cpu.c revision 1.86 1 /* $NetBSD: cpu.c,v 1.86 2011/02/24 15:42:17 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.86 2011/02/24 15:42:17 jruoho Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70
71 #include "lapic.h"
72 #include "ioapic.h"
73
74 #ifdef i386
75 #include "npx.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kmem.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/reboot.h>
86
87 #include <uvm/uvm.h>
88
89 #include <machine/cpufunc.h>
90 #include <machine/cpuvar.h>
91 #include <machine/pmap.h>
92 #include <machine/vmparam.h>
93 #include <machine/mpbiosvar.h>
94 #include <machine/pcb.h>
95 #include <machine/specialreg.h>
96 #include <machine/segments.h>
97 #include <machine/gdt.h>
98 #include <machine/mtrr.h>
99 #include <machine/pio.h>
100 #include <machine/cpu_counter.h>
101
102 #ifdef i386
103 #include <machine/tlog.h>
104 #endif
105
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109
110 #include <dev/ic/mc146818reg.h>
111 #include <i386/isa/nvram.h>
112 #include <dev/isa/isareg.h>
113
114 #include "tsc.h"
115
116 #if MAXCPUS > 32
117 #error cpu_info contains 32bit bitmasks
118 #endif
119
120 int cpu_match(device_t, cfdata_t, void *);
121 void cpu_attach(device_t, device_t, void *);
122 int cpu_rescan(device_t, const char *, const int *);
123 void cpu_childdetached(device_t, device_t);
124
125
126 static bool cpu_suspend(device_t, const pmf_qual_t *);
127 static bool cpu_resume(device_t, const pmf_qual_t *);
128 static bool cpu_shutdown(device_t, int);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, paddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141
142 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
143 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
144
145 /*
146 * Statically-allocated CPU info for the primary CPU (or the only
147 * CPU, on uniprocessors). The CPU info list is initialized to
148 * point at it.
149 */
150 #ifdef TRAPLOG
151 struct tlog tlog_primary;
152 #endif
153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 .ci_dev = 0,
155 .ci_self = &cpu_info_primary,
156 .ci_idepth = -1,
157 .ci_curlwp = &lwp0,
158 .ci_curldt = -1,
159 #ifdef TRAPLOG
160 .ci_tlog_base = &tlog_primary,
161 #endif /* !TRAPLOG */
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165
166 static void cpu_set_tss_gates(struct cpu_info *);
167
168 #ifdef i386
169 static void tss_init(struct i386tss *, void *, void *);
170 #endif
171
172 static void cpu_init_idle_lwp(struct cpu_info *);
173
174 uint32_t cpus_attached = 0;
175 uint32_t cpus_running = 0;
176
177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 * [0] basic features %edx
179 * [1] basic features %ecx
180 * [2] extended features %edx
181 * [3] extended features %ecx
182 * [4] VIA padlock features
183 */
184
185 extern char x86_64_doubleflt_stack[];
186
187 bool x86_mp_online;
188 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189 static vaddr_t cmos_data_mapping;
190 struct cpu_info *cpu_starting;
191
192 void cpu_hatch(void *);
193 static void cpu_boot_secondary(struct cpu_info *ci);
194 static void cpu_start_secondary(struct cpu_info *ci);
195 static void cpu_copy_trampoline(void);
196
197 /*
198 * Runs once per boot once multiprocessor goo has been detected and
199 * the local APIC on the boot processor has been mapped.
200 *
201 * Called from lapic_boot_init() (from mpbios_scan()).
202 */
203 void
204 cpu_init_first(void)
205 {
206
207 cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 cpu_copy_trampoline();
209
210 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
211 if (cmos_data_mapping == 0)
212 panic("No KVA for page 0");
213 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
214 pmap_update(pmap_kernel());
215 }
216
217 int
218 cpu_match(device_t parent, cfdata_t match, void *aux)
219 {
220
221 return 1;
222 }
223
224 static void
225 cpu_vm_init(struct cpu_info *ci)
226 {
227 int ncolors = 2, i;
228
229 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
230 struct x86_cache_info *cai;
231 int tcolors;
232
233 cai = &ci->ci_cinfo[i];
234
235 tcolors = atop(cai->cai_totalsize);
236 switch(cai->cai_associativity) {
237 case 0xff:
238 tcolors = 1; /* fully associative */
239 break;
240 case 0:
241 case 1:
242 break;
243 default:
244 tcolors /= cai->cai_associativity;
245 }
246 ncolors = max(ncolors, tcolors);
247 /*
248 * If the desired number of colors is not a power of
249 * two, it won't be good. Find the greatest power of
250 * two which is an even divisor of the number of colors,
251 * to preserve even coloring of pages.
252 */
253 if (ncolors & (ncolors - 1) ) {
254 int try, picked = 1;
255 for (try = 1; try < ncolors; try *= 2) {
256 if (ncolors % try == 0) picked = try;
257 }
258 if (picked == 1) {
259 panic("desired number of cache colors %d is "
260 " > 1, but not even!", ncolors);
261 }
262 ncolors = picked;
263 }
264 }
265
266 /*
267 * Knowing the size of the largest cache on this CPU, re-color
268 * our pages.
269 */
270 if (ncolors <= uvmexp.ncolors)
271 return;
272 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
273 uvm_page_recolor(ncolors);
274 }
275
276
277 void
278 cpu_attach(device_t parent, device_t self, void *aux)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpu_attach_args *caa = aux;
282 struct cpu_info *ci;
283 uintptr_t ptr;
284 int cpunum = caa->cpu_number;
285 static bool again;
286
287 sc->sc_dev = self;
288
289 if (cpus_attached == ~0) {
290 aprint_error(": increase MAXCPUS\n");
291 return;
292 }
293
294 /*
295 * If we're an Application Processor, allocate a cpu_info
296 * structure, otherwise use the primary's.
297 */
298 if (caa->cpu_role == CPU_ROLE_AP) {
299 if ((boothowto & RB_MD1) != 0) {
300 aprint_error(": multiprocessor boot disabled\n");
301 if (!pmf_device_register(self, NULL, NULL))
302 aprint_error_dev(self,
303 "couldn't establish power handler\n");
304 return;
305 }
306 aprint_naive(": Application Processor\n");
307 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
308 KM_SLEEP);
309 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
310 ci->ci_curldt = -1;
311 #ifdef TRAPLOG
312 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
313 #endif
314 } else {
315 aprint_naive(": %s Processor\n",
316 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
317 ci = &cpu_info_primary;
318 if (cpunum != lapic_cpu_number()) {
319 /* XXX should be done earlier. */
320 uint32_t reg;
321 aprint_verbose("\n");
322 aprint_verbose_dev(self, "running CPU at apic %d"
323 " instead of at expected %d", lapic_cpu_number(),
324 cpunum);
325 reg = i82489_readreg(LAPIC_ID);
326 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
327 (cpunum << LAPIC_ID_SHIFT));
328 }
329 if (cpunum != lapic_cpu_number()) {
330 aprint_error_dev(self, "unable to reset apic id\n");
331 }
332 }
333
334 ci->ci_self = ci;
335 sc->sc_info = ci;
336 ci->ci_dev = self;
337 ci->ci_acpiid = caa->cpu_id;
338 ci->ci_cpuid = caa->cpu_number;
339 ci->ci_func = caa->cpu_func;
340
341 /* Must be before mi_cpu_attach(). */
342 cpu_vm_init(ci);
343
344 if (caa->cpu_role == CPU_ROLE_AP) {
345 int error;
346
347 error = mi_cpu_attach(ci);
348 if (error != 0) {
349 aprint_normal("\n");
350 aprint_error_dev(self,
351 "mi_cpu_attach failed with %d\n", error);
352 return;
353 }
354 cpu_init_tss(ci);
355 } else {
356 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
357 }
358
359 ci->ci_cpumask = (1 << cpu_index(ci));
360 pmap_reference(pmap_kernel());
361 ci->ci_pmap = pmap_kernel();
362 ci->ci_tlbstate = TLBSTATE_STALE;
363
364 /*
365 * Boot processor may not be attached first, but the below
366 * must be done to allow booting other processors.
367 */
368 if (!again) {
369 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
370 /* Basic init. */
371 cpu_intr_init(ci);
372 cpu_get_tsc_freq(ci);
373 cpu_init(ci);
374 cpu_set_tss_gates(ci);
375 pmap_cpu_init_late(ci);
376 if (caa->cpu_role != CPU_ROLE_SP) {
377 /* Enable lapic. */
378 lapic_enable();
379 lapic_set_lvt();
380 lapic_calibrate_timer(ci);
381 }
382 /* Make sure DELAY() is initialized. */
383 DELAY(1);
384 again = true;
385 }
386
387 /* further PCB init done later. */
388
389 switch (caa->cpu_role) {
390 case CPU_ROLE_SP:
391 atomic_or_32(&ci->ci_flags, CPUF_SP);
392 cpu_identify(ci);
393 x86_errata();
394 x86_cpu_idle_init();
395 break;
396
397 case CPU_ROLE_BP:
398 atomic_or_32(&ci->ci_flags, CPUF_BSP);
399 cpu_identify(ci);
400 x86_errata();
401 x86_cpu_idle_init();
402 break;
403
404 case CPU_ROLE_AP:
405 /*
406 * report on an AP
407 */
408 cpu_intr_init(ci);
409 gdt_alloc_cpu(ci);
410 cpu_set_tss_gates(ci);
411 pmap_cpu_init_early(ci);
412 pmap_cpu_init_late(ci);
413 cpu_start_secondary(ci);
414 if (ci->ci_flags & CPUF_PRESENT) {
415 struct cpu_info *tmp;
416
417 cpu_identify(ci);
418 tmp = cpu_info_list;
419 while (tmp->ci_next)
420 tmp = tmp->ci_next;
421
422 tmp->ci_next = ci;
423 }
424 break;
425
426 default:
427 aprint_normal("\n");
428 panic("unknown processor type??\n");
429 }
430
431 pat_init(ci);
432 atomic_or_32(&cpus_attached, ci->ci_cpumask);
433
434 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
435 aprint_error_dev(self, "couldn't establish power handler\n");
436
437 if (mp_verbose) {
438 struct lwp *l = ci->ci_data.cpu_idlelwp;
439 struct pcb *pcb = lwp_getpcb(l);
440
441 aprint_verbose_dev(self,
442 "idle lwp at %p, idle sp at %p\n",
443 l,
444 #ifdef i386
445 (void *)pcb->pcb_esp
446 #else
447 (void *)pcb->pcb_rsp
448 #endif
449 );
450 }
451
452 cpu_rescan(self, NULL, NULL);
453 }
454
455 int
456 cpu_rescan(device_t self, const char *ifattr, const int *locators)
457 {
458 struct cpu_softc *sc = device_private(self);
459 struct cpufeature_attach_args cfaa;
460 struct cpu_info *ci = sc->sc_info;
461
462 memset(&cfaa, 0, sizeof(cfaa));
463 cfaa.ci = ci;
464
465 if (ifattr_match(ifattr, "cpufeaturebus")) {
466
467 if (ci->ci_frequency == NULL) {
468 cfaa.name = "frequency";
469 ci->ci_frequency = config_found_ia(self,
470 "cpufeaturebus", &cfaa, NULL);
471 }
472
473 if (ci->ci_padlock == NULL) {
474 cfaa.name = "padlock";
475 ci->ci_padlock = config_found_ia(self,
476 "cpufeaturebus", &cfaa, NULL);
477 }
478
479 if (ci->ci_temperature == NULL) {
480 cfaa.name = "temperature";
481 ci->ci_temperature = config_found_ia(self,
482 "cpufeaturebus", &cfaa, NULL);
483 }
484 }
485
486 return 0;
487 }
488
489 void
490 cpu_childdetached(device_t self, device_t child)
491 {
492 struct cpu_softc *sc = device_private(self);
493 struct cpu_info *ci = sc->sc_info;
494
495 if (ci->ci_frequency == child)
496 ci->ci_frequency = NULL;
497
498 if (ci->ci_padlock == child)
499 ci->ci_padlock = NULL;
500
501 if (ci->ci_temperature == child)
502 ci->ci_temperature = NULL;
503 }
504
505 /*
506 * Initialize the processor appropriately.
507 */
508
509 void
510 cpu_init(struct cpu_info *ci)
511 {
512
513 lcr0(rcr0() | CR0_WP);
514
515 /*
516 * On a P6 or above, enable global TLB caching if the
517 * hardware supports it.
518 */
519 if (cpu_feature[0] & CPUID_PGE)
520 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
521
522 /*
523 * If we have FXSAVE/FXRESTOR, use them.
524 */
525 if (cpu_feature[0] & CPUID_FXSR) {
526 lcr4(rcr4() | CR4_OSFXSR);
527
528 /*
529 * If we have SSE/SSE2, enable XMM exceptions.
530 */
531 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
532 lcr4(rcr4() | CR4_OSXMMEXCPT);
533 }
534
535 #ifdef MTRR
536 /*
537 * On a P6 or above, initialize MTRR's if the hardware supports them.
538 */
539 if (cpu_feature[0] & CPUID_MTRR) {
540 if ((ci->ci_flags & CPUF_AP) == 0)
541 i686_mtrr_init_first();
542 mtrr_init_cpu(ci);
543 }
544
545 #ifdef i386
546 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
547 /*
548 * Must be a K6-2 Step >= 7 or a K6-III.
549 */
550 if (CPUID2FAMILY(ci->ci_signature) == 5) {
551 if (CPUID2MODEL(ci->ci_signature) > 8 ||
552 (CPUID2MODEL(ci->ci_signature) == 8 &&
553 CPUID2STEPPING(ci->ci_signature) >= 7)) {
554 mtrr_funcs = &k6_mtrr_funcs;
555 k6_mtrr_init_first();
556 mtrr_init_cpu(ci);
557 }
558 }
559 }
560 #endif /* i386 */
561 #endif /* MTRR */
562
563 atomic_or_32(&cpus_running, ci->ci_cpumask);
564
565 if (ci != &cpu_info_primary) {
566 /* Synchronize TSC again, and check for drift. */
567 wbinvd();
568 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
569 tsc_sync_ap(ci);
570 } else {
571 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
572 }
573 }
574
575 void
576 cpu_boot_secondary_processors(void)
577 {
578 struct cpu_info *ci;
579 u_long i;
580
581 /* Now that we know the number of CPUs, patch the text segment. */
582 x86_patch(false);
583
584 for (i=0; i < maxcpus; i++) {
585 ci = cpu_lookup(i);
586 if (ci == NULL)
587 continue;
588 if (ci->ci_data.cpu_idlelwp == NULL)
589 continue;
590 if ((ci->ci_flags & CPUF_PRESENT) == 0)
591 continue;
592 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
593 continue;
594 cpu_boot_secondary(ci);
595 }
596
597 x86_mp_online = true;
598
599 /* Now that we know about the TSC, attach the timecounter. */
600 tsc_tc_init();
601
602 /* Enable zeroing of pages in the idle loop if we have SSE2. */
603 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
604 }
605
606 static void
607 cpu_init_idle_lwp(struct cpu_info *ci)
608 {
609 struct lwp *l = ci->ci_data.cpu_idlelwp;
610 struct pcb *pcb = lwp_getpcb(l);
611
612 pcb->pcb_cr0 = rcr0();
613 }
614
615 void
616 cpu_init_idle_lwps(void)
617 {
618 struct cpu_info *ci;
619 u_long i;
620
621 for (i = 0; i < maxcpus; i++) {
622 ci = cpu_lookup(i);
623 if (ci == NULL)
624 continue;
625 if (ci->ci_data.cpu_idlelwp == NULL)
626 continue;
627 if ((ci->ci_flags & CPUF_PRESENT) == 0)
628 continue;
629 cpu_init_idle_lwp(ci);
630 }
631 }
632
633 void
634 cpu_start_secondary(struct cpu_info *ci)
635 {
636 extern paddr_t mp_pdirpa;
637 u_long psl;
638 int i;
639
640 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
641 atomic_or_32(&ci->ci_flags, CPUF_AP);
642 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
643 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
644 return;
645 }
646
647 /*
648 * Wait for it to become ready. Setting cpu_starting opens the
649 * initial gate and allows the AP to start soft initialization.
650 */
651 KASSERT(cpu_starting == NULL);
652 cpu_starting = ci;
653 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
654 #ifdef MPDEBUG
655 extern int cpu_trace[3];
656 static int otrace[3];
657 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
658 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
659 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
660 memcpy(otrace, cpu_trace, sizeof(otrace));
661 }
662 #endif
663 i8254_delay(10);
664 }
665
666 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
667 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
668 #if defined(MPDEBUG) && defined(DDB)
669 printf("dropping into debugger; continue from here to resume boot\n");
670 Debugger();
671 #endif
672 } else {
673 /*
674 * Synchronize time stamp counters. Invalidate cache and do
675 * twice to try and minimize possible cache effects. Disable
676 * interrupts to try and rule out any external interference.
677 */
678 psl = x86_read_psl();
679 x86_disable_intr();
680 wbinvd();
681 tsc_sync_bp(ci);
682 x86_write_psl(psl);
683 }
684
685 CPU_START_CLEANUP(ci);
686 cpu_starting = NULL;
687 }
688
689 void
690 cpu_boot_secondary(struct cpu_info *ci)
691 {
692 int64_t drift;
693 u_long psl;
694 int i;
695
696 atomic_or_32(&ci->ci_flags, CPUF_GO);
697 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
698 i8254_delay(10);
699 }
700 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
701 aprint_error_dev(ci->ci_dev, "failed to start\n");
702 #if defined(MPDEBUG) && defined(DDB)
703 printf("dropping into debugger; continue from here to resume boot\n");
704 Debugger();
705 #endif
706 } else {
707 /* Synchronize TSC again, check for drift. */
708 drift = ci->ci_data.cpu_cc_skew;
709 psl = x86_read_psl();
710 x86_disable_intr();
711 wbinvd();
712 tsc_sync_bp(ci);
713 x86_write_psl(psl);
714 drift -= ci->ci_data.cpu_cc_skew;
715 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
716 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
717 tsc_sync_drift(drift);
718 }
719 }
720
721 /*
722 * The CPU ends up here when its ready to run
723 * This is called from code in mptramp.s; at this point, we are running
724 * in the idle pcb/idle stack of the new CPU. When this function returns,
725 * this processor will enter the idle loop and start looking for work.
726 */
727 void
728 cpu_hatch(void *v)
729 {
730 struct cpu_info *ci = (struct cpu_info *)v;
731 struct pcb *pcb;
732 int s, i;
733
734 cpu_init_msrs(ci, true);
735 cpu_probe(ci);
736
737 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
738 /* cpu_get_tsc_freq(ci); */
739
740 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
741
742 /*
743 * Synchronize time stamp counters. Invalidate cache and do twice
744 * to try and minimize possible cache effects. Note that interrupts
745 * are off at this point.
746 */
747 wbinvd();
748 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
749 tsc_sync_ap(ci);
750
751 /*
752 * Wait to be brought online. Use 'monitor/mwait' if available,
753 * in order to make the TSC drift as much as possible. so that
754 * we can detect it later. If not available, try 'pause'.
755 * We'd like to use 'hlt', but we have interrupts off.
756 */
757 while ((ci->ci_flags & CPUF_GO) == 0) {
758 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
759 x86_monitor(&ci->ci_flags, 0, 0);
760 if ((ci->ci_flags & CPUF_GO) != 0) {
761 continue;
762 }
763 x86_mwait(0, 0);
764 } else {
765 for (i = 10000; i != 0; i--) {
766 x86_pause();
767 }
768 }
769 }
770
771 /* Because the text may have been patched in x86_patch(). */
772 wbinvd();
773 x86_flush();
774
775 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
776
777 #ifdef PAE
778 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
779 for (i = 0 ; i < PDP_SIZE; i++) {
780 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
781 }
782 lcr3(ci->ci_pae_l3_pdirpa);
783 #else
784 lcr3(pmap_pdirpa(pmap_kernel(), 0));
785 #endif
786
787 pcb = lwp_getpcb(curlwp);
788 pcb->pcb_cr3 = rcr3();
789 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
790 lcr0(pcb->pcb_cr0);
791
792 cpu_init_idt();
793 gdt_init_cpu(ci);
794 lapic_enable();
795 lapic_set_lvt();
796 lapic_initclocks();
797
798 #ifdef i386
799 #if NNPX > 0
800 npxinit(ci);
801 #endif
802 #else
803 fpuinit(ci);
804 #endif
805 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
806 ltr(ci->ci_tss_sel);
807
808 cpu_init(ci);
809 cpu_get_tsc_freq(ci);
810
811 s = splhigh();
812 #ifdef i386
813 lapic_tpr = 0;
814 #else
815 lcr8(0);
816 #endif
817 x86_enable_intr();
818 splx(s);
819 x86_errata();
820
821 aprint_debug_dev(ci->ci_dev, "running\n");
822 }
823
824 #if defined(DDB)
825
826 #include <ddb/db_output.h>
827 #include <machine/db_machdep.h>
828
829 /*
830 * Dump CPU information from ddb.
831 */
832 void
833 cpu_debug_dump(void)
834 {
835 struct cpu_info *ci;
836 CPU_INFO_ITERATOR cii;
837
838 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
839 for (CPU_INFO_FOREACH(cii, ci)) {
840 db_printf("%p %s %ld %x %x %10p %10p\n",
841 ci,
842 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
843 (long)ci->ci_cpuid,
844 ci->ci_flags, ci->ci_ipis,
845 ci->ci_curlwp,
846 ci->ci_fpcurlwp);
847 }
848 }
849 #endif
850
851 static void
852 cpu_copy_trampoline(void)
853 {
854 /*
855 * Copy boot code.
856 */
857 extern u_char cpu_spinup_trampoline[];
858 extern u_char cpu_spinup_trampoline_end[];
859
860 vaddr_t mp_trampoline_vaddr;
861
862 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
863 UVM_KMF_VAONLY);
864
865 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
866 VM_PROT_READ | VM_PROT_WRITE, 0);
867 pmap_update(pmap_kernel());
868 memcpy((void *)mp_trampoline_vaddr,
869 cpu_spinup_trampoline,
870 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
871
872 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
873 pmap_update(pmap_kernel());
874 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
875 }
876
877 #ifdef i386
878 static void
879 tss_init(struct i386tss *tss, void *stack, void *func)
880 {
881 KASSERT(curcpu()->ci_pmap == pmap_kernel());
882
883 memset(tss, 0, sizeof *tss);
884 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
885 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
886 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
887 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
888 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
889 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
890 /* %cr3 contains the value associated to pmap_kernel */
891 tss->tss_cr3 = rcr3();
892 tss->tss_esp = (int)((char *)stack + USPACE - 16);
893 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
894 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
895 tss->__tss_eip = (int)func;
896 }
897
898 /* XXX */
899 #define IDTVEC(name) __CONCAT(X, name)
900 typedef void (vector)(void);
901 extern vector IDTVEC(tss_trap08);
902 #ifdef DDB
903 extern vector Xintrddbipi;
904 extern int ddb_vec;
905 #endif
906
907 static void
908 cpu_set_tss_gates(struct cpu_info *ci)
909 {
910 struct segment_descriptor sd;
911
912 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
913 UVM_KMF_WIRED);
914 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
915 IDTVEC(tss_trap08));
916 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
917 SDT_SYS386TSS, SEL_KPL, 0, 0);
918 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
919 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
920 GSEL(GTRAPTSS_SEL, SEL_KPL));
921
922 #if defined(DDB)
923 /*
924 * Set up separate handler for the DDB IPI, so that it doesn't
925 * stomp on a possibly corrupted stack.
926 *
927 * XXX overwriting the gate set in db_machine_init.
928 * Should rearrange the code so that it's set only once.
929 */
930 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
931 UVM_KMF_WIRED);
932 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
933
934 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
935 SDT_SYS386TSS, SEL_KPL, 0, 0);
936 ci->ci_gdt[GIPITSS_SEL].sd = sd;
937
938 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
939 GSEL(GIPITSS_SEL, SEL_KPL));
940 #endif
941 }
942 #else
943 static void
944 cpu_set_tss_gates(struct cpu_info *ci)
945 {
946
947 }
948 #endif /* i386 */
949
950 int
951 mp_cpu_start(struct cpu_info *ci, paddr_t target)
952 {
953 unsigned short dwordptr[2];
954 int error;
955
956 /*
957 * Bootstrap code must be addressable in real mode
958 * and it must be page aligned.
959 */
960 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
961
962 /*
963 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
964 */
965
966 outb(IO_RTC, NVRAM_RESET);
967 outb(IO_RTC+1, NVRAM_RESET_JUMP);
968
969 /*
970 * "and the warm reset vector (DWORD based at 40:67) to point
971 * to the AP startup code ..."
972 */
973
974 dwordptr[0] = 0;
975 dwordptr[1] = target >> 4;
976
977 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
978
979 if ((cpu_feature[0] & CPUID_APIC) == 0) {
980 aprint_error("mp_cpu_start: CPU does not have APIC\n");
981 return ENODEV;
982 }
983
984 /*
985 * ... prior to executing the following sequence:". We'll also add in
986 * local cache flush, in case the BIOS has left the AP with its cache
987 * disabled. It may not be able to cope with MP coherency.
988 */
989 wbinvd();
990
991 if (ci->ci_flags & CPUF_AP) {
992 error = x86_ipi_init(ci->ci_cpuid);
993 if (error != 0) {
994 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
995 __func__);
996 return error;
997 }
998 i8254_delay(10000);
999
1000 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1001 if (error != 0) {
1002 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1003 __func__);
1004 return error;
1005 }
1006 i8254_delay(200);
1007
1008 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1009 if (error != 0) {
1010 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1011 __func__);
1012 return error;
1013 }
1014 i8254_delay(200);
1015 }
1016
1017 return 0;
1018 }
1019
1020 void
1021 mp_cpu_start_cleanup(struct cpu_info *ci)
1022 {
1023 /*
1024 * Ensure the NVRAM reset byte contains something vaguely sane.
1025 */
1026
1027 outb(IO_RTC, NVRAM_RESET);
1028 outb(IO_RTC+1, NVRAM_RESET_RST);
1029 }
1030
1031 #ifdef __x86_64__
1032 typedef void (vector)(void);
1033 extern vector Xsyscall, Xsyscall32;
1034 #endif
1035
1036 void
1037 cpu_init_msrs(struct cpu_info *ci, bool full)
1038 {
1039 #ifdef __x86_64__
1040 wrmsr(MSR_STAR,
1041 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1042 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1043 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1044 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1045 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1046
1047 if (full) {
1048 wrmsr(MSR_FSBASE, 0);
1049 wrmsr(MSR_GSBASE, (uint64_t)ci);
1050 wrmsr(MSR_KERNELGSBASE, 0);
1051 }
1052 #endif /* __x86_64__ */
1053
1054 if (cpu_feature[2] & CPUID_NOX)
1055 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1056 }
1057
1058 void
1059 cpu_offline_md(void)
1060 {
1061 int s;
1062
1063 s = splhigh();
1064 #ifdef i386
1065 #if NNPX > 0
1066 npxsave_cpu(true);
1067 #endif
1068 #else
1069 fpusave_cpu(true);
1070 #endif
1071 splx(s);
1072 }
1073
1074 /* XXX joerg restructure and restart CPUs individually */
1075 static bool
1076 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1077 {
1078 struct cpu_softc *sc = device_private(dv);
1079 struct cpu_info *ci = sc->sc_info;
1080 int err;
1081
1082 if (ci->ci_flags & CPUF_PRIMARY)
1083 return true;
1084 if (ci->ci_data.cpu_idlelwp == NULL)
1085 return true;
1086 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1087 return true;
1088
1089 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1090
1091 if (sc->sc_wasonline) {
1092 mutex_enter(&cpu_lock);
1093 err = cpu_setstate(ci, false);
1094 mutex_exit(&cpu_lock);
1095
1096 if (err)
1097 return false;
1098 }
1099
1100 return true;
1101 }
1102
1103 static bool
1104 cpu_resume(device_t dv, const pmf_qual_t *qual)
1105 {
1106 struct cpu_softc *sc = device_private(dv);
1107 struct cpu_info *ci = sc->sc_info;
1108 int err = 0;
1109
1110 if (ci->ci_flags & CPUF_PRIMARY)
1111 return true;
1112 if (ci->ci_data.cpu_idlelwp == NULL)
1113 return true;
1114 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1115 return true;
1116
1117 if (sc->sc_wasonline) {
1118 mutex_enter(&cpu_lock);
1119 err = cpu_setstate(ci, true);
1120 mutex_exit(&cpu_lock);
1121 }
1122
1123 return err == 0;
1124 }
1125
1126 static bool
1127 cpu_shutdown(device_t dv, int how)
1128 {
1129 return cpu_suspend(dv, NULL);
1130 }
1131
1132 void
1133 cpu_get_tsc_freq(struct cpu_info *ci)
1134 {
1135 uint64_t last_tsc;
1136
1137 if (cpu_hascounter()) {
1138 last_tsc = cpu_counter_serializing();
1139 i8254_delay(100000);
1140 ci->ci_data.cpu_cc_freq =
1141 (cpu_counter_serializing() - last_tsc) * 10;
1142 }
1143 }
1144
1145 void
1146 x86_cpu_idle_mwait(void)
1147 {
1148 struct cpu_info *ci = curcpu();
1149
1150 KASSERT(ci->ci_ilevel == IPL_NONE);
1151
1152 x86_monitor(&ci->ci_want_resched, 0, 0);
1153 if (__predict_false(ci->ci_want_resched)) {
1154 return;
1155 }
1156 x86_mwait(0, 0);
1157 }
1158
1159 void
1160 x86_cpu_idle_halt(void)
1161 {
1162 struct cpu_info *ci = curcpu();
1163
1164 KASSERT(ci->ci_ilevel == IPL_NONE);
1165
1166 x86_disable_intr();
1167 if (!__predict_false(ci->ci_want_resched)) {
1168 x86_stihlt();
1169 } else {
1170 x86_enable_intr();
1171 }
1172 }
1173
1174 /*
1175 * Loads pmap for the current CPU.
1176 */
1177 void
1178 cpu_load_pmap(struct pmap *pmap)
1179 {
1180 #ifdef PAE
1181 int i, s;
1182 struct cpu_info *ci;
1183
1184 s = splvm(); /* just to be safe */
1185 ci = curcpu();
1186 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1187 for (i = 0 ; i < PDP_SIZE; i++) {
1188 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1189 }
1190 splx(s);
1191 tlbflush();
1192 #else /* PAE */
1193 lcr3(pmap_pdirpa(pmap, 0));
1194 #endif /* PAE */
1195 }
1196