct cpu_info *ci)
    620 {
    621 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    622 	struct pcb *pcb = lwp_getpcb(l);
    623 
    624 	pcb->pcb_cr0 = rcr0();
    625 }
    626 
    627 void
    628 cpu_init_idle_lwps(void)
    629 {
    630 	struct cpu_info *ci;
    631 	u_long i;
    632 
    633 	for (i = 0; i < maxcpus; i++) {
    634 		ci = cpu_lookup(i);
    635 		if (ci == NULL)
    636 			continue;
    637 		if (ci->ci_data.cpu_idlelwp == NULL)
    638 			continue;
    639 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    640 			continue;
    641 		cpu_init_idle_lwp(ci);
    642 	}
    643 }
    644 
    645 void
    646 cpu_start_secondary(struct cpu_info *ci)
    647 {
    648 	extern paddr_t mp_pdirpa;
    649 	u_long psl;
    650 	int i;
    651 
    652 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    653 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    654 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    655 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    656 		return;
    657 	}
    658 
    659 	/*
    660 	 * Wait for it to become ready.   Setting cpu_starting opens the
    661 	 * initial gate and allows the AP to start soft initialization.
    662 	 */
    663 	KASSERT(cpu_starting == NULL);
    664 	cpu_starting = ci;
    665 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    666 #ifdef MPDEBUG
    667 		extern int cpu_trace[3];
    668 		static int otrace[3];
    669 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    670 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    671 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    672 			memcpy(otrace, cpu_trace, sizeof(otrace));
    673 		}
    674 #endif
    675 		i8254_delay(10);
    676 	}
    677 
    678 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    679 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    680 #if defined(MPDEBUG) && defined(DDB)
    681 		printf("dropping into debugger; continue from here to resume boot\n");
    682 		Debugger();
    683 #endif
    684 	} else {
    685 		/*
    686 		 * Synchronize time stamp counters. Invalidate cache and do
    687 		 * twice to try and minimize possible cache effects. Disable
    688 		 * interrupts to try and rule out any external interference.
    689 		 */
    690 		psl = x86_read_psl();
    691 		x86_disable_intr();
    692 		wbinvd();
    693 		tsc_sync_bp(ci);
    694 		x86_write_psl(psl);
    695 	}
    696 
    697 	CPU_START_CLEANUP(ci);
    698 	cpu_starting = NULL;
    699 }
    700 
    701 void
    702 cpu_boot_secondary(struct cpu_info *ci)
    703 {
    704 	int64_t drift;
    705 	u_long psl;
    706 	int i;
    707 
    708 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    709 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    710 		i8254_delay(10);
    711 	}
    712 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    713 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    714 #if defined(MPDEBUG) && defined(DDB)
    715 		printf("dropping into debugger; continue from here to resume boot\n");
    716 		Debugger();
    717 #endif
    718 	} else {
    719 		/* Synchronize TSC again, check for drift. */
    720 		drift = ci->ci_data.cpu_cc_skew;
    721 		psl = x86_read_psl();
    722 		x86_disable_intr();
    723 		wbinvd();
    724 		tsc_sync_bp(ci);
    725 		x86_write_psl(psl);
    726 		drift -= ci->ci_data.cpu_cc_skew;
    727 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    728 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    729 		tsc_sync_drift(drift);
    730 	}
    731 }
    732 
    733 /*
    734  * The CPU ends up here when its ready to run
    735  * This is called from code in mptramp.s; at this point, we are running
    736  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    737  * this processor will enter the idle loop and start looking for work.
    738  */
    739 void
    740 cpu_hatch(void *v)
    741 {
    742 	struct cpu_info *ci = (struct cpu_info *)v;
    743 	struct pcb *pcb;
    744 	int s, i;
    745 
    746 	cpu_init_msrs(ci, true);
    747 	cpu_probe(ci);
    748 
    749 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    750 	/* cpu_get_tsc_freq(ci); */
    751 
    752 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    753 
    754 	/*
    755 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    756 	 * to try and minimize possible cache effects.  Note that interrupts
    757 	 * are off at this point.
    758 	 */
    759 	wbinvd();
    760 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    761 	tsc_sync_ap(ci);
    762 
    763 	/*
    764 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    765 	 * in order to make the TSC drift as much as possible. so that
    766 	 * we can detect it later.  If not available, try 'pause'.
    767 	 * We'd like to use 'hlt', but we have interrupts off.
    768 	 */
    769 	while ((ci->ci_flags & CPUF_GO) == 0) {
    770 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    771 			x86_monitor(&ci->ci_flags, 0, 0);
    772 			if ((ci->ci_flags & CPUF_GO) != 0) {
    773 				continue;
    774 			}
    775 			x86_mwait(0, 0);
    776 		} else {
    777 			for (i = 10000; i != 0; i--) {
    778 				x86_pause();
    779 			}
    780 		}
    781 	}
    782 
    783 	/* Because the text may have been patched in x86_patch(). */
    784 	wbinvd();
    785 	x86_flush();
    786 
    787 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    788 
    789 #ifdef PAE
    790 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    791 	for (i = 0 ; i < PDP_SIZE; i++) {
    792 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    793 	}
    794 	lcr3(ci->ci_pae_l3_pdirpa);
    795 #else
    796 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    797 #endif
    798 
    799 	pcb = lwp_getpcb(curlwp);
    800 	pcb->pcb_cr3 = rcr3();
    801 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    802 	lcr0(pcb->pcb_cr0);
    803 
    804 	cpu_init_idt();
    805 	gdt_init_cpu(ci);
    806 	lapic_enable();
    807 	lapic_set_lvt();
    808 	lapic_initclocks();
    809 
    810 #ifdef i386
    811 #if NNPX > 0
    812 	npxinit(ci);
    813 #endif
    814 #else
    815 	fpuinit(ci);
    816 #endif
    817 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    818 	ltr(ci->ci_tss_sel);
    819 
    820 	cpu_init(ci);
    821 	cpu_get_tsc_freq(ci);
    822 
    823 	s = splhigh();
    824 #ifdef i386
    825 	lapic_tpr = 0;
    826 #else
    827 	lcr8(0);
    828 #endif
    829 	x86_enable_intr();
    830 	splx(s);
    831 	x86_errata();
    832 
    833 	aprint_debug_dev(ci->ci_dev, "running\n");
    834 }
    835 
    836 #if defined(DDB)
    837 
    838 #include <ddb/db_output.h>
    839 #include <machine/db_machdep.h>
    840 
    841 /*
    842  * Dump CPU information from ddb.
    843  */
    844 void
    845 cpu_debug_dump(void)
    846 {
    847 	struct cpu_info *ci;
    848 	CPU_INFO_ITERATOR cii;
    849 
    850 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    851 	for (CPU_INFO_FOREACH(cii, ci)) {
    852 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    853 		    ci,
    854 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    855 		    (long)ci->ci_cpuid,
    856 		    ci->ci_flags, ci->ci_ipis,
    857 		    ci->ci_curlwp,
    858 		    ci->ci_fpcurlwp);
    859 	}
    860 }
    861 #endif
    862 
    863 static void
    864 cpu_copy_trampoline(void)
    865 {
    866 	/*
    867 	 * Copy boot code.
    868 	 */
    869 	extern u_char cpu_spinup_trampoline[];
    870 	extern u_char cpu_spinup_trampoline_end[];
    871 
    872 	vaddr_t mp_trampoline_vaddr;
    873 
    874 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    875 	    UVM_KMF_VAONLY);
    876 
    877 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    878 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    879 	pmap_update(pmap_kernel());
    880 	memcpy((void *)mp_trampoline_vaddr,
    881 	    cpu_spinup_trampoline,
    882 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    883 
    884 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    885 	pmap_update(pmap_kernel());
    886 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    887 }
    888 
    889 #ifdef i386
    890 static void
    891 tss_init(struct i386tss *tss, void *stack, void *func)
    892 {
    893 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    894 
    895 	memset(tss, 0, sizeof *tss);
    896 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    897 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    898 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    899 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    900 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    901 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    902 	/* %cr3 contains the value associated to pmap_kernel */
    903 	tss->tss_cr3 = rcr3();
    904 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    905 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    906 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    907 	tss->__tss_eip = (int)func;
    908 }
    909 
    910 /* XXX */
    911 #define IDTVEC(name)	__CONCAT(X, name)
    912 typedef void (vector)(void);
    913 extern vector IDTVEC(tss_trap08);
    914 #ifdef DDB
    915 extern vector Xintrddbipi;
    916 extern int ddb_vec;
    917 #endif
    918 
    919 static void
    920 cpu_set_tss_gates(struct cpu_info *ci)
    921 {
    922 	struct segment_descriptor sd;
    923 
    924 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    925 	    UVM_KMF_WIRED);
    926 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    927 	    IDTVEC(tss_trap08));
    928 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    929 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    930 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    931 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    932 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    933 
    934 #if defined(DDB)
    935 	/*
    936 	 * Set up separate handler for the DDB IPI, so that it doesn't
    937 	 * stomp on a possibly corrupted stack.
    938 	 *
    939 	 * XXX overwriting the gate set in db_machine_init.
    940 	 * Should rearrange the code so that it's set only once.
    941 	 */
    942 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    943 	    UVM_KMF_WIRED);
    944 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    945 
    946 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    947 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    948 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    949 
    950 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    951 	    GSEL(GIPITSS_SEL, SEL_KPL));
    952 #endif
    953 }
    954 #else
    955 static void
    956 cpu_set_tss_gates(struct cpu_info *ci)
    957 {
    958 
    959 }
    960 #endif	/* i386 */
    961 
    962 int
    963 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    964 {
    965 	unsigned short dwordptr[2];
    966 	int error;
    967 
    968 	/*
    969 	 * Bootstrap code must be addressable in real mode
    970 	 * and it must be page aligned.
    971 	 */
    972 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    973 
    974 	/*
    975 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    976 	 */
    977 
    978 	outb(IO_RTC, NVRAM_RESET);
    979 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    980 
    981 	/*
    982 	 * "and the warm reset vector (DWORD based at 40:67) to point
    983 	 * to the AP startup code ..."
    984 	 */
    985 
    986 	dwordptr[0] = 0;
    987 	dwordptr[1] = target >> 4;
    988 
    989 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    990 
    991 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    992 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    993 		return ENODEV;
    994 	}
    995 
    996 	/*
    997 	 * ... prior to executing the following sequence:".  We'll also add in
    998 	 * local cache flush, in case the BIOS has left the AP with its cache
    999 	 * disabled.  It may not be able to cope with MP coherency.
   1000 	 */
   1001 	wbinvd();
   1002 
   1003 	if (ci->ci_flags & CPUF_AP) {
   1004 		error = x86_ipi_init(ci->ci_cpuid);
   1005 		if (error != 0) {
   1006 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1007 			    __func__);
   1008 			return error;
   1009 		}
   1010 		i8254_delay(10000);
   1011 
   1012 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1013 		if (error != 0) {
   1014 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1015 			    __func__);
   1016 			return error;
   1017 		}
   1018 		i8254_delay(200);
   1019 
   1020 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1021 		if (error != 0) {
   1022 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1023 			    __func__);
   1024 			return error;
   1025 		}
   1026 		i8254_delay(200);
   1027 	}
   1028 
   1029 	return 0;
   1030 }
   1031 
   1032 void
   1033 mp_cpu_start_cleanup(struct cpu_info *ci)
   1034 {
   1035 	/*
   1036 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1037 	 */
   1038 
   1039 	outb(IO_RTC, NVRAM_RESET);
   1040 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1041 }
   1042 
   1043 #ifdef __x86_64__
   1044 typedef void (vector)(void);
   1045 extern vector Xsyscall, Xsyscall32;
   1046 #endif
   1047 
   1048 void
   1049 cpu_init_msrs(struct cpu_info *ci, bool full)
   1050 {
   1051 #ifdef __x86_64__
   1052 	wrmsr(MSR_STAR,
   1053 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1054 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1055 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1056 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1057 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1058 
   1059 	if (full) {
   1060 		wrmsr(MSR_FSBASE, 0);
   1061 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1062 		wrmsr(MSR_KERNELGSBASE, 0);
   1063 	}
   1064 #endif	/* __x86_64__ */
   1065 
   1066 	if (cpu_feature[2] & CPUID_NOX)
   1067 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1068 }
   1069 
   1070 void
   1071 cpu_offline_md(void)
   1072 {
   1073 	int s;
   1074 
   1075 	s = splhigh();
   1076 #ifdef i386
   1077 #if NNPX > 0
   1078 	npxsave_cpu(true);
   1079 #endif
   1080 #else
   1081 	fpusave_cpu(true);
   1082 #endif
   1083 	splx(s);
   1084 }
   1085 
   1086 /* XXX joerg restructure and restart CPUs individually */
   1087 static bool
   1088 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1089 {
   1090 	struct cpu_softc *sc = device_private(dv);
   1091 	struct cpu_info *ci = sc->sc_info;
   1092 	int err;
   1093 
   1094 	if (ci->ci_flags & CPUF_PRIMARY)
   1095 		return true;
   1096 	if (ci->ci_data.cpu_idlelwp == NULL)
   1097 		return true;
   1098 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1099 		return true;
   1100 
   1101 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1102 
   1103 	if (sc->sc_wasonline) {
   1104 		mutex_enter(&cpu_lock);
   1105 		err = cpu_setstate(ci, false);
   1106 		mutex_exit(&cpu_lock);
   1107 
   1108 		if (err)
   1109 			return false;
   1110 	}
   1111 
   1112 	return true;
   1113 }
   1114 
   1115 static bool
   1116 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1117 {
   1118 	struct cpu_softc *sc = device_private(dv);
   1119 	struct cpu_info *ci = sc->sc_info;
   1120 	int err = 0;
   1121 
   1122 	if (ci->ci_flags & CPUF_PRIMARY)
   1123 		return true;
   1124 	if (ci->ci_data.cpu_idlelwp == NULL)
   1125 		return true;
   1126 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1127 		return true;
   1128 
   1129 	if (sc->sc_wasonline) {
   1130 		mutex_enter(&cpu_lock);
   1131 		err = cpu_setstate(ci, true);
   1132 		mutex_exit(&cpu_lock);
   1133 	}
   1134 
   1135 	return err == 0;
   1136 }
   1137 
   1138 static bool
   1139 cpu_shutdown(device_t dv, int how)
   1140 {
   1141 	return cpu_suspend(dv, NULL);
   1142 }
   1143 
   1144 void
   1145 cpu_get_tsc_freq(struct cpu_info *ci)
   1146 {
   1147 	uint64_t last_tsc;
   1148 
   1149 	if (cpu_hascounter()) {
   1150 		last_tsc = cpu_counter_serializing();
   1151 		i8254_delay(100000);
   1152 		ci->ci_data.cpu_cc_freq =
   1153 		    (cpu_counter_serializing() - last_tsc) * 10;
   1154 	}
   1155 }
   1156 
   1157 void
   1158 x86_cpu_idle_mwait(void)
   1159 {
   1160 	struct cpu_info *ci = curcpu();
   1161 
   1162 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1163 
   1164 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1165 	if (__predict_false(ci->ci_want_resched)) {
   1166 		return;
   1167 	}
   1168 	x86_mwait(0, 0);
   1169 }
   1170 
   1171 void
   1172 x86_cpu_idle_halt(void)
   1173 {
   1174 	struct cpu_info *ci = curcpu();
   1175 
   1176 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1177 
   1178 	x86_disable_intr();
   1179 	if (!__predict_false(ci->ci_want_resched)) {
   1180 		x86_stihlt();
   1181 	} else {
   1182 		x86_enable_intr();
   1183 	}
   1184 }
   1185 
   1186 /*
   1187  * Loads pmap for the current CPU.
   1188  */
   1189 void
   1190 cpu_load_pmap(struct pmap *pmap)
   1191 {
   1192 #ifdef PAE
   1193 	int i, s;
   1194 	struct cpu_info *ci;
   1195 
   1196 	s = splvm(); /* just to be safe */
   1197 	ci = curcpu();
   1198 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1199 	for (i = 0 ; i < PDP_SIZE; i++) {
   1200 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1201 	}
   1202 	splx(s);
   1203 	tlbflush();
   1204 #else /* PAE */
   1205 	lcr3(pmap_pdirpa(pmap, 0));
   1206 #endif /* PAE */
   1207 }
   1208