cpu.c revision 1.87 1 /* $NetBSD: cpu.c,v 1.87 2011/02/26 14:43:18 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.87 2011/02/26 14:43:18 jruoho Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70
71 #include "lapic.h"
72 #include "ioapic.h"
73
74 #ifdef i386
75 #include "npx.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kmem.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/reboot.h>
86
87 #include <uvm/uvm.h>
88
89 #include <machine/cpufunc.h>
90 #include <machine/cpuvar.h>
91 #include <machine/pmap.h>
92 #include <machine/vmparam.h>
93 #include <machine/mpbiosvar.h>
94 #include <machine/pcb.h>
95 #include <machine/specialreg.h>
96 #include <machine/segments.h>
97 #include <machine/gdt.h>
98 #include <machine/mtrr.h>
99 #include <machine/pio.h>
100 #include <machine/cpu_counter.h>
101
102 #ifdef i386
103 #include <machine/tlog.h>
104 #endif
105
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109
110 #include <dev/ic/mc146818reg.h>
111 #include <i386/isa/nvram.h>
112 #include <dev/isa/isareg.h>
113
114 #include "tsc.h"
115
116 #if MAXCPUS > 32
117 #error cpu_info contains 32bit bitmasks
118 #endif
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static bool cpu_suspend(device_t, const pmf_qual_t *);
126 static bool cpu_resume(device_t, const pmf_qual_t *);
127 static bool cpu_shutdown(device_t, int);
128
129 struct cpu_softc {
130 device_t sc_dev; /* device tree glue */
131 struct cpu_info *sc_info; /* pointer to CPU info */
132 bool sc_wasonline;
133 };
134
135 int mp_cpu_start(struct cpu_info *, paddr_t);
136 void mp_cpu_start_cleanup(struct cpu_info *);
137 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 mp_cpu_start_cleanup };
139
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 /*
145 * Statically-allocated CPU info for the primary CPU (or the only
146 * CPU, on uniprocessors). The CPU info list is initialized to
147 * point at it.
148 */
149 #ifdef TRAPLOG
150 struct tlog tlog_primary;
151 #endif
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 #ifdef TRAPLOG
159 .ci_tlog_base = &tlog_primary,
160 #endif /* !TRAPLOG */
161 };
162
163 struct cpu_info *cpu_info_list = &cpu_info_primary;
164
165 static void cpu_set_tss_gates(struct cpu_info *);
166
167 #ifdef i386
168 static void tss_init(struct i386tss *, void *, void *);
169 #endif
170
171 static void cpu_init_idle_lwp(struct cpu_info *);
172
173 uint32_t cpus_attached = 0;
174 uint32_t cpus_running = 0;
175
176 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
177 * [0] basic features %edx
178 * [1] basic features %ecx
179 * [2] extended features %edx
180 * [3] extended features %ecx
181 * [4] VIA padlock features
182 */
183
184 extern char x86_64_doubleflt_stack[];
185
186 bool x86_mp_online;
187 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
188 static vaddr_t cmos_data_mapping;
189 struct cpu_info *cpu_starting;
190
191 void cpu_hatch(void *);
192 static void cpu_boot_secondary(struct cpu_info *ci);
193 static void cpu_start_secondary(struct cpu_info *ci);
194 static void cpu_copy_trampoline(void);
195
196 /*
197 * Runs once per boot once multiprocessor goo has been detected and
198 * the local APIC on the boot processor has been mapped.
199 *
200 * Called from lapic_boot_init() (from mpbios_scan()).
201 */
202 void
203 cpu_init_first(void)
204 {
205
206 cpu_info_primary.ci_cpuid = lapic_cpu_number();
207 cpu_copy_trampoline();
208
209 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
210 if (cmos_data_mapping == 0)
211 panic("No KVA for page 0");
212 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
213 pmap_update(pmap_kernel());
214 }
215
216 static int
217 cpu_match(device_t parent, cfdata_t match, void *aux)
218 {
219
220 return 1;
221 }
222
223 static void
224 cpu_vm_init(struct cpu_info *ci)
225 {
226 int ncolors = 2, i;
227
228 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
229 struct x86_cache_info *cai;
230 int tcolors;
231
232 cai = &ci->ci_cinfo[i];
233
234 tcolors = atop(cai->cai_totalsize);
235 switch(cai->cai_associativity) {
236 case 0xff:
237 tcolors = 1; /* fully associative */
238 break;
239 case 0:
240 case 1:
241 break;
242 default:
243 tcolors /= cai->cai_associativity;
244 }
245 ncolors = max(ncolors, tcolors);
246 /*
247 * If the desired number of colors is not a power of
248 * two, it won't be good. Find the greatest power of
249 * two which is an even divisor of the number of colors,
250 * to preserve even coloring of pages.
251 */
252 if (ncolors & (ncolors - 1) ) {
253 int try, picked = 1;
254 for (try = 1; try < ncolors; try *= 2) {
255 if (ncolors % try == 0) picked = try;
256 }
257 if (picked == 1) {
258 panic("desired number of cache colors %d is "
259 " > 1, but not even!", ncolors);
260 }
261 ncolors = picked;
262 }
263 }
264
265 /*
266 * Knowing the size of the largest cache on this CPU, re-color
267 * our pages.
268 */
269 if (ncolors <= uvmexp.ncolors)
270 return;
271 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
272 uvm_page_recolor(ncolors);
273 }
274
275
276 static void
277 cpu_attach(device_t parent, device_t self, void *aux)
278 {
279 struct cpu_softc *sc = device_private(self);
280 struct cpu_attach_args *caa = aux;
281 struct cpu_info *ci;
282 uintptr_t ptr;
283 int cpunum = caa->cpu_number;
284 static bool again;
285
286 sc->sc_dev = self;
287
288 if (cpus_attached == ~0) {
289 aprint_error(": increase MAXCPUS\n");
290 return;
291 }
292
293 /*
294 * If we're an Application Processor, allocate a cpu_info
295 * structure, otherwise use the primary's.
296 */
297 if (caa->cpu_role == CPU_ROLE_AP) {
298 if ((boothowto & RB_MD1) != 0) {
299 aprint_error(": multiprocessor boot disabled\n");
300 if (!pmf_device_register(self, NULL, NULL))
301 aprint_error_dev(self,
302 "couldn't establish power handler\n");
303 return;
304 }
305 aprint_naive(": Application Processor\n");
306 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
307 KM_SLEEP);
308 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
309 ci->ci_curldt = -1;
310 #ifdef TRAPLOG
311 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
312 #endif
313 } else {
314 aprint_naive(": %s Processor\n",
315 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
316 ci = &cpu_info_primary;
317 if (cpunum != lapic_cpu_number()) {
318 /* XXX should be done earlier. */
319 uint32_t reg;
320 aprint_verbose("\n");
321 aprint_verbose_dev(self, "running CPU at apic %d"
322 " instead of at expected %d", lapic_cpu_number(),
323 cpunum);
324 reg = i82489_readreg(LAPIC_ID);
325 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
326 (cpunum << LAPIC_ID_SHIFT));
327 }
328 if (cpunum != lapic_cpu_number()) {
329 aprint_error_dev(self, "unable to reset apic id\n");
330 }
331 }
332
333 ci->ci_self = ci;
334 sc->sc_info = ci;
335 ci->ci_dev = self;
336 ci->ci_acpiid = caa->cpu_id;
337 ci->ci_cpuid = caa->cpu_number;
338 ci->ci_func = caa->cpu_func;
339
340 /* Must be before mi_cpu_attach(). */
341 cpu_vm_init(ci);
342
343 if (caa->cpu_role == CPU_ROLE_AP) {
344 int error;
345
346 error = mi_cpu_attach(ci);
347 if (error != 0) {
348 aprint_normal("\n");
349 aprint_error_dev(self,
350 "mi_cpu_attach failed with %d\n", error);
351 return;
352 }
353 cpu_init_tss(ci);
354 } else {
355 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
356 }
357
358 ci->ci_cpumask = (1 << cpu_index(ci));
359 pmap_reference(pmap_kernel());
360 ci->ci_pmap = pmap_kernel();
361 ci->ci_tlbstate = TLBSTATE_STALE;
362
363 /*
364 * Boot processor may not be attached first, but the below
365 * must be done to allow booting other processors.
366 */
367 if (!again) {
368 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
369 /* Basic init. */
370 cpu_intr_init(ci);
371 cpu_get_tsc_freq(ci);
372 cpu_init(ci);
373 cpu_set_tss_gates(ci);
374 pmap_cpu_init_late(ci);
375 if (caa->cpu_role != CPU_ROLE_SP) {
376 /* Enable lapic. */
377 lapic_enable();
378 lapic_set_lvt();
379 lapic_calibrate_timer(ci);
380 }
381 /* Make sure DELAY() is initialized. */
382 DELAY(1);
383 again = true;
384 }
385
386 /* further PCB init done later. */
387
388 switch (caa->cpu_role) {
389 case CPU_ROLE_SP:
390 atomic_or_32(&ci->ci_flags, CPUF_SP);
391 cpu_identify(ci);
392 x86_errata();
393 x86_cpu_idle_init();
394 break;
395
396 case CPU_ROLE_BP:
397 atomic_or_32(&ci->ci_flags, CPUF_BSP);
398 cpu_identify(ci);
399 x86_errata();
400 x86_cpu_idle_init();
401 break;
402
403 case CPU_ROLE_AP:
404 /*
405 * report on an AP
406 */
407 cpu_intr_init(ci);
408 gdt_alloc_cpu(ci);
409 cpu_set_tss_gates(ci);
410 pmap_cpu_init_early(ci);
411 pmap_cpu_init_late(ci);
412 cpu_start_secondary(ci);
413 if (ci->ci_flags & CPUF_PRESENT) {
414 struct cpu_info *tmp;
415
416 cpu_identify(ci);
417 tmp = cpu_info_list;
418 while (tmp->ci_next)
419 tmp = tmp->ci_next;
420
421 tmp->ci_next = ci;
422 }
423 break;
424
425 default:
426 aprint_normal("\n");
427 panic("unknown processor type??\n");
428 }
429
430 pat_init(ci);
431 atomic_or_32(&cpus_attached, ci->ci_cpumask);
432
433 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
434 aprint_error_dev(self, "couldn't establish power handler\n");
435
436 if (mp_verbose) {
437 struct lwp *l = ci->ci_data.cpu_idlelwp;
438 struct pcb *pcb = lwp_getpcb(l);
439
440 aprint_verbose_dev(self,
441 "idle lwp at %p, idle sp at %p\n",
442 l,
443 #ifdef i386
444 (void *)pcb->pcb_esp
445 #else
446 (void *)pcb->pcb_rsp
447 #endif
448 );
449 }
450
451 (void)config_defer(self, cpu_defer);
452 }
453
454 static void
455 cpu_defer(device_t self)
456 {
457 cpu_rescan(self, NULL, NULL);
458 }
459
460 static int
461 cpu_rescan(device_t self, const char *ifattr, const int *locators)
462 {
463 struct cpu_softc *sc = device_private(self);
464 struct cpufeature_attach_args cfaa;
465 struct cpu_info *ci = sc->sc_info;
466
467 memset(&cfaa, 0, sizeof(cfaa));
468 cfaa.ci = ci;
469
470 if (ifattr_match(ifattr, "cpufeaturebus")) {
471
472 if (ci->ci_frequency == NULL) {
473 cfaa.name = "frequency";
474 ci->ci_frequency = config_found_ia(self,
475 "cpufeaturebus", &cfaa, NULL);
476 }
477
478 if (ci->ci_padlock == NULL) {
479 cfaa.name = "padlock";
480 ci->ci_padlock = config_found_ia(self,
481 "cpufeaturebus", &cfaa, NULL);
482 }
483
484 if (ci->ci_temperature == NULL) {
485 cfaa.name = "temperature";
486 ci->ci_temperature = config_found_ia(self,
487 "cpufeaturebus", &cfaa, NULL);
488 }
489 }
490
491 return 0;
492 }
493
494 static void
495 cpu_childdetached(device_t self, device_t child)
496 {
497 struct cpu_softc *sc = device_private(self);
498 struct cpu_info *ci = sc->sc_info;
499
500 if (ci->ci_frequency == child)
501 ci->ci_frequency = NULL;
502
503 if (ci->ci_padlock == child)
504 ci->ci_padlock = NULL;
505
506 if (ci->ci_temperature == child)
507 ci->ci_temperature = NULL;
508 }
509
510 /*
511 * Initialize the processor appropriately.
512 */
513
514 void
515 cpu_init(struct cpu_info *ci)
516 {
517
518 lcr0(rcr0() | CR0_WP);
519
520 /*
521 * On a P6 or above, enable global TLB caching if the
522 * hardware supports it.
523 */
524 if (cpu_feature[0] & CPUID_PGE)
525 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
526
527 /*
528 * If we have FXSAVE/FXRESTOR, use them.
529 */
530 if (cpu_feature[0] & CPUID_FXSR) {
531 lcr4(rcr4() | CR4_OSFXSR);
532
533 /*
534 * If we have SSE/SSE2, enable XMM exceptions.
535 */
536 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
537 lcr4(rcr4() | CR4_OSXMMEXCPT);
538 }
539
540 #ifdef MTRR
541 /*
542 * On a P6 or above, initialize MTRR's if the hardware supports them.
543 */
544 if (cpu_feature[0] & CPUID_MTRR) {
545 if ((ci->ci_flags & CPUF_AP) == 0)
546 i686_mtrr_init_first();
547 mtrr_init_cpu(ci);
548 }
549
550 #ifdef i386
551 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
552 /*
553 * Must be a K6-2 Step >= 7 or a K6-III.
554 */
555 if (CPUID2FAMILY(ci->ci_signature) == 5) {
556 if (CPUID2MODEL(ci->ci_signature) > 8 ||
557 (CPUID2MODEL(ci->ci_signature) == 8 &&
558 CPUID2STEPPING(ci->ci_signature) >= 7)) {
559 mtrr_funcs = &k6_mtrr_funcs;
560 k6_mtrr_init_first();
561 mtrr_init_cpu(ci);
562 }
563 }
564 }
565 #endif /* i386 */
566 #endif /* MTRR */
567
568 atomic_or_32(&cpus_running, ci->ci_cpumask);
569
570 if (ci != &cpu_info_primary) {
571 /* Synchronize TSC again, and check for drift. */
572 wbinvd();
573 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
574 tsc_sync_ap(ci);
575 } else {
576 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
577 }
578 }
579
580 void
581 cpu_boot_secondary_processors(void)
582 {
583 struct cpu_info *ci;
584 u_long i;
585
586 /* Now that we know the number of CPUs, patch the text segment. */
587 x86_patch(false);
588
589 for (i=0; i < maxcpus; i++) {
590 ci = cpu_lookup(i);
591 if (ci == NULL)
592 continue;
593 if (ci->ci_data.cpu_idlelwp == NULL)
594 continue;
595 if ((ci->ci_flags & CPUF_PRESENT) == 0)
596 continue;
597 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
598 continue;
599 cpu_boot_secondary(ci);
600 }
601
602 x86_mp_online = true;
603
604 /* Now that we know about the TSC, attach the timecounter. */
605 tsc_tc_init();
606
607 /* Enable zeroing of pages in the idle loop if we have SSE2. */
608 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
609 }
610
611 static void
612 cpu_init_idle_lwp(struct cpu_info *ci)
613 {
614 struct lwp *l = ci->ci_data.cpu_idlelwp;
615 struct pcb *pcb = lwp_getpcb(l);
616
617 pcb->pcb_cr0 = rcr0();
618 }
619
620 void
621 cpu_init_idle_lwps(void)
622 {
623 struct cpu_info *ci;
624 u_long i;
625
626 for (i = 0; i < maxcpus; i++) {
627 ci = cpu_lookup(i);
628 if (ci == NULL)
629 continue;
630 if (ci->ci_data.cpu_idlelwp == NULL)
631 continue;
632 if ((ci->ci_flags & CPUF_PRESENT) == 0)
633 continue;
634 cpu_init_idle_lwp(ci);
635 }
636 }
637
638 void
639 cpu_start_secondary(struct cpu_info *ci)
640 {
641 extern paddr_t mp_pdirpa;
642 u_long psl;
643 int i;
644
645 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
646 atomic_or_32(&ci->ci_flags, CPUF_AP);
647 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
648 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
649 return;
650 }
651
652 /*
653 * Wait for it to become ready. Setting cpu_starting opens the
654 * initial gate and allows the AP to start soft initialization.
655 */
656 KASSERT(cpu_starting == NULL);
657 cpu_starting = ci;
658 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
659 #ifdef MPDEBUG
660 extern int cpu_trace[3];
661 static int otrace[3];
662 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
663 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
664 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
665 memcpy(otrace, cpu_trace, sizeof(otrace));
666 }
667 #endif
668 i8254_delay(10);
669 }
670
671 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
672 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
673 #if defined(MPDEBUG) && defined(DDB)
674 printf("dropping into debugger; continue from here to resume boot\n");
675 Debugger();
676 #endif
677 } else {
678 /*
679 * Synchronize time stamp counters. Invalidate cache and do
680 * twice to try and minimize possible cache effects. Disable
681 * interrupts to try and rule out any external interference.
682 */
683 psl = x86_read_psl();
684 x86_disable_intr();
685 wbinvd();
686 tsc_sync_bp(ci);
687 x86_write_psl(psl);
688 }
689
690 CPU_START_CLEANUP(ci);
691 cpu_starting = NULL;
692 }
693
694 void
695 cpu_boot_secondary(struct cpu_info *ci)
696 {
697 int64_t drift;
698 u_long psl;
699 int i;
700
701 atomic_or_32(&ci->ci_flags, CPUF_GO);
702 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
703 i8254_delay(10);
704 }
705 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
706 aprint_error_dev(ci->ci_dev, "failed to start\n");
707 #if defined(MPDEBUG) && defined(DDB)
708 printf("dropping into debugger; continue from here to resume boot\n");
709 Debugger();
710 #endif
711 } else {
712 /* Synchronize TSC again, check for drift. */
713 drift = ci->ci_data.cpu_cc_skew;
714 psl = x86_read_psl();
715 x86_disable_intr();
716 wbinvd();
717 tsc_sync_bp(ci);
718 x86_write_psl(psl);
719 drift -= ci->ci_data.cpu_cc_skew;
720 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
721 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
722 tsc_sync_drift(drift);
723 }
724 }
725
726 /*
727 * The CPU ends up here when its ready to run
728 * This is called from code in mptramp.s; at this point, we are running
729 * in the idle pcb/idle stack of the new CPU. When this function returns,
730 * this processor will enter the idle loop and start looking for work.
731 */
732 void
733 cpu_hatch(void *v)
734 {
735 struct cpu_info *ci = (struct cpu_info *)v;
736 struct pcb *pcb;
737 int s, i;
738
739 cpu_init_msrs(ci, true);
740 cpu_probe(ci);
741
742 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
743 /* cpu_get_tsc_freq(ci); */
744
745 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
746
747 /*
748 * Synchronize time stamp counters. Invalidate cache and do twice
749 * to try and minimize possible cache effects. Note that interrupts
750 * are off at this point.
751 */
752 wbinvd();
753 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
754 tsc_sync_ap(ci);
755
756 /*
757 * Wait to be brought online. Use 'monitor/mwait' if available,
758 * in order to make the TSC drift as much as possible. so that
759 * we can detect it later. If not available, try 'pause'.
760 * We'd like to use 'hlt', but we have interrupts off.
761 */
762 while ((ci->ci_flags & CPUF_GO) == 0) {
763 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
764 x86_monitor(&ci->ci_flags, 0, 0);
765 if ((ci->ci_flags & CPUF_GO) != 0) {
766 continue;
767 }
768 x86_mwait(0, 0);
769 } else {
770 for (i = 10000; i != 0; i--) {
771 x86_pause();
772 }
773 }
774 }
775
776 /* Because the text may have been patched in x86_patch(). */
777 wbinvd();
778 x86_flush();
779
780 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
781
782 #ifdef PAE
783 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
784 for (i = 0 ; i < PDP_SIZE; i++) {
785 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
786 }
787 lcr3(ci->ci_pae_l3_pdirpa);
788 #else
789 lcr3(pmap_pdirpa(pmap_kernel(), 0));
790 #endif
791
792 pcb = lwp_getpcb(curlwp);
793 pcb->pcb_cr3 = rcr3();
794 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
795 lcr0(pcb->pcb_cr0);
796
797 cpu_init_idt();
798 gdt_init_cpu(ci);
799 lapic_enable();
800 lapic_set_lvt();
801 lapic_initclocks();
802
803 #ifdef i386
804 #if NNPX > 0
805 npxinit(ci);
806 #endif
807 #else
808 fpuinit(ci);
809 #endif
810 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
811 ltr(ci->ci_tss_sel);
812
813 cpu_init(ci);
814 cpu_get_tsc_freq(ci);
815
816 s = splhigh();
817 #ifdef i386
818 lapic_tpr = 0;
819 #else
820 lcr8(0);
821 #endif
822 x86_enable_intr();
823 splx(s);
824 x86_errata();
825
826 aprint_debug_dev(ci->ci_dev, "running\n");
827 }
828
829 #if defined(DDB)
830
831 #include <ddb/db_output.h>
832 #include <machine/db_machdep.h>
833
834 /*
835 * Dump CPU information from ddb.
836 */
837 void
838 cpu_debug_dump(void)
839 {
840 struct cpu_info *ci;
841 CPU_INFO_ITERATOR cii;
842
843 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
844 for (CPU_INFO_FOREACH(cii, ci)) {
845 db_printf("%p %s %ld %x %x %10p %10p\n",
846 ci,
847 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
848 (long)ci->ci_cpuid,
849 ci->ci_flags, ci->ci_ipis,
850 ci->ci_curlwp,
851 ci->ci_fpcurlwp);
852 }
853 }
854 #endif
855
856 static void
857 cpu_copy_trampoline(void)
858 {
859 /*
860 * Copy boot code.
861 */
862 extern u_char cpu_spinup_trampoline[];
863 extern u_char cpu_spinup_trampoline_end[];
864
865 vaddr_t mp_trampoline_vaddr;
866
867 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
868 UVM_KMF_VAONLY);
869
870 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
871 VM_PROT_READ | VM_PROT_WRITE, 0);
872 pmap_update(pmap_kernel());
873 memcpy((void *)mp_trampoline_vaddr,
874 cpu_spinup_trampoline,
875 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
876
877 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
878 pmap_update(pmap_kernel());
879 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
880 }
881
882 #ifdef i386
883 static void
884 tss_init(struct i386tss *tss, void *stack, void *func)
885 {
886 KASSERT(curcpu()->ci_pmap == pmap_kernel());
887
888 memset(tss, 0, sizeof *tss);
889 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
890 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
891 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
892 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
893 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
894 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
895 /* %cr3 contains the value associated to pmap_kernel */
896 tss->tss_cr3 = rcr3();
897 tss->tss_esp = (int)((char *)stack + USPACE - 16);
898 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
899 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
900 tss->__tss_eip = (int)func;
901 }
902
903 /* XXX */
904 #define IDTVEC(name) __CONCAT(X, name)
905 typedef void (vector)(void);
906 extern vector IDTVEC(tss_trap08);
907 #ifdef DDB
908 extern vector Xintrddbipi;
909 extern int ddb_vec;
910 #endif
911
912 static void
913 cpu_set_tss_gates(struct cpu_info *ci)
914 {
915 struct segment_descriptor sd;
916
917 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
918 UVM_KMF_WIRED);
919 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
920 IDTVEC(tss_trap08));
921 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
922 SDT_SYS386TSS, SEL_KPL, 0, 0);
923 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
924 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
925 GSEL(GTRAPTSS_SEL, SEL_KPL));
926
927 #if defined(DDB)
928 /*
929 * Set up separate handler for the DDB IPI, so that it doesn't
930 * stomp on a possibly corrupted stack.
931 *
932 * XXX overwriting the gate set in db_machine_init.
933 * Should rearrange the code so that it's set only once.
934 */
935 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
936 UVM_KMF_WIRED);
937 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
938
939 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
940 SDT_SYS386TSS, SEL_KPL, 0, 0);
941 ci->ci_gdt[GIPITSS_SEL].sd = sd;
942
943 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
944 GSEL(GIPITSS_SEL, SEL_KPL));
945 #endif
946 }
947 #else
948 static void
949 cpu_set_tss_gates(struct cpu_info *ci)
950 {
951
952 }
953 #endif /* i386 */
954
955 int
956 mp_cpu_start(struct cpu_info *ci, paddr_t target)
957 {
958 unsigned short dwordptr[2];
959 int error;
960
961 /*
962 * Bootstrap code must be addressable in real mode
963 * and it must be page aligned.
964 */
965 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
966
967 /*
968 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
969 */
970
971 outb(IO_RTC, NVRAM_RESET);
972 outb(IO_RTC+1, NVRAM_RESET_JUMP);
973
974 /*
975 * "and the warm reset vector (DWORD based at 40:67) to point
976 * to the AP startup code ..."
977 */
978
979 dwordptr[0] = 0;
980 dwordptr[1] = target >> 4;
981
982 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
983
984 if ((cpu_feature[0] & CPUID_APIC) == 0) {
985 aprint_error("mp_cpu_start: CPU does not have APIC\n");
986 return ENODEV;
987 }
988
989 /*
990 * ... prior to executing the following sequence:". We'll also add in
991 * local cache flush, in case the BIOS has left the AP with its cache
992 * disabled. It may not be able to cope with MP coherency.
993 */
994 wbinvd();
995
996 if (ci->ci_flags & CPUF_AP) {
997 error = x86_ipi_init(ci->ci_cpuid);
998 if (error != 0) {
999 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1000 __func__);
1001 return error;
1002 }
1003 i8254_delay(10000);
1004
1005 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1006 if (error != 0) {
1007 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1008 __func__);
1009 return error;
1010 }
1011 i8254_delay(200);
1012
1013 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1014 if (error != 0) {
1015 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1016 __func__);
1017 return error;
1018 }
1019 i8254_delay(200);
1020 }
1021
1022 return 0;
1023 }
1024
1025 void
1026 mp_cpu_start_cleanup(struct cpu_info *ci)
1027 {
1028 /*
1029 * Ensure the NVRAM reset byte contains something vaguely sane.
1030 */
1031
1032 outb(IO_RTC, NVRAM_RESET);
1033 outb(IO_RTC+1, NVRAM_RESET_RST);
1034 }
1035
1036 #ifdef __x86_64__
1037 typedef void (vector)(void);
1038 extern vector Xsyscall, Xsyscall32;
1039 #endif
1040
1041 void
1042 cpu_init_msrs(struct cpu_info *ci, bool full)
1043 {
1044 #ifdef __x86_64__
1045 wrmsr(MSR_STAR,
1046 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1047 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1048 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1049 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1050 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1051
1052 if (full) {
1053 wrmsr(MSR_FSBASE, 0);
1054 wrmsr(MSR_GSBASE, (uint64_t)ci);
1055 wrmsr(MSR_KERNELGSBASE, 0);
1056 }
1057 #endif /* __x86_64__ */
1058
1059 if (cpu_feature[2] & CPUID_NOX)
1060 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1061 }
1062
1063 void
1064 cpu_offline_md(void)
1065 {
1066 int s;
1067
1068 s = splhigh();
1069 #ifdef i386
1070 #if NNPX > 0
1071 npxsave_cpu(true);
1072 #endif
1073 #else
1074 fpusave_cpu(true);
1075 #endif
1076 splx(s);
1077 }
1078
1079 /* XXX joerg restructure and restart CPUs individually */
1080 static bool
1081 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1082 {
1083 struct cpu_softc *sc = device_private(dv);
1084 struct cpu_info *ci = sc->sc_info;
1085 int err;
1086
1087 if (ci->ci_flags & CPUF_PRIMARY)
1088 return true;
1089 if (ci->ci_data.cpu_idlelwp == NULL)
1090 return true;
1091 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1092 return true;
1093
1094 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1095
1096 if (sc->sc_wasonline) {
1097 mutex_enter(&cpu_lock);
1098 err = cpu_setstate(ci, false);
1099 mutex_exit(&cpu_lock);
1100
1101 if (err)
1102 return false;
1103 }
1104
1105 return true;
1106 }
1107
1108 static bool
1109 cpu_resume(device_t dv, const pmf_qual_t *qual)
1110 {
1111 struct cpu_softc *sc = device_private(dv);
1112 struct cpu_info *ci = sc->sc_info;
1113 int err = 0;
1114
1115 if (ci->ci_flags & CPUF_PRIMARY)
1116 return true;
1117 if (ci->ci_data.cpu_idlelwp == NULL)
1118 return true;
1119 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1120 return true;
1121
1122 if (sc->sc_wasonline) {
1123 mutex_enter(&cpu_lock);
1124 err = cpu_setstate(ci, true);
1125 mutex_exit(&cpu_lock);
1126 }
1127
1128 return err == 0;
1129 }
1130
1131 static bool
1132 cpu_shutdown(device_t dv, int how)
1133 {
1134 return cpu_suspend(dv, NULL);
1135 }
1136
1137 void
1138 cpu_get_tsc_freq(struct cpu_info *ci)
1139 {
1140 uint64_t last_tsc;
1141
1142 if (cpu_hascounter()) {
1143 last_tsc = cpu_counter_serializing();
1144 i8254_delay(100000);
1145 ci->ci_data.cpu_cc_freq =
1146 (cpu_counter_serializing() - last_tsc) * 10;
1147 }
1148 }
1149
1150 void
1151 x86_cpu_idle_mwait(void)
1152 {
1153 struct cpu_info *ci = curcpu();
1154
1155 KASSERT(ci->ci_ilevel == IPL_NONE);
1156
1157 x86_monitor(&ci->ci_want_resched, 0, 0);
1158 if (__predict_false(ci->ci_want_resched)) {
1159 return;
1160 }
1161 x86_mwait(0, 0);
1162 }
1163
1164 void
1165 x86_cpu_idle_halt(void)
1166 {
1167 struct cpu_info *ci = curcpu();
1168
1169 KASSERT(ci->ci_ilevel == IPL_NONE);
1170
1171 x86_disable_intr();
1172 if (!__predict_false(ci->ci_want_resched)) {
1173 x86_stihlt();
1174 } else {
1175 x86_enable_intr();
1176 }
1177 }
1178
1179 /*
1180 * Loads pmap for the current CPU.
1181 */
1182 void
1183 cpu_load_pmap(struct pmap *pmap)
1184 {
1185 #ifdef PAE
1186 int i, s;
1187 struct cpu_info *ci;
1188
1189 s = splvm(); /* just to be safe */
1190 ci = curcpu();
1191 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1192 for (i = 0 ; i < PDP_SIZE; i++) {
1193 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1194 }
1195 splx(s);
1196 tlbflush();
1197 #else /* PAE */
1198 lcr3(pmap_pdirpa(pmap, 0));
1199 #endif /* PAE */
1200 }
1201