cpu.c revision 1.91 1 /* $NetBSD: cpu.c,v 1.91 2011/08/11 18:11:17 cherry Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.91 2011/08/11 18:11:17 cherry Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70
71 #include "lapic.h"
72 #include "ioapic.h"
73
74 #ifdef i386
75 #include "npx.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kmem.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/reboot.h>
86
87 #include <uvm/uvm.h>
88
89 #include <machine/cpufunc.h>
90 #include <machine/cpuvar.h>
91 #include <machine/pmap.h>
92 #include <machine/vmparam.h>
93 #include <machine/mpbiosvar.h>
94 #include <machine/pcb.h>
95 #include <machine/specialreg.h>
96 #include <machine/segments.h>
97 #include <machine/gdt.h>
98 #include <machine/mtrr.h>
99 #include <machine/pio.h>
100 #include <machine/cpu_counter.h>
101
102 #ifdef i386
103 #include <machine/tlog.h>
104 #endif
105
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109
110 #include <dev/ic/mc146818reg.h>
111 #include <i386/isa/nvram.h>
112 #include <dev/isa/isareg.h>
113
114 #include "tsc.h"
115
116 #if MAXCPUS > 32
117 #error cpu_info contains 32bit bitmasks
118 #endif
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static bool cpu_suspend(device_t, const pmf_qual_t *);
126 static bool cpu_resume(device_t, const pmf_qual_t *);
127 static bool cpu_shutdown(device_t, int);
128
129 struct cpu_softc {
130 device_t sc_dev; /* device tree glue */
131 struct cpu_info *sc_info; /* pointer to CPU info */
132 bool sc_wasonline;
133 };
134
135 int mp_cpu_start(struct cpu_info *, paddr_t);
136 void mp_cpu_start_cleanup(struct cpu_info *);
137 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 mp_cpu_start_cleanup };
139
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 /*
145 * Statically-allocated CPU info for the primary CPU (or the only
146 * CPU, on uniprocessors). The CPU info list is initialized to
147 * point at it.
148 */
149 #ifdef TRAPLOG
150 struct tlog tlog_primary;
151 #endif
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 .ci_cpumask = 1,
159 #ifdef TRAPLOG
160 .ci_tlog_base = &tlog_primary,
161 #endif /* !TRAPLOG */
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165
166 static void cpu_set_tss_gates(struct cpu_info *);
167
168 #ifdef i386
169 static void tss_init(struct i386tss *, void *, void *);
170 #endif
171
172 static void cpu_init_idle_lwp(struct cpu_info *);
173
174 uint32_t cpus_attached = 0;
175 uint32_t cpus_running = 1;
176
177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 * [0] basic features %edx
179 * [1] basic features %ecx
180 * [2] extended features %edx
181 * [3] extended features %ecx
182 * [4] VIA padlock features
183 */
184
185 extern char x86_64_doubleflt_stack[];
186
187 bool x86_mp_online;
188 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189 static vaddr_t cmos_data_mapping;
190 struct cpu_info *cpu_starting;
191
192 void cpu_hatch(void *);
193 static void cpu_boot_secondary(struct cpu_info *ci);
194 static void cpu_start_secondary(struct cpu_info *ci);
195 static void cpu_copy_trampoline(void);
196
197 /*
198 * Runs once per boot once multiprocessor goo has been detected and
199 * the local APIC on the boot processor has been mapped.
200 *
201 * Called from lapic_boot_init() (from mpbios_scan()).
202 */
203 void
204 cpu_init_first(void)
205 {
206
207 cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 cpu_copy_trampoline();
209
210 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
211 if (cmos_data_mapping == 0)
212 panic("No KVA for page 0");
213 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
214 pmap_update(pmap_kernel());
215 }
216
217 static int
218 cpu_match(device_t parent, cfdata_t match, void *aux)
219 {
220
221 return 1;
222 }
223
224 static void
225 cpu_vm_init(struct cpu_info *ci)
226 {
227 int ncolors = 2, i;
228
229 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
230 struct x86_cache_info *cai;
231 int tcolors;
232
233 cai = &ci->ci_cinfo[i];
234
235 tcolors = atop(cai->cai_totalsize);
236 switch(cai->cai_associativity) {
237 case 0xff:
238 tcolors = 1; /* fully associative */
239 break;
240 case 0:
241 case 1:
242 break;
243 default:
244 tcolors /= cai->cai_associativity;
245 }
246 ncolors = max(ncolors, tcolors);
247 /*
248 * If the desired number of colors is not a power of
249 * two, it won't be good. Find the greatest power of
250 * two which is an even divisor of the number of colors,
251 * to preserve even coloring of pages.
252 */
253 if (ncolors & (ncolors - 1) ) {
254 int try, picked = 1;
255 for (try = 1; try < ncolors; try *= 2) {
256 if (ncolors % try == 0) picked = try;
257 }
258 if (picked == 1) {
259 panic("desired number of cache colors %d is "
260 " > 1, but not even!", ncolors);
261 }
262 ncolors = picked;
263 }
264 }
265
266 /*
267 * Knowing the size of the largest cache on this CPU, re-color
268 * our pages.
269 */
270 if (ncolors <= uvmexp.ncolors)
271 return;
272 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
273 uvm_page_recolor(ncolors);
274 }
275
276
277 static void
278 cpu_attach(device_t parent, device_t self, void *aux)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpu_attach_args *caa = aux;
282 struct cpu_info *ci;
283 uintptr_t ptr;
284 int cpunum = caa->cpu_number;
285 static bool again;
286
287 sc->sc_dev = self;
288
289 if (cpus_attached == ~0) {
290 aprint_error(": increase MAXCPUS\n");
291 return;
292 }
293
294 /*
295 * If we're an Application Processor, allocate a cpu_info
296 * structure, otherwise use the primary's.
297 */
298 if (caa->cpu_role == CPU_ROLE_AP) {
299 if ((boothowto & RB_MD1) != 0) {
300 aprint_error(": multiprocessor boot disabled\n");
301 if (!pmf_device_register(self, NULL, NULL))
302 aprint_error_dev(self,
303 "couldn't establish power handler\n");
304 return;
305 }
306 aprint_naive(": Application Processor\n");
307 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
308 KM_SLEEP);
309 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
310 ci->ci_curldt = -1;
311 #ifdef TRAPLOG
312 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
313 #endif
314 } else {
315 aprint_naive(": %s Processor\n",
316 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
317 ci = &cpu_info_primary;
318 if (cpunum != lapic_cpu_number()) {
319 /* XXX should be done earlier. */
320 uint32_t reg;
321 aprint_verbose("\n");
322 aprint_verbose_dev(self, "running CPU at apic %d"
323 " instead of at expected %d", lapic_cpu_number(),
324 cpunum);
325 reg = i82489_readreg(LAPIC_ID);
326 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
327 (cpunum << LAPIC_ID_SHIFT));
328 }
329 if (cpunum != lapic_cpu_number()) {
330 aprint_error_dev(self, "unable to reset apic id\n");
331 }
332 }
333
334 ci->ci_self = ci;
335 sc->sc_info = ci;
336 ci->ci_dev = self;
337 ci->ci_acpiid = caa->cpu_id;
338 ci->ci_cpuid = caa->cpu_number;
339 ci->ci_func = caa->cpu_func;
340
341 /* Must be before mi_cpu_attach(). */
342 cpu_vm_init(ci);
343
344 if (caa->cpu_role == CPU_ROLE_AP) {
345 int error;
346
347 error = mi_cpu_attach(ci);
348 if (error != 0) {
349 aprint_normal("\n");
350 aprint_error_dev(self,
351 "mi_cpu_attach failed with %d\n", error);
352 return;
353 }
354 cpu_init_tss(ci);
355 } else {
356 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
357 }
358
359 ci->ci_cpumask = (1 << cpu_index(ci));
360 pmap_reference(pmap_kernel());
361 ci->ci_pmap = pmap_kernel();
362 ci->ci_tlbstate = TLBSTATE_STALE;
363
364 /*
365 * Boot processor may not be attached first, but the below
366 * must be done to allow booting other processors.
367 */
368 if (!again) {
369 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
370 /* Basic init. */
371 cpu_intr_init(ci);
372 cpu_get_tsc_freq(ci);
373 cpu_init(ci);
374 cpu_set_tss_gates(ci);
375 pmap_cpu_init_late(ci);
376 if (caa->cpu_role != CPU_ROLE_SP) {
377 /* Enable lapic. */
378 lapic_enable();
379 lapic_set_lvt();
380 lapic_calibrate_timer(ci);
381 }
382 /* Make sure DELAY() is initialized. */
383 DELAY(1);
384 again = true;
385 }
386
387 /* further PCB init done later. */
388
389 switch (caa->cpu_role) {
390 case CPU_ROLE_SP:
391 atomic_or_32(&ci->ci_flags, CPUF_SP);
392 cpu_identify(ci);
393 x86_errata();
394 x86_cpu_idle_init();
395 break;
396
397 case CPU_ROLE_BP:
398 atomic_or_32(&ci->ci_flags, CPUF_BSP);
399 cpu_identify(ci);
400 x86_errata();
401 x86_cpu_idle_init();
402 break;
403
404 case CPU_ROLE_AP:
405 /*
406 * report on an AP
407 */
408 cpu_intr_init(ci);
409 gdt_alloc_cpu(ci);
410 cpu_set_tss_gates(ci);
411 pmap_cpu_init_late(ci);
412 cpu_start_secondary(ci);
413 if (ci->ci_flags & CPUF_PRESENT) {
414 struct cpu_info *tmp;
415
416 cpu_identify(ci);
417 tmp = cpu_info_list;
418 while (tmp->ci_next)
419 tmp = tmp->ci_next;
420
421 tmp->ci_next = ci;
422 }
423 break;
424
425 default:
426 aprint_normal("\n");
427 panic("unknown processor type??\n");
428 }
429
430 pat_init(ci);
431 atomic_or_32(&cpus_attached, ci->ci_cpumask);
432
433 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
434 aprint_error_dev(self, "couldn't establish power handler\n");
435
436 if (mp_verbose) {
437 struct lwp *l = ci->ci_data.cpu_idlelwp;
438 struct pcb *pcb = lwp_getpcb(l);
439
440 aprint_verbose_dev(self,
441 "idle lwp at %p, idle sp at %p\n",
442 l,
443 #ifdef i386
444 (void *)pcb->pcb_esp
445 #else
446 (void *)pcb->pcb_rsp
447 #endif
448 );
449 }
450
451 /*
452 * Postpone the "cpufeaturebus" scan.
453 * It is safe to scan the pseudo-bus
454 * only after all CPUs have attached.
455 */
456 (void)config_defer(self, cpu_defer);
457 }
458
459 static void
460 cpu_defer(device_t self)
461 {
462 cpu_rescan(self, NULL, NULL);
463 }
464
465 static int
466 cpu_rescan(device_t self, const char *ifattr, const int *locators)
467 {
468 struct cpu_softc *sc = device_private(self);
469 struct cpufeature_attach_args cfaa;
470 struct cpu_info *ci = sc->sc_info;
471
472 memset(&cfaa, 0, sizeof(cfaa));
473 cfaa.ci = ci;
474
475 if (ifattr_match(ifattr, "cpufeaturebus")) {
476
477 if (ci->ci_frequency == NULL) {
478 cfaa.name = "frequency";
479 ci->ci_frequency = config_found_ia(self,
480 "cpufeaturebus", &cfaa, NULL);
481 }
482
483 if (ci->ci_padlock == NULL) {
484 cfaa.name = "padlock";
485 ci->ci_padlock = config_found_ia(self,
486 "cpufeaturebus", &cfaa, NULL);
487 }
488
489 if (ci->ci_temperature == NULL) {
490 cfaa.name = "temperature";
491 ci->ci_temperature = config_found_ia(self,
492 "cpufeaturebus", &cfaa, NULL);
493 }
494 }
495
496 return 0;
497 }
498
499 static void
500 cpu_childdetached(device_t self, device_t child)
501 {
502 struct cpu_softc *sc = device_private(self);
503 struct cpu_info *ci = sc->sc_info;
504
505 if (ci->ci_frequency == child)
506 ci->ci_frequency = NULL;
507
508 if (ci->ci_padlock == child)
509 ci->ci_padlock = NULL;
510
511 if (ci->ci_temperature == child)
512 ci->ci_temperature = NULL;
513 }
514
515 /*
516 * Initialize the processor appropriately.
517 */
518
519 void
520 cpu_init(struct cpu_info *ci)
521 {
522
523 lcr0(rcr0() | CR0_WP);
524
525 /*
526 * On a P6 or above, enable global TLB caching if the
527 * hardware supports it.
528 */
529 if (cpu_feature[0] & CPUID_PGE)
530 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
531
532 /*
533 * If we have FXSAVE/FXRESTOR, use them.
534 */
535 if (cpu_feature[0] & CPUID_FXSR) {
536 lcr4(rcr4() | CR4_OSFXSR);
537
538 /*
539 * If we have SSE/SSE2, enable XMM exceptions.
540 */
541 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
542 lcr4(rcr4() | CR4_OSXMMEXCPT);
543 }
544
545 #ifdef MTRR
546 /*
547 * On a P6 or above, initialize MTRR's if the hardware supports them.
548 */
549 if (cpu_feature[0] & CPUID_MTRR) {
550 if ((ci->ci_flags & CPUF_AP) == 0)
551 i686_mtrr_init_first();
552 mtrr_init_cpu(ci);
553 }
554
555 #ifdef i386
556 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
557 /*
558 * Must be a K6-2 Step >= 7 or a K6-III.
559 */
560 if (CPUID2FAMILY(ci->ci_signature) == 5) {
561 if (CPUID2MODEL(ci->ci_signature) > 8 ||
562 (CPUID2MODEL(ci->ci_signature) == 8 &&
563 CPUID2STEPPING(ci->ci_signature) >= 7)) {
564 mtrr_funcs = &k6_mtrr_funcs;
565 k6_mtrr_init_first();
566 mtrr_init_cpu(ci);
567 }
568 }
569 }
570 #endif /* i386 */
571 #endif /* MTRR */
572
573 atomic_or_32(&cpus_running, ci->ci_cpumask);
574
575 if (ci != &cpu_info_primary) {
576 /* Synchronize TSC again, and check for drift. */
577 wbinvd();
578 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
579 tsc_sync_ap(ci);
580 } else {
581 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
582 }
583 }
584
585 void
586 cpu_boot_secondary_processors(void)
587 {
588 struct cpu_info *ci;
589 u_long i;
590
591 /* Now that we know the number of CPUs, patch the text segment. */
592 x86_patch(false);
593
594 for (i=0; i < maxcpus; i++) {
595 ci = cpu_lookup(i);
596 if (ci == NULL)
597 continue;
598 if (ci->ci_data.cpu_idlelwp == NULL)
599 continue;
600 if ((ci->ci_flags & CPUF_PRESENT) == 0)
601 continue;
602 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
603 continue;
604 cpu_boot_secondary(ci);
605 }
606
607 x86_mp_online = true;
608
609 /* Now that we know about the TSC, attach the timecounter. */
610 tsc_tc_init();
611
612 /* Enable zeroing of pages in the idle loop if we have SSE2. */
613 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
614 }
615
616 static void
617 cpu_init_idle_lwp(struct cpu_info *ci)
618 {
619 struct lwp *l = ci->ci_data.cpu_idlelwp;
620 struct pcb *pcb = lwp_getpcb(l);
621
622 pcb->pcb_cr0 = rcr0();
623 }
624
625 void
626 cpu_init_idle_lwps(void)
627 {
628 struct cpu_info *ci;
629 u_long i;
630
631 for (i = 0; i < maxcpus; i++) {
632 ci = cpu_lookup(i);
633 if (ci == NULL)
634 continue;
635 if (ci->ci_data.cpu_idlelwp == NULL)
636 continue;
637 if ((ci->ci_flags & CPUF_PRESENT) == 0)
638 continue;
639 cpu_init_idle_lwp(ci);
640 }
641 }
642
643 void
644 cpu_start_secondary(struct cpu_info *ci)
645 {
646 extern paddr_t mp_pdirpa;
647 u_long psl;
648 int i;
649
650 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
651 atomic_or_32(&ci->ci_flags, CPUF_AP);
652 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
653 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
654 return;
655 }
656
657 /*
658 * Wait for it to become ready. Setting cpu_starting opens the
659 * initial gate and allows the AP to start soft initialization.
660 */
661 KASSERT(cpu_starting == NULL);
662 cpu_starting = ci;
663 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
664 #ifdef MPDEBUG
665 extern int cpu_trace[3];
666 static int otrace[3];
667 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
668 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
669 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
670 memcpy(otrace, cpu_trace, sizeof(otrace));
671 }
672 #endif
673 i8254_delay(10);
674 }
675
676 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
677 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
678 #if defined(MPDEBUG) && defined(DDB)
679 printf("dropping into debugger; continue from here to resume boot\n");
680 Debugger();
681 #endif
682 } else {
683 /*
684 * Synchronize time stamp counters. Invalidate cache and do
685 * twice to try and minimize possible cache effects. Disable
686 * interrupts to try and rule out any external interference.
687 */
688 psl = x86_read_psl();
689 x86_disable_intr();
690 wbinvd();
691 tsc_sync_bp(ci);
692 x86_write_psl(psl);
693 }
694
695 CPU_START_CLEANUP(ci);
696 cpu_starting = NULL;
697 }
698
699 void
700 cpu_boot_secondary(struct cpu_info *ci)
701 {
702 int64_t drift;
703 u_long psl;
704 int i;
705
706 atomic_or_32(&ci->ci_flags, CPUF_GO);
707 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
708 i8254_delay(10);
709 }
710 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
711 aprint_error_dev(ci->ci_dev, "failed to start\n");
712 #if defined(MPDEBUG) && defined(DDB)
713 printf("dropping into debugger; continue from here to resume boot\n");
714 Debugger();
715 #endif
716 } else {
717 /* Synchronize TSC again, check for drift. */
718 drift = ci->ci_data.cpu_cc_skew;
719 psl = x86_read_psl();
720 x86_disable_intr();
721 wbinvd();
722 tsc_sync_bp(ci);
723 x86_write_psl(psl);
724 drift -= ci->ci_data.cpu_cc_skew;
725 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
726 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
727 tsc_sync_drift(drift);
728 }
729 }
730
731 /*
732 * The CPU ends up here when its ready to run
733 * This is called from code in mptramp.s; at this point, we are running
734 * in the idle pcb/idle stack of the new CPU. When this function returns,
735 * this processor will enter the idle loop and start looking for work.
736 */
737 void
738 cpu_hatch(void *v)
739 {
740 struct cpu_info *ci = (struct cpu_info *)v;
741 struct pcb *pcb;
742 int s, i;
743
744 cpu_init_msrs(ci, true);
745 cpu_probe(ci);
746
747 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
748 /* cpu_get_tsc_freq(ci); */
749
750 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
751
752 /*
753 * Synchronize time stamp counters. Invalidate cache and do twice
754 * to try and minimize possible cache effects. Note that interrupts
755 * are off at this point.
756 */
757 wbinvd();
758 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
759 tsc_sync_ap(ci);
760
761 /*
762 * Wait to be brought online. Use 'monitor/mwait' if available,
763 * in order to make the TSC drift as much as possible. so that
764 * we can detect it later. If not available, try 'pause'.
765 * We'd like to use 'hlt', but we have interrupts off.
766 */
767 while ((ci->ci_flags & CPUF_GO) == 0) {
768 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
769 x86_monitor(&ci->ci_flags, 0, 0);
770 if ((ci->ci_flags & CPUF_GO) != 0) {
771 continue;
772 }
773 x86_mwait(0, 0);
774 } else {
775 for (i = 10000; i != 0; i--) {
776 x86_pause();
777 }
778 }
779 }
780
781 /* Because the text may have been patched in x86_patch(). */
782 wbinvd();
783 x86_flush();
784 tlbflushg();
785
786 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
787
788 #ifdef PAE
789 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
790 for (i = 0 ; i < PDP_SIZE; i++) {
791 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
792 }
793 lcr3(ci->ci_pae_l3_pdirpa);
794 #else
795 lcr3(pmap_pdirpa(pmap_kernel(), 0));
796 #endif
797
798 pcb = lwp_getpcb(curlwp);
799 pcb->pcb_cr3 = rcr3();
800 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
801 lcr0(pcb->pcb_cr0);
802
803 cpu_init_idt();
804 gdt_init_cpu(ci);
805 lapic_enable();
806 lapic_set_lvt();
807 lapic_initclocks();
808
809 #ifdef i386
810 #if NNPX > 0
811 npxinit(ci);
812 #endif
813 #else
814 fpuinit(ci);
815 #endif
816 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
817 ltr(ci->ci_tss_sel);
818
819 cpu_init(ci);
820 cpu_get_tsc_freq(ci);
821
822 s = splhigh();
823 #ifdef i386
824 lapic_tpr = 0;
825 #else
826 lcr8(0);
827 #endif
828 x86_enable_intr();
829 splx(s);
830 x86_errata();
831
832 aprint_debug_dev(ci->ci_dev, "running\n");
833 }
834
835 #if defined(DDB)
836
837 #include <ddb/db_output.h>
838 #include <machine/db_machdep.h>
839
840 /*
841 * Dump CPU information from ddb.
842 */
843 void
844 cpu_debug_dump(void)
845 {
846 struct cpu_info *ci;
847 CPU_INFO_ITERATOR cii;
848
849 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
850 for (CPU_INFO_FOREACH(cii, ci)) {
851 db_printf("%p %s %ld %x %x %10p %10p\n",
852 ci,
853 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
854 (long)ci->ci_cpuid,
855 ci->ci_flags, ci->ci_ipis,
856 ci->ci_curlwp,
857 ci->ci_fpcurlwp);
858 }
859 }
860 #endif
861
862 static void
863 cpu_copy_trampoline(void)
864 {
865 /*
866 * Copy boot code.
867 */
868 extern u_char cpu_spinup_trampoline[];
869 extern u_char cpu_spinup_trampoline_end[];
870
871 vaddr_t mp_trampoline_vaddr;
872
873 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
874 UVM_KMF_VAONLY);
875
876 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
877 VM_PROT_READ | VM_PROT_WRITE, 0);
878 pmap_update(pmap_kernel());
879 memcpy((void *)mp_trampoline_vaddr,
880 cpu_spinup_trampoline,
881 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
882
883 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
884 pmap_update(pmap_kernel());
885 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
886 }
887
888 #ifdef i386
889 static void
890 tss_init(struct i386tss *tss, void *stack, void *func)
891 {
892 KASSERT(curcpu()->ci_pmap == pmap_kernel());
893
894 memset(tss, 0, sizeof *tss);
895 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
896 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
897 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
898 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
899 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
900 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
901 /* %cr3 contains the value associated to pmap_kernel */
902 tss->tss_cr3 = rcr3();
903 tss->tss_esp = (int)((char *)stack + USPACE - 16);
904 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
905 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
906 tss->__tss_eip = (int)func;
907 }
908
909 /* XXX */
910 #define IDTVEC(name) __CONCAT(X, name)
911 typedef void (vector)(void);
912 extern vector IDTVEC(tss_trap08);
913 #ifdef DDB
914 extern vector Xintrddbipi;
915 extern int ddb_vec;
916 #endif
917
918 static void
919 cpu_set_tss_gates(struct cpu_info *ci)
920 {
921 struct segment_descriptor sd;
922
923 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
924 UVM_KMF_WIRED);
925 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
926 IDTVEC(tss_trap08));
927 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
928 SDT_SYS386TSS, SEL_KPL, 0, 0);
929 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
930 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
931 GSEL(GTRAPTSS_SEL, SEL_KPL));
932
933 #if defined(DDB)
934 /*
935 * Set up separate handler for the DDB IPI, so that it doesn't
936 * stomp on a possibly corrupted stack.
937 *
938 * XXX overwriting the gate set in db_machine_init.
939 * Should rearrange the code so that it's set only once.
940 */
941 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
942 UVM_KMF_WIRED);
943 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
944
945 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
946 SDT_SYS386TSS, SEL_KPL, 0, 0);
947 ci->ci_gdt[GIPITSS_SEL].sd = sd;
948
949 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
950 GSEL(GIPITSS_SEL, SEL_KPL));
951 #endif
952 }
953 #else
954 static void
955 cpu_set_tss_gates(struct cpu_info *ci)
956 {
957
958 }
959 #endif /* i386 */
960
961 int
962 mp_cpu_start(struct cpu_info *ci, paddr_t target)
963 {
964 unsigned short dwordptr[2];
965 int error;
966
967 /*
968 * Bootstrap code must be addressable in real mode
969 * and it must be page aligned.
970 */
971 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
972
973 /*
974 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
975 */
976
977 outb(IO_RTC, NVRAM_RESET);
978 outb(IO_RTC+1, NVRAM_RESET_JUMP);
979
980 /*
981 * "and the warm reset vector (DWORD based at 40:67) to point
982 * to the AP startup code ..."
983 */
984
985 dwordptr[0] = 0;
986 dwordptr[1] = target >> 4;
987
988 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
989
990 if ((cpu_feature[0] & CPUID_APIC) == 0) {
991 aprint_error("mp_cpu_start: CPU does not have APIC\n");
992 return ENODEV;
993 }
994
995 /*
996 * ... prior to executing the following sequence:". We'll also add in
997 * local cache flush, in case the BIOS has left the AP with its cache
998 * disabled. It may not be able to cope with MP coherency.
999 */
1000 wbinvd();
1001
1002 if (ci->ci_flags & CPUF_AP) {
1003 error = x86_ipi_init(ci->ci_cpuid);
1004 if (error != 0) {
1005 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1006 __func__);
1007 return error;
1008 }
1009 i8254_delay(10000);
1010
1011 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1012 if (error != 0) {
1013 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1014 __func__);
1015 return error;
1016 }
1017 i8254_delay(200);
1018
1019 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1020 if (error != 0) {
1021 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1022 __func__);
1023 return error;
1024 }
1025 i8254_delay(200);
1026 }
1027
1028 return 0;
1029 }
1030
1031 void
1032 mp_cpu_start_cleanup(struct cpu_info *ci)
1033 {
1034 /*
1035 * Ensure the NVRAM reset byte contains something vaguely sane.
1036 */
1037
1038 outb(IO_RTC, NVRAM_RESET);
1039 outb(IO_RTC+1, NVRAM_RESET_RST);
1040 }
1041
1042 #ifdef __x86_64__
1043 typedef void (vector)(void);
1044 extern vector Xsyscall, Xsyscall32;
1045 #endif
1046
1047 void
1048 cpu_init_msrs(struct cpu_info *ci, bool full)
1049 {
1050 #ifdef __x86_64__
1051 wrmsr(MSR_STAR,
1052 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1053 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1054 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1055 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1056 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1057
1058 if (full) {
1059 wrmsr(MSR_FSBASE, 0);
1060 wrmsr(MSR_GSBASE, (uint64_t)ci);
1061 wrmsr(MSR_KERNELGSBASE, 0);
1062 }
1063 #endif /* __x86_64__ */
1064
1065 if (cpu_feature[2] & CPUID_NOX)
1066 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1067 }
1068
1069 void
1070 cpu_offline_md(void)
1071 {
1072 int s;
1073
1074 s = splhigh();
1075 #ifdef i386
1076 #if NNPX > 0
1077 npxsave_cpu(true);
1078 #endif
1079 #else
1080 fpusave_cpu(true);
1081 #endif
1082 splx(s);
1083 }
1084
1085 /* XXX joerg restructure and restart CPUs individually */
1086 static bool
1087 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1088 {
1089 struct cpu_softc *sc = device_private(dv);
1090 struct cpu_info *ci = sc->sc_info;
1091 int err;
1092
1093 if (ci->ci_flags & CPUF_PRIMARY)
1094 return true;
1095 if (ci->ci_data.cpu_idlelwp == NULL)
1096 return true;
1097 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1098 return true;
1099
1100 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1101
1102 if (sc->sc_wasonline) {
1103 mutex_enter(&cpu_lock);
1104 err = cpu_setstate(ci, false);
1105 mutex_exit(&cpu_lock);
1106
1107 if (err)
1108 return false;
1109 }
1110
1111 return true;
1112 }
1113
1114 static bool
1115 cpu_resume(device_t dv, const pmf_qual_t *qual)
1116 {
1117 struct cpu_softc *sc = device_private(dv);
1118 struct cpu_info *ci = sc->sc_info;
1119 int err = 0;
1120
1121 if (ci->ci_flags & CPUF_PRIMARY)
1122 return true;
1123 if (ci->ci_data.cpu_idlelwp == NULL)
1124 return true;
1125 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1126 return true;
1127
1128 if (sc->sc_wasonline) {
1129 mutex_enter(&cpu_lock);
1130 err = cpu_setstate(ci, true);
1131 mutex_exit(&cpu_lock);
1132 }
1133
1134 return err == 0;
1135 }
1136
1137 static bool
1138 cpu_shutdown(device_t dv, int how)
1139 {
1140 struct cpu_softc *sc = device_private(dv);
1141 struct cpu_info *ci = sc->sc_info;
1142
1143 if (ci->ci_flags & CPUF_BSP)
1144 return false;
1145
1146 return cpu_suspend(dv, NULL);
1147 }
1148
1149 void
1150 cpu_get_tsc_freq(struct cpu_info *ci)
1151 {
1152 uint64_t last_tsc;
1153
1154 if (cpu_hascounter()) {
1155 last_tsc = cpu_counter_serializing();
1156 i8254_delay(100000);
1157 ci->ci_data.cpu_cc_freq =
1158 (cpu_counter_serializing() - last_tsc) * 10;
1159 }
1160 }
1161
1162 void
1163 x86_cpu_idle_mwait(void)
1164 {
1165 struct cpu_info *ci = curcpu();
1166
1167 KASSERT(ci->ci_ilevel == IPL_NONE);
1168
1169 x86_monitor(&ci->ci_want_resched, 0, 0);
1170 if (__predict_false(ci->ci_want_resched)) {
1171 return;
1172 }
1173 x86_mwait(0, 0);
1174 }
1175
1176 void
1177 x86_cpu_idle_halt(void)
1178 {
1179 struct cpu_info *ci = curcpu();
1180
1181 KASSERT(ci->ci_ilevel == IPL_NONE);
1182
1183 x86_disable_intr();
1184 if (!__predict_false(ci->ci_want_resched)) {
1185 x86_stihlt();
1186 } else {
1187 x86_enable_intr();
1188 }
1189 }
1190
1191 /*
1192 * Loads pmap for the current CPU.
1193 */
1194 void
1195 cpu_load_pmap(struct pmap *pmap)
1196 {
1197 #ifdef PAE
1198 int i, s;
1199 struct cpu_info *ci;
1200
1201 s = splvm(); /* just to be safe */
1202 ci = curcpu();
1203 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1204 for (i = 0 ; i < PDP_SIZE; i++) {
1205 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1206 }
1207 splx(s);
1208 tlbflush();
1209 #else /* PAE */
1210 lcr3(pmap_pdirpa(pmap, 0));
1211 #endif /* PAE */
1212 }
1213
1214 /*
1215 * Notify all other cpus to halt.
1216 */
1217
1218 void
1219 cpu_broadcast_halt(struct cpu_info *ci)
1220 {
1221 x86_broadcast_ipi(X86_IPI_HALT);
1222 }
1223
1224 /*
1225 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1226 */
1227
1228 void
1229 cpu_kick(struct cpu_info *ci)
1230 {
1231 x86_send_ipi(ci, 0);
1232 }
1233