cpu.c revision 1.94 1 /* $NetBSD: cpu.c,v 1.94 2011/10/06 06:56:29 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.94 2011/10/06 06:56:29 mrg Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70
71 #include "lapic.h"
72 #include "ioapic.h"
73
74 #ifdef i386
75 #include "npx.h"
76 #endif
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kmem.h>
83 #include <sys/cpu.h>
84 #include <sys/cpufreq.h>
85 #include <sys/atomic.h>
86 #include <sys/reboot.h>
87
88 #include <uvm/uvm.h>
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #include <machine/mpbiosvar.h>
95 #include <machine/pcb.h>
96 #include <machine/specialreg.h>
97 #include <machine/segments.h>
98 #include <machine/gdt.h>
99 #include <machine/mtrr.h>
100 #include <machine/pio.h>
101 #include <machine/cpu_counter.h>
102
103 #ifdef i386
104 #include <machine/tlog.h>
105 #endif
106
107 #include <machine/apicvar.h>
108 #include <machine/i82489reg.h>
109 #include <machine/i82489var.h>
110
111 #include <dev/ic/mc146818reg.h>
112 #include <i386/isa/nvram.h>
113 #include <dev/isa/isareg.h>
114
115 #include "tsc.h"
116
117 #if MAXCPUS > 32
118 #error cpu_info contains 32bit bitmasks
119 #endif
120
121 static int cpu_match(device_t, cfdata_t, void *);
122 static void cpu_attach(device_t, device_t, void *);
123 static void cpu_defer(device_t);
124 static int cpu_rescan(device_t, const char *, const int *);
125 static void cpu_childdetached(device_t, device_t);
126 static bool cpu_suspend(device_t, const pmf_qual_t *);
127 static bool cpu_resume(device_t, const pmf_qual_t *);
128 static bool cpu_shutdown(device_t, int);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, paddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141
142 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
143 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
144
145 /*
146 * Statically-allocated CPU info for the primary CPU (or the only
147 * CPU, on uniprocessors). The CPU info list is initialized to
148 * point at it.
149 */
150 #ifdef TRAPLOG
151 struct tlog tlog_primary;
152 #endif
153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 .ci_dev = 0,
155 .ci_self = &cpu_info_primary,
156 .ci_idepth = -1,
157 .ci_curlwp = &lwp0,
158 .ci_curldt = -1,
159 .ci_cpumask = 1,
160 #ifdef TRAPLOG
161 .ci_tlog_base = &tlog_primary,
162 #endif /* !TRAPLOG */
163 };
164
165 struct cpu_info *cpu_info_list = &cpu_info_primary;
166
167 static void cpu_set_tss_gates(struct cpu_info *);
168
169 #ifdef i386
170 static void tss_init(struct i386tss *, void *, void *);
171 #endif
172
173 static void cpu_init_idle_lwp(struct cpu_info *);
174
175 uint32_t cpus_attached = 0;
176 uint32_t cpus_running = 1;
177
178 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
179 * [0] basic features %edx
180 * [1] basic features %ecx
181 * [2] extended features %edx
182 * [3] extended features %ecx
183 * [4] VIA padlock features
184 */
185
186 extern char x86_64_doubleflt_stack[];
187
188 bool x86_mp_online;
189 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
190 static vaddr_t cmos_data_mapping;
191 struct cpu_info *cpu_starting;
192
193 void cpu_hatch(void *);
194 static void cpu_boot_secondary(struct cpu_info *ci);
195 static void cpu_start_secondary(struct cpu_info *ci);
196 static void cpu_copy_trampoline(void);
197
198 /*
199 * Runs once per boot once multiprocessor goo has been detected and
200 * the local APIC on the boot processor has been mapped.
201 *
202 * Called from lapic_boot_init() (from mpbios_scan()).
203 */
204 void
205 cpu_init_first(void)
206 {
207
208 cpu_info_primary.ci_cpuid = lapic_cpu_number();
209 cpu_copy_trampoline();
210
211 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
212 if (cmos_data_mapping == 0)
213 panic("No KVA for page 0");
214 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
215 pmap_update(pmap_kernel());
216 }
217
218 static int
219 cpu_match(device_t parent, cfdata_t match, void *aux)
220 {
221
222 return 1;
223 }
224
225 static void
226 cpu_vm_init(struct cpu_info *ci)
227 {
228 int ncolors = 2, i;
229
230 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
231 struct x86_cache_info *cai;
232 int tcolors;
233
234 cai = &ci->ci_cinfo[i];
235
236 tcolors = atop(cai->cai_totalsize);
237 switch(cai->cai_associativity) {
238 case 0xff:
239 tcolors = 1; /* fully associative */
240 break;
241 case 0:
242 case 1:
243 break;
244 default:
245 tcolors /= cai->cai_associativity;
246 }
247 ncolors = max(ncolors, tcolors);
248 /*
249 * If the desired number of colors is not a power of
250 * two, it won't be good. Find the greatest power of
251 * two which is an even divisor of the number of colors,
252 * to preserve even coloring of pages.
253 */
254 if (ncolors & (ncolors - 1) ) {
255 int try, picked = 1;
256 for (try = 1; try < ncolors; try *= 2) {
257 if (ncolors % try == 0) picked = try;
258 }
259 if (picked == 1) {
260 panic("desired number of cache colors %d is "
261 " > 1, but not even!", ncolors);
262 }
263 ncolors = picked;
264 }
265 }
266
267 /*
268 * Knowing the size of the largest cache on this CPU, potentially
269 * re-color our pages.
270 */
271 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
272 uvm_page_recolor(ncolors);
273 }
274
275
276 static void
277 cpu_attach(device_t parent, device_t self, void *aux)
278 {
279 struct cpu_softc *sc = device_private(self);
280 struct cpu_attach_args *caa = aux;
281 struct cpu_info *ci;
282 uintptr_t ptr;
283 int cpunum = caa->cpu_number;
284 static bool again;
285
286 sc->sc_dev = self;
287
288 if (cpus_attached == ~0) {
289 aprint_error(": increase MAXCPUS\n");
290 return;
291 }
292
293 /*
294 * If we're an Application Processor, allocate a cpu_info
295 * structure, otherwise use the primary's.
296 */
297 if (caa->cpu_role == CPU_ROLE_AP) {
298 if ((boothowto & RB_MD1) != 0) {
299 aprint_error(": multiprocessor boot disabled\n");
300 if (!pmf_device_register(self, NULL, NULL))
301 aprint_error_dev(self,
302 "couldn't establish power handler\n");
303 return;
304 }
305 aprint_naive(": Application Processor\n");
306 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
307 KM_SLEEP);
308 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
309 ci->ci_curldt = -1;
310 #ifdef TRAPLOG
311 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
312 #endif
313 } else {
314 aprint_naive(": %s Processor\n",
315 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
316 ci = &cpu_info_primary;
317 if (cpunum != lapic_cpu_number()) {
318 /* XXX should be done earlier. */
319 uint32_t reg;
320 aprint_verbose("\n");
321 aprint_verbose_dev(self, "running CPU at apic %d"
322 " instead of at expected %d", lapic_cpu_number(),
323 cpunum);
324 reg = i82489_readreg(LAPIC_ID);
325 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
326 (cpunum << LAPIC_ID_SHIFT));
327 }
328 if (cpunum != lapic_cpu_number()) {
329 aprint_error_dev(self, "unable to reset apic id\n");
330 }
331 }
332
333 ci->ci_self = ci;
334 sc->sc_info = ci;
335 ci->ci_dev = self;
336 ci->ci_acpiid = caa->cpu_id;
337 ci->ci_cpuid = caa->cpu_number;
338 ci->ci_func = caa->cpu_func;
339
340 /* Must be before mi_cpu_attach(). */
341 cpu_vm_init(ci);
342
343 if (caa->cpu_role == CPU_ROLE_AP) {
344 int error;
345
346 error = mi_cpu_attach(ci);
347 if (error != 0) {
348 aprint_normal("\n");
349 aprint_error_dev(self,
350 "mi_cpu_attach failed with %d\n", error);
351 return;
352 }
353 cpu_init_tss(ci);
354 } else {
355 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
356 }
357
358 ci->ci_cpumask = (1 << cpu_index(ci));
359 pmap_reference(pmap_kernel());
360 ci->ci_pmap = pmap_kernel();
361 ci->ci_tlbstate = TLBSTATE_STALE;
362
363 /*
364 * Boot processor may not be attached first, but the below
365 * must be done to allow booting other processors.
366 */
367 if (!again) {
368 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
369 /* Basic init. */
370 cpu_intr_init(ci);
371 cpu_get_tsc_freq(ci);
372 cpu_init(ci);
373 cpu_set_tss_gates(ci);
374 pmap_cpu_init_late(ci);
375 if (caa->cpu_role != CPU_ROLE_SP) {
376 /* Enable lapic. */
377 lapic_enable();
378 lapic_set_lvt();
379 lapic_calibrate_timer(ci);
380 }
381 /* Make sure DELAY() is initialized. */
382 DELAY(1);
383 again = true;
384 }
385
386 /* further PCB init done later. */
387
388 switch (caa->cpu_role) {
389 case CPU_ROLE_SP:
390 atomic_or_32(&ci->ci_flags, CPUF_SP);
391 cpu_identify(ci);
392 x86_errata();
393 x86_cpu_idle_init();
394 break;
395
396 case CPU_ROLE_BP:
397 atomic_or_32(&ci->ci_flags, CPUF_BSP);
398 cpu_identify(ci);
399 x86_errata();
400 x86_cpu_idle_init();
401 break;
402
403 case CPU_ROLE_AP:
404 /*
405 * report on an AP
406 */
407 cpu_intr_init(ci);
408 gdt_alloc_cpu(ci);
409 cpu_set_tss_gates(ci);
410 pmap_cpu_init_late(ci);
411 cpu_start_secondary(ci);
412 if (ci->ci_flags & CPUF_PRESENT) {
413 struct cpu_info *tmp;
414
415 cpu_identify(ci);
416 tmp = cpu_info_list;
417 while (tmp->ci_next)
418 tmp = tmp->ci_next;
419
420 tmp->ci_next = ci;
421 }
422 break;
423
424 default:
425 aprint_normal("\n");
426 panic("unknown processor type??\n");
427 }
428
429 pat_init(ci);
430 atomic_or_32(&cpus_attached, ci->ci_cpumask);
431
432 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
433 aprint_error_dev(self, "couldn't establish power handler\n");
434
435 if (mp_verbose) {
436 struct lwp *l = ci->ci_data.cpu_idlelwp;
437 struct pcb *pcb = lwp_getpcb(l);
438
439 aprint_verbose_dev(self,
440 "idle lwp at %p, idle sp at %p\n",
441 l,
442 #ifdef i386
443 (void *)pcb->pcb_esp
444 #else
445 (void *)pcb->pcb_rsp
446 #endif
447 );
448 }
449
450 /*
451 * Postpone the "cpufeaturebus" scan.
452 * It is safe to scan the pseudo-bus
453 * only after all CPUs have attached.
454 */
455 (void)config_defer(self, cpu_defer);
456 }
457
458 static void
459 cpu_defer(device_t self)
460 {
461 cpu_rescan(self, NULL, NULL);
462 }
463
464 static int
465 cpu_rescan(device_t self, const char *ifattr, const int *locators)
466 {
467 struct cpu_softc *sc = device_private(self);
468 struct cpufeature_attach_args cfaa;
469 struct cpu_info *ci = sc->sc_info;
470
471 memset(&cfaa, 0, sizeof(cfaa));
472 cfaa.ci = ci;
473
474 if (ifattr_match(ifattr, "cpufeaturebus")) {
475
476 if (ci->ci_frequency == NULL) {
477 cfaa.name = "frequency";
478 ci->ci_frequency = config_found_ia(self,
479 "cpufeaturebus", &cfaa, NULL);
480 }
481
482 if (ci->ci_padlock == NULL) {
483 cfaa.name = "padlock";
484 ci->ci_padlock = config_found_ia(self,
485 "cpufeaturebus", &cfaa, NULL);
486 }
487
488 if (ci->ci_temperature == NULL) {
489 cfaa.name = "temperature";
490 ci->ci_temperature = config_found_ia(self,
491 "cpufeaturebus", &cfaa, NULL);
492 }
493 }
494
495 return 0;
496 }
497
498 static void
499 cpu_childdetached(device_t self, device_t child)
500 {
501 struct cpu_softc *sc = device_private(self);
502 struct cpu_info *ci = sc->sc_info;
503
504 if (ci->ci_frequency == child)
505 ci->ci_frequency = NULL;
506
507 if (ci->ci_padlock == child)
508 ci->ci_padlock = NULL;
509
510 if (ci->ci_temperature == child)
511 ci->ci_temperature = NULL;
512 }
513
514 /*
515 * Initialize the processor appropriately.
516 */
517
518 void
519 cpu_init(struct cpu_info *ci)
520 {
521
522 lcr0(rcr0() | CR0_WP);
523
524 /*
525 * On a P6 or above, enable global TLB caching if the
526 * hardware supports it.
527 */
528 if (cpu_feature[0] & CPUID_PGE)
529 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
530
531 /*
532 * If we have FXSAVE/FXRESTOR, use them.
533 */
534 if (cpu_feature[0] & CPUID_FXSR) {
535 lcr4(rcr4() | CR4_OSFXSR);
536
537 /*
538 * If we have SSE/SSE2, enable XMM exceptions.
539 */
540 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
541 lcr4(rcr4() | CR4_OSXMMEXCPT);
542 }
543
544 #ifdef MTRR
545 /*
546 * On a P6 or above, initialize MTRR's if the hardware supports them.
547 */
548 if (cpu_feature[0] & CPUID_MTRR) {
549 if ((ci->ci_flags & CPUF_AP) == 0)
550 i686_mtrr_init_first();
551 mtrr_init_cpu(ci);
552 }
553
554 #ifdef i386
555 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
556 /*
557 * Must be a K6-2 Step >= 7 or a K6-III.
558 */
559 if (CPUID2FAMILY(ci->ci_signature) == 5) {
560 if (CPUID2MODEL(ci->ci_signature) > 8 ||
561 (CPUID2MODEL(ci->ci_signature) == 8 &&
562 CPUID2STEPPING(ci->ci_signature) >= 7)) {
563 mtrr_funcs = &k6_mtrr_funcs;
564 k6_mtrr_init_first();
565 mtrr_init_cpu(ci);
566 }
567 }
568 }
569 #endif /* i386 */
570 #endif /* MTRR */
571
572 atomic_or_32(&cpus_running, ci->ci_cpumask);
573
574 if (ci != &cpu_info_primary) {
575 /* Synchronize TSC again, and check for drift. */
576 wbinvd();
577 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
578 tsc_sync_ap(ci);
579 } else {
580 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
581 }
582 }
583
584 void
585 cpu_boot_secondary_processors(void)
586 {
587 struct cpu_info *ci;
588 u_long i;
589
590 /* Now that we know the number of CPUs, patch the text segment. */
591 x86_patch(false);
592
593 for (i=0; i < maxcpus; i++) {
594 ci = cpu_lookup(i);
595 if (ci == NULL)
596 continue;
597 if (ci->ci_data.cpu_idlelwp == NULL)
598 continue;
599 if ((ci->ci_flags & CPUF_PRESENT) == 0)
600 continue;
601 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
602 continue;
603 cpu_boot_secondary(ci);
604 }
605
606 x86_mp_online = true;
607
608 /* Now that we know about the TSC, attach the timecounter. */
609 tsc_tc_init();
610
611 /* Enable zeroing of pages in the idle loop if we have SSE2. */
612 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
613 }
614
615 static void
616 cpu_init_idle_lwp(struct cpu_info *ci)
617 {
618 struct lwp *l = ci->ci_data.cpu_idlelwp;
619 struct pcb *pcb = lwp_getpcb(l);
620
621 pcb->pcb_cr0 = rcr0();
622 }
623
624 void
625 cpu_init_idle_lwps(void)
626 {
627 struct cpu_info *ci;
628 u_long i;
629
630 for (i = 0; i < maxcpus; i++) {
631 ci = cpu_lookup(i);
632 if (ci == NULL)
633 continue;
634 if (ci->ci_data.cpu_idlelwp == NULL)
635 continue;
636 if ((ci->ci_flags & CPUF_PRESENT) == 0)
637 continue;
638 cpu_init_idle_lwp(ci);
639 }
640 }
641
642 void
643 cpu_start_secondary(struct cpu_info *ci)
644 {
645 extern paddr_t mp_pdirpa;
646 u_long psl;
647 int i;
648
649 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
650 atomic_or_32(&ci->ci_flags, CPUF_AP);
651 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
652 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
653 return;
654 }
655
656 /*
657 * Wait for it to become ready. Setting cpu_starting opens the
658 * initial gate and allows the AP to start soft initialization.
659 */
660 KASSERT(cpu_starting == NULL);
661 cpu_starting = ci;
662 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
663 #ifdef MPDEBUG
664 extern int cpu_trace[3];
665 static int otrace[3];
666 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
667 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
668 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
669 memcpy(otrace, cpu_trace, sizeof(otrace));
670 }
671 #endif
672 i8254_delay(10);
673 }
674
675 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
676 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
677 #if defined(MPDEBUG) && defined(DDB)
678 printf("dropping into debugger; continue from here to resume boot\n");
679 Debugger();
680 #endif
681 } else {
682 /*
683 * Synchronize time stamp counters. Invalidate cache and do
684 * twice to try and minimize possible cache effects. Disable
685 * interrupts to try and rule out any external interference.
686 */
687 psl = x86_read_psl();
688 x86_disable_intr();
689 wbinvd();
690 tsc_sync_bp(ci);
691 x86_write_psl(psl);
692 }
693
694 CPU_START_CLEANUP(ci);
695 cpu_starting = NULL;
696 }
697
698 void
699 cpu_boot_secondary(struct cpu_info *ci)
700 {
701 int64_t drift;
702 u_long psl;
703 int i;
704
705 atomic_or_32(&ci->ci_flags, CPUF_GO);
706 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
707 i8254_delay(10);
708 }
709 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
710 aprint_error_dev(ci->ci_dev, "failed to start\n");
711 #if defined(MPDEBUG) && defined(DDB)
712 printf("dropping into debugger; continue from here to resume boot\n");
713 Debugger();
714 #endif
715 } else {
716 /* Synchronize TSC again, check for drift. */
717 drift = ci->ci_data.cpu_cc_skew;
718 psl = x86_read_psl();
719 x86_disable_intr();
720 wbinvd();
721 tsc_sync_bp(ci);
722 x86_write_psl(psl);
723 drift -= ci->ci_data.cpu_cc_skew;
724 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
725 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
726 tsc_sync_drift(drift);
727 }
728 }
729
730 /*
731 * The CPU ends up here when its ready to run
732 * This is called from code in mptramp.s; at this point, we are running
733 * in the idle pcb/idle stack of the new CPU. When this function returns,
734 * this processor will enter the idle loop and start looking for work.
735 */
736 void
737 cpu_hatch(void *v)
738 {
739 struct cpu_info *ci = (struct cpu_info *)v;
740 struct pcb *pcb;
741 int s, i;
742
743 cpu_init_msrs(ci, true);
744 cpu_probe(ci);
745
746 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
747 /* cpu_get_tsc_freq(ci); */
748
749 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
750
751 /*
752 * Synchronize time stamp counters. Invalidate cache and do twice
753 * to try and minimize possible cache effects. Note that interrupts
754 * are off at this point.
755 */
756 wbinvd();
757 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
758 tsc_sync_ap(ci);
759
760 /*
761 * Wait to be brought online. Use 'monitor/mwait' if available,
762 * in order to make the TSC drift as much as possible. so that
763 * we can detect it later. If not available, try 'pause'.
764 * We'd like to use 'hlt', but we have interrupts off.
765 */
766 while ((ci->ci_flags & CPUF_GO) == 0) {
767 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
768 x86_monitor(&ci->ci_flags, 0, 0);
769 if ((ci->ci_flags & CPUF_GO) != 0) {
770 continue;
771 }
772 x86_mwait(0, 0);
773 } else {
774 for (i = 10000; i != 0; i--) {
775 x86_pause();
776 }
777 }
778 }
779
780 /* Because the text may have been patched in x86_patch(). */
781 wbinvd();
782 x86_flush();
783 tlbflushg();
784
785 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
786
787 #ifdef PAE
788 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
789 for (i = 0 ; i < PDP_SIZE; i++) {
790 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
791 }
792 lcr3(ci->ci_pae_l3_pdirpa);
793 #else
794 lcr3(pmap_pdirpa(pmap_kernel(), 0));
795 #endif
796
797 pcb = lwp_getpcb(curlwp);
798 pcb->pcb_cr3 = rcr3();
799 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
800 lcr0(pcb->pcb_cr0);
801
802 cpu_init_idt();
803 gdt_init_cpu(ci);
804 lapic_enable();
805 lapic_set_lvt();
806 lapic_initclocks();
807
808 #ifdef i386
809 #if NNPX > 0
810 npxinit(ci);
811 #endif
812 #else
813 fpuinit(ci);
814 #endif
815 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
816 ltr(ci->ci_tss_sel);
817
818 cpu_init(ci);
819 cpu_get_tsc_freq(ci);
820
821 s = splhigh();
822 #ifdef i386
823 lapic_tpr = 0;
824 #else
825 lcr8(0);
826 #endif
827 x86_enable_intr();
828 splx(s);
829 x86_errata();
830
831 aprint_debug_dev(ci->ci_dev, "running\n");
832 }
833
834 #if defined(DDB)
835
836 #include <ddb/db_output.h>
837 #include <machine/db_machdep.h>
838
839 /*
840 * Dump CPU information from ddb.
841 */
842 void
843 cpu_debug_dump(void)
844 {
845 struct cpu_info *ci;
846 CPU_INFO_ITERATOR cii;
847
848 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
849 for (CPU_INFO_FOREACH(cii, ci)) {
850 db_printf("%p %s %ld %x %x %10p %10p\n",
851 ci,
852 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
853 (long)ci->ci_cpuid,
854 ci->ci_flags, ci->ci_ipis,
855 ci->ci_curlwp,
856 ci->ci_fpcurlwp);
857 }
858 }
859 #endif
860
861 static void
862 cpu_copy_trampoline(void)
863 {
864 /*
865 * Copy boot code.
866 */
867 extern u_char cpu_spinup_trampoline[];
868 extern u_char cpu_spinup_trampoline_end[];
869
870 vaddr_t mp_trampoline_vaddr;
871
872 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
873 UVM_KMF_VAONLY);
874
875 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
876 VM_PROT_READ | VM_PROT_WRITE, 0);
877 pmap_update(pmap_kernel());
878 memcpy((void *)mp_trampoline_vaddr,
879 cpu_spinup_trampoline,
880 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
881
882 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
883 pmap_update(pmap_kernel());
884 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
885 }
886
887 #ifdef i386
888 static void
889 tss_init(struct i386tss *tss, void *stack, void *func)
890 {
891 KASSERT(curcpu()->ci_pmap == pmap_kernel());
892
893 memset(tss, 0, sizeof *tss);
894 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
895 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
896 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
897 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
898 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
899 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
900 /* %cr3 contains the value associated to pmap_kernel */
901 tss->tss_cr3 = rcr3();
902 tss->tss_esp = (int)((char *)stack + USPACE - 16);
903 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
904 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
905 tss->__tss_eip = (int)func;
906 }
907
908 /* XXX */
909 #define IDTVEC(name) __CONCAT(X, name)
910 typedef void (vector)(void);
911 extern vector IDTVEC(tss_trap08);
912 #ifdef DDB
913 extern vector Xintrddbipi;
914 extern int ddb_vec;
915 #endif
916
917 static void
918 cpu_set_tss_gates(struct cpu_info *ci)
919 {
920 struct segment_descriptor sd;
921
922 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
923 UVM_KMF_WIRED);
924 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
925 IDTVEC(tss_trap08));
926 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
927 SDT_SYS386TSS, SEL_KPL, 0, 0);
928 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
929 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
930 GSEL(GTRAPTSS_SEL, SEL_KPL));
931
932 #if defined(DDB)
933 /*
934 * Set up separate handler for the DDB IPI, so that it doesn't
935 * stomp on a possibly corrupted stack.
936 *
937 * XXX overwriting the gate set in db_machine_init.
938 * Should rearrange the code so that it's set only once.
939 */
940 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
941 UVM_KMF_WIRED);
942 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
943
944 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
945 SDT_SYS386TSS, SEL_KPL, 0, 0);
946 ci->ci_gdt[GIPITSS_SEL].sd = sd;
947
948 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
949 GSEL(GIPITSS_SEL, SEL_KPL));
950 #endif
951 }
952 #else
953 static void
954 cpu_set_tss_gates(struct cpu_info *ci)
955 {
956
957 }
958 #endif /* i386 */
959
960 int
961 mp_cpu_start(struct cpu_info *ci, paddr_t target)
962 {
963 unsigned short dwordptr[2];
964 int error;
965
966 /*
967 * Bootstrap code must be addressable in real mode
968 * and it must be page aligned.
969 */
970 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
971
972 /*
973 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
974 */
975
976 outb(IO_RTC, NVRAM_RESET);
977 outb(IO_RTC+1, NVRAM_RESET_JUMP);
978
979 /*
980 * "and the warm reset vector (DWORD based at 40:67) to point
981 * to the AP startup code ..."
982 */
983
984 dwordptr[0] = 0;
985 dwordptr[1] = target >> 4;
986
987 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
988
989 if ((cpu_feature[0] & CPUID_APIC) == 0) {
990 aprint_error("mp_cpu_start: CPU does not have APIC\n");
991 return ENODEV;
992 }
993
994 /*
995 * ... prior to executing the following sequence:". We'll also add in
996 * local cache flush, in case the BIOS has left the AP with its cache
997 * disabled. It may not be able to cope with MP coherency.
998 */
999 wbinvd();
1000
1001 if (ci->ci_flags & CPUF_AP) {
1002 error = x86_ipi_init(ci->ci_cpuid);
1003 if (error != 0) {
1004 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1005 __func__);
1006 return error;
1007 }
1008 i8254_delay(10000);
1009
1010 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1011 if (error != 0) {
1012 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1013 __func__);
1014 return error;
1015 }
1016 i8254_delay(200);
1017
1018 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1019 if (error != 0) {
1020 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1021 __func__);
1022 return error;
1023 }
1024 i8254_delay(200);
1025 }
1026
1027 return 0;
1028 }
1029
1030 void
1031 mp_cpu_start_cleanup(struct cpu_info *ci)
1032 {
1033 /*
1034 * Ensure the NVRAM reset byte contains something vaguely sane.
1035 */
1036
1037 outb(IO_RTC, NVRAM_RESET);
1038 outb(IO_RTC+1, NVRAM_RESET_RST);
1039 }
1040
1041 #ifdef __x86_64__
1042 typedef void (vector)(void);
1043 extern vector Xsyscall, Xsyscall32;
1044 #endif
1045
1046 void
1047 cpu_init_msrs(struct cpu_info *ci, bool full)
1048 {
1049 #ifdef __x86_64__
1050 wrmsr(MSR_STAR,
1051 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1052 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1053 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1054 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1055 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1056
1057 if (full) {
1058 wrmsr(MSR_FSBASE, 0);
1059 wrmsr(MSR_GSBASE, (uint64_t)ci);
1060 wrmsr(MSR_KERNELGSBASE, 0);
1061 }
1062 #endif /* __x86_64__ */
1063
1064 if (cpu_feature[2] & CPUID_NOX)
1065 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1066 }
1067
1068 void
1069 cpu_offline_md(void)
1070 {
1071 int s;
1072
1073 s = splhigh();
1074 #ifdef i386
1075 #if NNPX > 0
1076 npxsave_cpu(true);
1077 #endif
1078 #else
1079 fpusave_cpu(true);
1080 #endif
1081 splx(s);
1082 }
1083
1084 /* XXX joerg restructure and restart CPUs individually */
1085 static bool
1086 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1087 {
1088 struct cpu_softc *sc = device_private(dv);
1089 struct cpu_info *ci = sc->sc_info;
1090 int err;
1091
1092 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1093 return true;
1094
1095 cpufreq_suspend(ci);
1096
1097 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1098 return true;
1099
1100 if (ci->ci_data.cpu_idlelwp == NULL)
1101 return true;
1102
1103 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1104
1105 if (sc->sc_wasonline) {
1106 mutex_enter(&cpu_lock);
1107 err = cpu_setstate(ci, false);
1108 mutex_exit(&cpu_lock);
1109
1110 if (err != 0)
1111 return false;
1112 }
1113
1114 return true;
1115 }
1116
1117 static bool
1118 cpu_resume(device_t dv, const pmf_qual_t *qual)
1119 {
1120 struct cpu_softc *sc = device_private(dv);
1121 struct cpu_info *ci = sc->sc_info;
1122 int err = 0;
1123
1124 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1125 return true;
1126
1127 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1128 goto out;
1129
1130 if (ci->ci_data.cpu_idlelwp == NULL)
1131 goto out;
1132
1133 if (sc->sc_wasonline) {
1134 mutex_enter(&cpu_lock);
1135 err = cpu_setstate(ci, true);
1136 mutex_exit(&cpu_lock);
1137 }
1138
1139 out:
1140 if (err != 0)
1141 return false;
1142
1143 cpufreq_resume(ci);
1144
1145 return true;
1146 }
1147
1148 static bool
1149 cpu_shutdown(device_t dv, int how)
1150 {
1151 struct cpu_softc *sc = device_private(dv);
1152 struct cpu_info *ci = sc->sc_info;
1153
1154 if (ci->ci_flags & CPUF_BSP)
1155 return false;
1156
1157 return cpu_suspend(dv, NULL);
1158 }
1159
1160 void
1161 cpu_get_tsc_freq(struct cpu_info *ci)
1162 {
1163 uint64_t last_tsc;
1164
1165 if (cpu_hascounter()) {
1166 last_tsc = cpu_counter_serializing();
1167 i8254_delay(100000);
1168 ci->ci_data.cpu_cc_freq =
1169 (cpu_counter_serializing() - last_tsc) * 10;
1170 }
1171 }
1172
1173 void
1174 x86_cpu_idle_mwait(void)
1175 {
1176 struct cpu_info *ci = curcpu();
1177
1178 KASSERT(ci->ci_ilevel == IPL_NONE);
1179
1180 x86_monitor(&ci->ci_want_resched, 0, 0);
1181 if (__predict_false(ci->ci_want_resched)) {
1182 return;
1183 }
1184 x86_mwait(0, 0);
1185 }
1186
1187 void
1188 x86_cpu_idle_halt(void)
1189 {
1190 struct cpu_info *ci = curcpu();
1191
1192 KASSERT(ci->ci_ilevel == IPL_NONE);
1193
1194 x86_disable_intr();
1195 if (!__predict_false(ci->ci_want_resched)) {
1196 x86_stihlt();
1197 } else {
1198 x86_enable_intr();
1199 }
1200 }
1201
1202 /*
1203 * Loads pmap for the current CPU.
1204 */
1205 void
1206 cpu_load_pmap(struct pmap *pmap)
1207 {
1208 #ifdef PAE
1209 int i, s;
1210 struct cpu_info *ci;
1211
1212 s = splvm(); /* just to be safe */
1213 ci = curcpu();
1214 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1215 for (i = 0 ; i < PDP_SIZE; i++) {
1216 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1217 }
1218 splx(s);
1219 tlbflush();
1220 #else /* PAE */
1221 lcr3(pmap_pdirpa(pmap, 0));
1222 #endif /* PAE */
1223 }
1224
1225 /*
1226 * Notify all other cpus to halt.
1227 */
1228
1229 void
1230 cpu_broadcast_halt(void)
1231 {
1232 x86_broadcast_ipi(X86_IPI_HALT);
1233 }
1234
1235 /*
1236 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1237 */
1238
1239 void
1240 cpu_kick(struct cpu_info *ci)
1241 {
1242 x86_send_ipi(ci, 0);
1243 }
1244