Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.95
      1 /*	$NetBSD: cpu.c,v 1.95 2011/10/17 22:38:01 jmcneill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.95 2011/10/17 22:38:01 jmcneill Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/cpufreq.h>
     85 #include <sys/atomic.h>
     86 #include <sys/reboot.h>
     87 
     88 #include <uvm/uvm.h>
     89 
     90 #include <machine/cpufunc.h>
     91 #include <machine/cpuvar.h>
     92 #include <machine/pmap.h>
     93 #include <machine/vmparam.h>
     94 #include <machine/mpbiosvar.h>
     95 #include <machine/pcb.h>
     96 #include <machine/specialreg.h>
     97 #include <machine/segments.h>
     98 #include <machine/gdt.h>
     99 #include <machine/mtrr.h>
    100 #include <machine/pio.h>
    101 #include <machine/cpu_counter.h>
    102 
    103 #ifdef i386
    104 #include <machine/tlog.h>
    105 #endif
    106 
    107 #include <machine/apicvar.h>
    108 #include <machine/i82489reg.h>
    109 #include <machine/i82489var.h>
    110 
    111 #include <dev/ic/mc146818reg.h>
    112 #include <i386/isa/nvram.h>
    113 #include <dev/isa/isareg.h>
    114 
    115 #include "tsc.h"
    116 
    117 #if MAXCPUS > 32
    118 #error cpu_info contains 32bit bitmasks
    119 #endif
    120 
    121 static int	cpu_match(device_t, cfdata_t, void *);
    122 static void	cpu_attach(device_t, device_t, void *);
    123 static void	cpu_defer(device_t);
    124 static int	cpu_rescan(device_t, const char *, const int *);
    125 static void	cpu_childdetached(device_t, device_t);
    126 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    127 static bool	cpu_resume(device_t, const pmf_qual_t *);
    128 static bool	cpu_shutdown(device_t, int);
    129 
    130 struct cpu_softc {
    131 	device_t sc_dev;		/* device tree glue */
    132 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133 	bool sc_wasonline;
    134 };
    135 
    136 int mp_cpu_start(struct cpu_info *, paddr_t);
    137 void mp_cpu_start_cleanup(struct cpu_info *);
    138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139 					    mp_cpu_start_cleanup };
    140 
    141 
    142 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    143     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    144 
    145 /*
    146  * Statically-allocated CPU info for the primary CPU (or the only
    147  * CPU, on uniprocessors).  The CPU info list is initialized to
    148  * point at it.
    149  */
    150 #ifdef TRAPLOG
    151 struct tlog tlog_primary;
    152 #endif
    153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    154 	.ci_dev = 0,
    155 	.ci_self = &cpu_info_primary,
    156 	.ci_idepth = -1,
    157 	.ci_curlwp = &lwp0,
    158 	.ci_curldt = -1,
    159 	.ci_cpumask = 1,
    160 #ifdef TRAPLOG
    161 	.ci_tlog_base = &tlog_primary,
    162 #endif /* !TRAPLOG */
    163 };
    164 
    165 struct cpu_info *cpu_info_list = &cpu_info_primary;
    166 
    167 static void	cpu_set_tss_gates(struct cpu_info *);
    168 
    169 #ifdef i386
    170 static void	tss_init(struct i386tss *, void *, void *);
    171 #endif
    172 
    173 static void	cpu_init_idle_lwp(struct cpu_info *);
    174 
    175 uint32_t cpus_attached = 0;
    176 uint32_t cpus_running = 1;
    177 
    178 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    179 			  *	[0] basic features %edx
    180 			  *	[1] basic features %ecx
    181 			  *	[2] extended features %edx
    182 			  *	[3] extended features %ecx
    183 			  *	[4] VIA padlock features
    184 			  */
    185 
    186 extern char x86_64_doubleflt_stack[];
    187 
    188 bool x86_mp_online;
    189 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    190 static vaddr_t cmos_data_mapping;
    191 struct cpu_info *cpu_starting;
    192 
    193 void    	cpu_hatch(void *);
    194 static void    	cpu_boot_secondary(struct cpu_info *ci);
    195 static void    	cpu_start_secondary(struct cpu_info *ci);
    196 static void	cpu_copy_trampoline(void);
    197 
    198 /*
    199  * Runs once per boot once multiprocessor goo has been detected and
    200  * the local APIC on the boot processor has been mapped.
    201  *
    202  * Called from lapic_boot_init() (from mpbios_scan()).
    203  */
    204 void
    205 cpu_init_first(void)
    206 {
    207 
    208 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    209 	cpu_copy_trampoline();
    210 
    211 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    212 	if (cmos_data_mapping == 0)
    213 		panic("No KVA for page 0");
    214 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    215 	pmap_update(pmap_kernel());
    216 }
    217 
    218 static int
    219 cpu_match(device_t parent, cfdata_t match, void *aux)
    220 {
    221 
    222 	return 1;
    223 }
    224 
    225 static void
    226 cpu_vm_init(struct cpu_info *ci)
    227 {
    228 	int ncolors = 2, i;
    229 
    230 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    231 		struct x86_cache_info *cai;
    232 		int tcolors;
    233 
    234 		cai = &ci->ci_cinfo[i];
    235 
    236 		tcolors = atop(cai->cai_totalsize);
    237 		switch(cai->cai_associativity) {
    238 		case 0xff:
    239 			tcolors = 1; /* fully associative */
    240 			break;
    241 		case 0:
    242 		case 1:
    243 			break;
    244 		default:
    245 			tcolors /= cai->cai_associativity;
    246 		}
    247 		ncolors = max(ncolors, tcolors);
    248 		/*
    249 		 * If the desired number of colors is not a power of
    250 		 * two, it won't be good.  Find the greatest power of
    251 		 * two which is an even divisor of the number of colors,
    252 		 * to preserve even coloring of pages.
    253 		 */
    254 		if (ncolors & (ncolors - 1) ) {
    255 			int try, picked = 1;
    256 			for (try = 1; try < ncolors; try *= 2) {
    257 				if (ncolors % try == 0) picked = try;
    258 			}
    259 			if (picked == 1) {
    260 				panic("desired number of cache colors %d is "
    261 			      	" > 1, but not even!", ncolors);
    262 			}
    263 			ncolors = picked;
    264 		}
    265 	}
    266 
    267 	/*
    268 	 * Knowing the size of the largest cache on this CPU, potentially
    269 	 * re-color our pages.
    270 	 */
    271 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    272 	uvm_page_recolor(ncolors);
    273 }
    274 
    275 
    276 static void
    277 cpu_attach(device_t parent, device_t self, void *aux)
    278 {
    279 	struct cpu_softc *sc = device_private(self);
    280 	struct cpu_attach_args *caa = aux;
    281 	struct cpu_info *ci;
    282 	uintptr_t ptr;
    283 	int cpunum = caa->cpu_number;
    284 	static bool again;
    285 
    286 	sc->sc_dev = self;
    287 
    288 	if (cpus_attached == ~0) {
    289 		aprint_error(": increase MAXCPUS\n");
    290 		return;
    291 	}
    292 
    293 	/*
    294 	 * If we're an Application Processor, allocate a cpu_info
    295 	 * structure, otherwise use the primary's.
    296 	 */
    297 	if (caa->cpu_role == CPU_ROLE_AP) {
    298 		if ((boothowto & RB_MD1) != 0) {
    299 			aprint_error(": multiprocessor boot disabled\n");
    300 			if (!pmf_device_register(self, NULL, NULL))
    301 				aprint_error_dev(self,
    302 				    "couldn't establish power handler\n");
    303 			return;
    304 		}
    305 		aprint_naive(": Application Processor\n");
    306 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    307 		    KM_SLEEP);
    308 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    309 		ci->ci_curldt = -1;
    310 #ifdef TRAPLOG
    311 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    312 #endif
    313 	} else {
    314 		aprint_naive(": %s Processor\n",
    315 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    316 		ci = &cpu_info_primary;
    317 		if (cpunum != lapic_cpu_number()) {
    318 			/* XXX should be done earlier. */
    319 			uint32_t reg;
    320 			aprint_verbose("\n");
    321 			aprint_verbose_dev(self, "running CPU at apic %d"
    322 			    " instead of at expected %d", lapic_cpu_number(),
    323 			    cpunum);
    324 			reg = i82489_readreg(LAPIC_ID);
    325 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    326 			    (cpunum << LAPIC_ID_SHIFT));
    327 		}
    328 		if (cpunum != lapic_cpu_number()) {
    329 			aprint_error_dev(self, "unable to reset apic id\n");
    330 		}
    331 	}
    332 
    333 	ci->ci_self = ci;
    334 	sc->sc_info = ci;
    335 	ci->ci_dev = self;
    336 	ci->ci_acpiid = caa->cpu_id;
    337 	ci->ci_cpuid = caa->cpu_number;
    338 	ci->ci_func = caa->cpu_func;
    339 
    340 	/* Must be before mi_cpu_attach(). */
    341 	cpu_vm_init(ci);
    342 
    343 	if (caa->cpu_role == CPU_ROLE_AP) {
    344 		int error;
    345 
    346 		error = mi_cpu_attach(ci);
    347 		if (error != 0) {
    348 			aprint_normal("\n");
    349 			aprint_error_dev(self,
    350 			    "mi_cpu_attach failed with %d\n", error);
    351 			return;
    352 		}
    353 		cpu_init_tss(ci);
    354 	} else {
    355 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    356 	}
    357 
    358 	ci->ci_cpumask = (1 << cpu_index(ci));
    359 	pmap_reference(pmap_kernel());
    360 	ci->ci_pmap = pmap_kernel();
    361 	ci->ci_tlbstate = TLBSTATE_STALE;
    362 
    363 	/*
    364 	 * Boot processor may not be attached first, but the below
    365 	 * must be done to allow booting other processors.
    366 	 */
    367 	if (!again) {
    368 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    369 		/* Basic init. */
    370 		cpu_intr_init(ci);
    371 		cpu_get_tsc_freq(ci);
    372 		cpu_init(ci);
    373 		cpu_set_tss_gates(ci);
    374 		pmap_cpu_init_late(ci);
    375 		if (caa->cpu_role != CPU_ROLE_SP) {
    376 			/* Enable lapic. */
    377 			lapic_enable();
    378 			lapic_set_lvt();
    379 			lapic_calibrate_timer(ci);
    380 		}
    381 		/* Make sure DELAY() is initialized. */
    382 		DELAY(1);
    383 		again = true;
    384 	}
    385 
    386 	/* further PCB init done later. */
    387 
    388 	switch (caa->cpu_role) {
    389 	case CPU_ROLE_SP:
    390 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    391 		cpu_identify(ci);
    392 		x86_errata();
    393 		x86_cpu_idle_init();
    394 		break;
    395 
    396 	case CPU_ROLE_BP:
    397 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    398 		cpu_identify(ci);
    399 		x86_errata();
    400 		x86_cpu_idle_init();
    401 		break;
    402 
    403 	case CPU_ROLE_AP:
    404 		/*
    405 		 * report on an AP
    406 		 */
    407 		cpu_intr_init(ci);
    408 		gdt_alloc_cpu(ci);
    409 		cpu_set_tss_gates(ci);
    410 		pmap_cpu_init_late(ci);
    411 		cpu_start_secondary(ci);
    412 		if (ci->ci_flags & CPUF_PRESENT) {
    413 			struct cpu_info *tmp;
    414 
    415 			cpu_identify(ci);
    416 			tmp = cpu_info_list;
    417 			while (tmp->ci_next)
    418 				tmp = tmp->ci_next;
    419 
    420 			tmp->ci_next = ci;
    421 		}
    422 		break;
    423 
    424 	default:
    425 		aprint_normal("\n");
    426 		panic("unknown processor type??\n");
    427 	}
    428 
    429 	pat_init(ci);
    430 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    431 
    432 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    433 		aprint_error_dev(self, "couldn't establish power handler\n");
    434 
    435 	if (mp_verbose) {
    436 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    437 		struct pcb *pcb = lwp_getpcb(l);
    438 
    439 		aprint_verbose_dev(self,
    440 		    "idle lwp at %p, idle sp at %p\n",
    441 		    l,
    442 #ifdef i386
    443 		    (void *)pcb->pcb_esp
    444 #else
    445 		    (void *)pcb->pcb_rsp
    446 #endif
    447 		);
    448 	}
    449 
    450 	/*
    451 	 * Postpone the "cpufeaturebus" scan.
    452 	 * It is safe to scan the pseudo-bus
    453 	 * only after all CPUs have attached.
    454 	 */
    455 	(void)config_defer(self, cpu_defer);
    456 }
    457 
    458 static void
    459 cpu_defer(device_t self)
    460 {
    461 	cpu_rescan(self, NULL, NULL);
    462 }
    463 
    464 static int
    465 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    466 {
    467 	struct cpu_softc *sc = device_private(self);
    468 	struct cpufeature_attach_args cfaa;
    469 	struct cpu_info *ci = sc->sc_info;
    470 
    471 	memset(&cfaa, 0, sizeof(cfaa));
    472 	cfaa.ci = ci;
    473 
    474 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    475 
    476 		if (ci->ci_frequency == NULL) {
    477 			cfaa.name = "frequency";
    478 			ci->ci_frequency = config_found_ia(self,
    479 			    "cpufeaturebus", &cfaa, NULL);
    480 		}
    481 
    482 		if (ci->ci_padlock == NULL) {
    483 			cfaa.name = "padlock";
    484 			ci->ci_padlock = config_found_ia(self,
    485 			    "cpufeaturebus", &cfaa, NULL);
    486 		}
    487 
    488 		if (ci->ci_temperature == NULL) {
    489 			cfaa.name = "temperature";
    490 			ci->ci_temperature = config_found_ia(self,
    491 			    "cpufeaturebus", &cfaa, NULL);
    492 		}
    493 
    494 		if (ci->ci_vm == NULL) {
    495 			cfaa.name = "vm";
    496 			ci->ci_vm = config_found_ia(self,
    497 			    "cpufeaturebus", &cfaa, NULL);
    498 		}
    499 	}
    500 
    501 	return 0;
    502 }
    503 
    504 static void
    505 cpu_childdetached(device_t self, device_t child)
    506 {
    507 	struct cpu_softc *sc = device_private(self);
    508 	struct cpu_info *ci = sc->sc_info;
    509 
    510 	if (ci->ci_frequency == child)
    511 		ci->ci_frequency = NULL;
    512 
    513 	if (ci->ci_padlock == child)
    514 		ci->ci_padlock = NULL;
    515 
    516 	if (ci->ci_temperature == child)
    517 		ci->ci_temperature = NULL;
    518 
    519 	if (ci->ci_vm == child)
    520 		ci->ci_vm = NULL;
    521 }
    522 
    523 /*
    524  * Initialize the processor appropriately.
    525  */
    526 
    527 void
    528 cpu_init(struct cpu_info *ci)
    529 {
    530 
    531 	lcr0(rcr0() | CR0_WP);
    532 
    533 	/*
    534 	 * On a P6 or above, enable global TLB caching if the
    535 	 * hardware supports it.
    536 	 */
    537 	if (cpu_feature[0] & CPUID_PGE)
    538 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    539 
    540 	/*
    541 	 * If we have FXSAVE/FXRESTOR, use them.
    542 	 */
    543 	if (cpu_feature[0] & CPUID_FXSR) {
    544 		lcr4(rcr4() | CR4_OSFXSR);
    545 
    546 		/*
    547 		 * If we have SSE/SSE2, enable XMM exceptions.
    548 		 */
    549 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    550 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    551 	}
    552 
    553 #ifdef MTRR
    554 	/*
    555 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    556 	 */
    557 	if (cpu_feature[0] & CPUID_MTRR) {
    558 		if ((ci->ci_flags & CPUF_AP) == 0)
    559 			i686_mtrr_init_first();
    560 		mtrr_init_cpu(ci);
    561 	}
    562 
    563 #ifdef i386
    564 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    565 		/*
    566 		 * Must be a K6-2 Step >= 7 or a K6-III.
    567 		 */
    568 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    569 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    570 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    571 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    572 				mtrr_funcs = &k6_mtrr_funcs;
    573 				k6_mtrr_init_first();
    574 				mtrr_init_cpu(ci);
    575 			}
    576 		}
    577 	}
    578 #endif	/* i386 */
    579 #endif /* MTRR */
    580 
    581 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    582 
    583 	if (ci != &cpu_info_primary) {
    584 		/* Synchronize TSC again, and check for drift. */
    585 		wbinvd();
    586 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    587 		tsc_sync_ap(ci);
    588 	} else {
    589 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    590 	}
    591 }
    592 
    593 void
    594 cpu_boot_secondary_processors(void)
    595 {
    596 	struct cpu_info *ci;
    597 	u_long i;
    598 
    599 	/* Now that we know the number of CPUs, patch the text segment. */
    600 	x86_patch(false);
    601 
    602 	for (i=0; i < maxcpus; i++) {
    603 		ci = cpu_lookup(i);
    604 		if (ci == NULL)
    605 			continue;
    606 		if (ci->ci_data.cpu_idlelwp == NULL)
    607 			continue;
    608 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    609 			continue;
    610 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    611 			continue;
    612 		cpu_boot_secondary(ci);
    613 	}
    614 
    615 	x86_mp_online = true;
    616 
    617 	/* Now that we know about the TSC, attach the timecounter. */
    618 	tsc_tc_init();
    619 
    620 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    621 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    622 }
    623 
    624 static void
    625 cpu_init_idle_lwp(struct cpu_info *ci)
    626 {
    627 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    628 	struct pcb *pcb = lwp_getpcb(l);
    629 
    630 	pcb->pcb_cr0 = rcr0();
    631 }
    632 
    633 void
    634 cpu_init_idle_lwps(void)
    635 {
    636 	struct cpu_info *ci;
    637 	u_long i;
    638 
    639 	for (i = 0; i < maxcpus; i++) {
    640 		ci = cpu_lookup(i);
    641 		if (ci == NULL)
    642 			continue;
    643 		if (ci->ci_data.cpu_idlelwp == NULL)
    644 			continue;
    645 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    646 			continue;
    647 		cpu_init_idle_lwp(ci);
    648 	}
    649 }
    650 
    651 void
    652 cpu_start_secondary(struct cpu_info *ci)
    653 {
    654 	extern paddr_t mp_pdirpa;
    655 	u_long psl;
    656 	int i;
    657 
    658 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    659 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    660 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    661 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    662 		return;
    663 	}
    664 
    665 	/*
    666 	 * Wait for it to become ready.   Setting cpu_starting opens the
    667 	 * initial gate and allows the AP to start soft initialization.
    668 	 */
    669 	KASSERT(cpu_starting == NULL);
    670 	cpu_starting = ci;
    671 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    672 #ifdef MPDEBUG
    673 		extern int cpu_trace[3];
    674 		static int otrace[3];
    675 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    676 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    677 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    678 			memcpy(otrace, cpu_trace, sizeof(otrace));
    679 		}
    680 #endif
    681 		i8254_delay(10);
    682 	}
    683 
    684 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    685 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    686 #if defined(MPDEBUG) && defined(DDB)
    687 		printf("dropping into debugger; continue from here to resume boot\n");
    688 		Debugger();
    689 #endif
    690 	} else {
    691 		/*
    692 		 * Synchronize time stamp counters. Invalidate cache and do
    693 		 * twice to try and minimize possible cache effects. Disable
    694 		 * interrupts to try and rule out any external interference.
    695 		 */
    696 		psl = x86_read_psl();
    697 		x86_disable_intr();
    698 		wbinvd();
    699 		tsc_sync_bp(ci);
    700 		x86_write_psl(psl);
    701 	}
    702 
    703 	CPU_START_CLEANUP(ci);
    704 	cpu_starting = NULL;
    705 }
    706 
    707 void
    708 cpu_boot_secondary(struct cpu_info *ci)
    709 {
    710 	int64_t drift;
    711 	u_long psl;
    712 	int i;
    713 
    714 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    715 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    716 		i8254_delay(10);
    717 	}
    718 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    719 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    720 #if defined(MPDEBUG) && defined(DDB)
    721 		printf("dropping into debugger; continue from here to resume boot\n");
    722 		Debugger();
    723 #endif
    724 	} else {
    725 		/* Synchronize TSC again, check for drift. */
    726 		drift = ci->ci_data.cpu_cc_skew;
    727 		psl = x86_read_psl();
    728 		x86_disable_intr();
    729 		wbinvd();
    730 		tsc_sync_bp(ci);
    731 		x86_write_psl(psl);
    732 		drift -= ci->ci_data.cpu_cc_skew;
    733 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    734 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    735 		tsc_sync_drift(drift);
    736 	}
    737 }
    738 
    739 /*
    740  * The CPU ends up here when its ready to run
    741  * This is called from code in mptramp.s; at this point, we are running
    742  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    743  * this processor will enter the idle loop and start looking for work.
    744  */
    745 void
    746 cpu_hatch(void *v)
    747 {
    748 	struct cpu_info *ci = (struct cpu_info *)v;
    749 	struct pcb *pcb;
    750 	int s, i;
    751 
    752 	cpu_init_msrs(ci, true);
    753 	cpu_probe(ci);
    754 
    755 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    756 	/* cpu_get_tsc_freq(ci); */
    757 
    758 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    759 
    760 	/*
    761 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    762 	 * to try and minimize possible cache effects.  Note that interrupts
    763 	 * are off at this point.
    764 	 */
    765 	wbinvd();
    766 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    767 	tsc_sync_ap(ci);
    768 
    769 	/*
    770 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    771 	 * in order to make the TSC drift as much as possible. so that
    772 	 * we can detect it later.  If not available, try 'pause'.
    773 	 * We'd like to use 'hlt', but we have interrupts off.
    774 	 */
    775 	while ((ci->ci_flags & CPUF_GO) == 0) {
    776 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    777 			x86_monitor(&ci->ci_flags, 0, 0);
    778 			if ((ci->ci_flags & CPUF_GO) != 0) {
    779 				continue;
    780 			}
    781 			x86_mwait(0, 0);
    782 		} else {
    783 			for (i = 10000; i != 0; i--) {
    784 				x86_pause();
    785 			}
    786 		}
    787 	}
    788 
    789 	/* Because the text may have been patched in x86_patch(). */
    790 	wbinvd();
    791 	x86_flush();
    792 	tlbflushg();
    793 
    794 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    795 
    796 #ifdef PAE
    797 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    798 	for (i = 0 ; i < PDP_SIZE; i++) {
    799 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    800 	}
    801 	lcr3(ci->ci_pae_l3_pdirpa);
    802 #else
    803 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    804 #endif
    805 
    806 	pcb = lwp_getpcb(curlwp);
    807 	pcb->pcb_cr3 = rcr3();
    808 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    809 	lcr0(pcb->pcb_cr0);
    810 
    811 	cpu_init_idt();
    812 	gdt_init_cpu(ci);
    813 	lapic_enable();
    814 	lapic_set_lvt();
    815 	lapic_initclocks();
    816 
    817 #ifdef i386
    818 #if NNPX > 0
    819 	npxinit(ci);
    820 #endif
    821 #else
    822 	fpuinit(ci);
    823 #endif
    824 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    825 	ltr(ci->ci_tss_sel);
    826 
    827 	cpu_init(ci);
    828 	cpu_get_tsc_freq(ci);
    829 
    830 	s = splhigh();
    831 #ifdef i386
    832 	lapic_tpr = 0;
    833 #else
    834 	lcr8(0);
    835 #endif
    836 	x86_enable_intr();
    837 	splx(s);
    838 	x86_errata();
    839 
    840 	aprint_debug_dev(ci->ci_dev, "running\n");
    841 }
    842 
    843 #if defined(DDB)
    844 
    845 #include <ddb/db_output.h>
    846 #include <machine/db_machdep.h>
    847 
    848 /*
    849  * Dump CPU information from ddb.
    850  */
    851 void
    852 cpu_debug_dump(void)
    853 {
    854 	struct cpu_info *ci;
    855 	CPU_INFO_ITERATOR cii;
    856 
    857 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    858 	for (CPU_INFO_FOREACH(cii, ci)) {
    859 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    860 		    ci,
    861 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    862 		    (long)ci->ci_cpuid,
    863 		    ci->ci_flags, ci->ci_ipis,
    864 		    ci->ci_curlwp,
    865 		    ci->ci_fpcurlwp);
    866 	}
    867 }
    868 #endif
    869 
    870 static void
    871 cpu_copy_trampoline(void)
    872 {
    873 	/*
    874 	 * Copy boot code.
    875 	 */
    876 	extern u_char cpu_spinup_trampoline[];
    877 	extern u_char cpu_spinup_trampoline_end[];
    878 
    879 	vaddr_t mp_trampoline_vaddr;
    880 
    881 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    882 	    UVM_KMF_VAONLY);
    883 
    884 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    885 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    886 	pmap_update(pmap_kernel());
    887 	memcpy((void *)mp_trampoline_vaddr,
    888 	    cpu_spinup_trampoline,
    889 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    890 
    891 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    892 	pmap_update(pmap_kernel());
    893 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    894 }
    895 
    896 #ifdef i386
    897 static void
    898 tss_init(struct i386tss *tss, void *stack, void *func)
    899 {
    900 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    901 
    902 	memset(tss, 0, sizeof *tss);
    903 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    904 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    905 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    906 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    907 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    908 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    909 	/* %cr3 contains the value associated to pmap_kernel */
    910 	tss->tss_cr3 = rcr3();
    911 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    912 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    913 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    914 	tss->__tss_eip = (int)func;
    915 }
    916 
    917 /* XXX */
    918 #define IDTVEC(name)	__CONCAT(X, name)
    919 typedef void (vector)(void);
    920 extern vector IDTVEC(tss_trap08);
    921 #ifdef DDB
    922 extern vector Xintrddbipi;
    923 extern int ddb_vec;
    924 #endif
    925 
    926 static void
    927 cpu_set_tss_gates(struct cpu_info *ci)
    928 {
    929 	struct segment_descriptor sd;
    930 
    931 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    932 	    UVM_KMF_WIRED);
    933 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    934 	    IDTVEC(tss_trap08));
    935 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    936 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    937 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    938 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    939 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    940 
    941 #if defined(DDB)
    942 	/*
    943 	 * Set up separate handler for the DDB IPI, so that it doesn't
    944 	 * stomp on a possibly corrupted stack.
    945 	 *
    946 	 * XXX overwriting the gate set in db_machine_init.
    947 	 * Should rearrange the code so that it's set only once.
    948 	 */
    949 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    950 	    UVM_KMF_WIRED);
    951 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    952 
    953 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    954 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    955 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    956 
    957 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    958 	    GSEL(GIPITSS_SEL, SEL_KPL));
    959 #endif
    960 }
    961 #else
    962 static void
    963 cpu_set_tss_gates(struct cpu_info *ci)
    964 {
    965 
    966 }
    967 #endif	/* i386 */
    968 
    969 int
    970 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    971 {
    972 	unsigned short dwordptr[2];
    973 	int error;
    974 
    975 	/*
    976 	 * Bootstrap code must be addressable in real mode
    977 	 * and it must be page aligned.
    978 	 */
    979 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    980 
    981 	/*
    982 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    983 	 */
    984 
    985 	outb(IO_RTC, NVRAM_RESET);
    986 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    987 
    988 	/*
    989 	 * "and the warm reset vector (DWORD based at 40:67) to point
    990 	 * to the AP startup code ..."
    991 	 */
    992 
    993 	dwordptr[0] = 0;
    994 	dwordptr[1] = target >> 4;
    995 
    996 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    997 
    998 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    999 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1000 		return ENODEV;
   1001 	}
   1002 
   1003 	/*
   1004 	 * ... prior to executing the following sequence:".  We'll also add in
   1005 	 * local cache flush, in case the BIOS has left the AP with its cache
   1006 	 * disabled.  It may not be able to cope with MP coherency.
   1007 	 */
   1008 	wbinvd();
   1009 
   1010 	if (ci->ci_flags & CPUF_AP) {
   1011 		error = x86_ipi_init(ci->ci_cpuid);
   1012 		if (error != 0) {
   1013 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1014 			    __func__);
   1015 			return error;
   1016 		}
   1017 		i8254_delay(10000);
   1018 
   1019 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1020 		if (error != 0) {
   1021 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1022 			    __func__);
   1023 			return error;
   1024 		}
   1025 		i8254_delay(200);
   1026 
   1027 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1028 		if (error != 0) {
   1029 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1030 			    __func__);
   1031 			return error;
   1032 		}
   1033 		i8254_delay(200);
   1034 	}
   1035 
   1036 	return 0;
   1037 }
   1038 
   1039 void
   1040 mp_cpu_start_cleanup(struct cpu_info *ci)
   1041 {
   1042 	/*
   1043 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1044 	 */
   1045 
   1046 	outb(IO_RTC, NVRAM_RESET);
   1047 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1048 }
   1049 
   1050 #ifdef __x86_64__
   1051 typedef void (vector)(void);
   1052 extern vector Xsyscall, Xsyscall32;
   1053 #endif
   1054 
   1055 void
   1056 cpu_init_msrs(struct cpu_info *ci, bool full)
   1057 {
   1058 #ifdef __x86_64__
   1059 	wrmsr(MSR_STAR,
   1060 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1061 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1062 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1063 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1064 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1065 
   1066 	if (full) {
   1067 		wrmsr(MSR_FSBASE, 0);
   1068 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1069 		wrmsr(MSR_KERNELGSBASE, 0);
   1070 	}
   1071 #endif	/* __x86_64__ */
   1072 
   1073 	if (cpu_feature[2] & CPUID_NOX)
   1074 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1075 }
   1076 
   1077 void
   1078 cpu_offline_md(void)
   1079 {
   1080 	int s;
   1081 
   1082 	s = splhigh();
   1083 #ifdef i386
   1084 #if NNPX > 0
   1085 	npxsave_cpu(true);
   1086 #endif
   1087 #else
   1088 	fpusave_cpu(true);
   1089 #endif
   1090 	splx(s);
   1091 }
   1092 
   1093 /* XXX joerg restructure and restart CPUs individually */
   1094 static bool
   1095 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1096 {
   1097 	struct cpu_softc *sc = device_private(dv);
   1098 	struct cpu_info *ci = sc->sc_info;
   1099 	int err;
   1100 
   1101 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1102 		return true;
   1103 
   1104 	cpufreq_suspend(ci);
   1105 
   1106 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1107 		return true;
   1108 
   1109 	if (ci->ci_data.cpu_idlelwp == NULL)
   1110 		return true;
   1111 
   1112 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1113 
   1114 	if (sc->sc_wasonline) {
   1115 		mutex_enter(&cpu_lock);
   1116 		err = cpu_setstate(ci, false);
   1117 		mutex_exit(&cpu_lock);
   1118 
   1119 		if (err != 0)
   1120 			return false;
   1121 	}
   1122 
   1123 	return true;
   1124 }
   1125 
   1126 static bool
   1127 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1128 {
   1129 	struct cpu_softc *sc = device_private(dv);
   1130 	struct cpu_info *ci = sc->sc_info;
   1131 	int err = 0;
   1132 
   1133 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1134 		return true;
   1135 
   1136 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1137 		goto out;
   1138 
   1139 	if (ci->ci_data.cpu_idlelwp == NULL)
   1140 		goto out;
   1141 
   1142 	if (sc->sc_wasonline) {
   1143 		mutex_enter(&cpu_lock);
   1144 		err = cpu_setstate(ci, true);
   1145 		mutex_exit(&cpu_lock);
   1146 	}
   1147 
   1148 out:
   1149 	if (err != 0)
   1150 		return false;
   1151 
   1152 	cpufreq_resume(ci);
   1153 
   1154 	return true;
   1155 }
   1156 
   1157 static bool
   1158 cpu_shutdown(device_t dv, int how)
   1159 {
   1160 	struct cpu_softc *sc = device_private(dv);
   1161 	struct cpu_info *ci = sc->sc_info;
   1162 
   1163 	if (ci->ci_flags & CPUF_BSP)
   1164 		return false;
   1165 
   1166 	return cpu_suspend(dv, NULL);
   1167 }
   1168 
   1169 void
   1170 cpu_get_tsc_freq(struct cpu_info *ci)
   1171 {
   1172 	uint64_t last_tsc;
   1173 
   1174 	if (cpu_hascounter()) {
   1175 		last_tsc = cpu_counter_serializing();
   1176 		i8254_delay(100000);
   1177 		ci->ci_data.cpu_cc_freq =
   1178 		    (cpu_counter_serializing() - last_tsc) * 10;
   1179 	}
   1180 }
   1181 
   1182 void
   1183 x86_cpu_idle_mwait(void)
   1184 {
   1185 	struct cpu_info *ci = curcpu();
   1186 
   1187 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1188 
   1189 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1190 	if (__predict_false(ci->ci_want_resched)) {
   1191 		return;
   1192 	}
   1193 	x86_mwait(0, 0);
   1194 }
   1195 
   1196 void
   1197 x86_cpu_idle_halt(void)
   1198 {
   1199 	struct cpu_info *ci = curcpu();
   1200 
   1201 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1202 
   1203 	x86_disable_intr();
   1204 	if (!__predict_false(ci->ci_want_resched)) {
   1205 		x86_stihlt();
   1206 	} else {
   1207 		x86_enable_intr();
   1208 	}
   1209 }
   1210 
   1211 /*
   1212  * Loads pmap for the current CPU.
   1213  */
   1214 void
   1215 cpu_load_pmap(struct pmap *pmap)
   1216 {
   1217 #ifdef PAE
   1218 	int i, s;
   1219 	struct cpu_info *ci;
   1220 
   1221 	s = splvm(); /* just to be safe */
   1222 	ci = curcpu();
   1223 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1224 	for (i = 0 ; i < PDP_SIZE; i++) {
   1225 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1226 	}
   1227 	splx(s);
   1228 	tlbflush();
   1229 #else /* PAE */
   1230 	lcr3(pmap_pdirpa(pmap, 0));
   1231 #endif /* PAE */
   1232 }
   1233 
   1234 /*
   1235  * Notify all other cpus to halt.
   1236  */
   1237 
   1238 void
   1239 cpu_broadcast_halt(void)
   1240 {
   1241 	x86_broadcast_ipi(X86_IPI_HALT);
   1242 }
   1243 
   1244 /*
   1245  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1246  */
   1247 
   1248 void
   1249 cpu_kick(struct cpu_info *ci)
   1250 {
   1251 	x86_send_ipi(ci, 0);
   1252 }
   1253