Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.96
      1 /*	$NetBSD: cpu.c,v 1.96 2011/10/18 05:16:02 jruoho Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.96 2011/10/18 05:16:02 jruoho Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/cpufreq.h>
     85 #include <sys/atomic.h>
     86 #include <sys/reboot.h>
     87 
     88 #include <uvm/uvm.h>
     89 
     90 #include <machine/cpufunc.h>
     91 #include <machine/cpuvar.h>
     92 #include <machine/pmap.h>
     93 #include <machine/vmparam.h>
     94 #include <machine/mpbiosvar.h>
     95 #include <machine/pcb.h>
     96 #include <machine/specialreg.h>
     97 #include <machine/segments.h>
     98 #include <machine/gdt.h>
     99 #include <machine/mtrr.h>
    100 #include <machine/pio.h>
    101 #include <machine/cpu_counter.h>
    102 
    103 #ifdef i386
    104 #include <machine/tlog.h>
    105 #endif
    106 
    107 #include <machine/apicvar.h>
    108 #include <machine/i82489reg.h>
    109 #include <machine/i82489var.h>
    110 
    111 #include <dev/ic/mc146818reg.h>
    112 #include <i386/isa/nvram.h>
    113 #include <dev/isa/isareg.h>
    114 
    115 #include "tsc.h"
    116 
    117 #if MAXCPUS > 32
    118 #error cpu_info contains 32bit bitmasks
    119 #endif
    120 
    121 static int	cpu_match(device_t, cfdata_t, void *);
    122 static void	cpu_attach(device_t, device_t, void *);
    123 static void	cpu_defer(device_t);
    124 static int	cpu_rescan(device_t, const char *, const int *);
    125 static void	cpu_childdetached(device_t, device_t);
    126 static bool	cpu_stop(device_t);
    127 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    128 static bool	cpu_resume(device_t, const pmf_qual_t *);
    129 static bool	cpu_shutdown(device_t, int);
    130 
    131 struct cpu_softc {
    132 	device_t sc_dev;		/* device tree glue */
    133 	struct cpu_info *sc_info;	/* pointer to CPU info */
    134 	bool sc_wasonline;
    135 };
    136 
    137 int mp_cpu_start(struct cpu_info *, paddr_t);
    138 void mp_cpu_start_cleanup(struct cpu_info *);
    139 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    140 					    mp_cpu_start_cleanup };
    141 
    142 
    143 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    144     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    145 
    146 /*
    147  * Statically-allocated CPU info for the primary CPU (or the only
    148  * CPU, on uniprocessors).  The CPU info list is initialized to
    149  * point at it.
    150  */
    151 #ifdef TRAPLOG
    152 struct tlog tlog_primary;
    153 #endif
    154 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    155 	.ci_dev = 0,
    156 	.ci_self = &cpu_info_primary,
    157 	.ci_idepth = -1,
    158 	.ci_curlwp = &lwp0,
    159 	.ci_curldt = -1,
    160 	.ci_cpumask = 1,
    161 #ifdef TRAPLOG
    162 	.ci_tlog_base = &tlog_primary,
    163 #endif /* !TRAPLOG */
    164 };
    165 
    166 struct cpu_info *cpu_info_list = &cpu_info_primary;
    167 
    168 static void	cpu_set_tss_gates(struct cpu_info *);
    169 
    170 #ifdef i386
    171 static void	tss_init(struct i386tss *, void *, void *);
    172 #endif
    173 
    174 static void	cpu_init_idle_lwp(struct cpu_info *);
    175 
    176 uint32_t cpus_attached = 0;
    177 uint32_t cpus_running = 1;
    178 
    179 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    180 			  *	[0] basic features %edx
    181 			  *	[1] basic features %ecx
    182 			  *	[2] extended features %edx
    183 			  *	[3] extended features %ecx
    184 			  *	[4] VIA padlock features
    185 			  */
    186 
    187 extern char x86_64_doubleflt_stack[];
    188 
    189 bool x86_mp_online;
    190 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    191 static vaddr_t cmos_data_mapping;
    192 struct cpu_info *cpu_starting;
    193 
    194 void    	cpu_hatch(void *);
    195 static void    	cpu_boot_secondary(struct cpu_info *ci);
    196 static void    	cpu_start_secondary(struct cpu_info *ci);
    197 static void	cpu_copy_trampoline(void);
    198 
    199 /*
    200  * Runs once per boot once multiprocessor goo has been detected and
    201  * the local APIC on the boot processor has been mapped.
    202  *
    203  * Called from lapic_boot_init() (from mpbios_scan()).
    204  */
    205 void
    206 cpu_init_first(void)
    207 {
    208 
    209 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    210 	cpu_copy_trampoline();
    211 
    212 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    213 	if (cmos_data_mapping == 0)
    214 		panic("No KVA for page 0");
    215 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    216 	pmap_update(pmap_kernel());
    217 }
    218 
    219 static int
    220 cpu_match(device_t parent, cfdata_t match, void *aux)
    221 {
    222 
    223 	return 1;
    224 }
    225 
    226 static void
    227 cpu_vm_init(struct cpu_info *ci)
    228 {
    229 	int ncolors = 2, i;
    230 
    231 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    232 		struct x86_cache_info *cai;
    233 		int tcolors;
    234 
    235 		cai = &ci->ci_cinfo[i];
    236 
    237 		tcolors = atop(cai->cai_totalsize);
    238 		switch(cai->cai_associativity) {
    239 		case 0xff:
    240 			tcolors = 1; /* fully associative */
    241 			break;
    242 		case 0:
    243 		case 1:
    244 			break;
    245 		default:
    246 			tcolors /= cai->cai_associativity;
    247 		}
    248 		ncolors = max(ncolors, tcolors);
    249 		/*
    250 		 * If the desired number of colors is not a power of
    251 		 * two, it won't be good.  Find the greatest power of
    252 		 * two which is an even divisor of the number of colors,
    253 		 * to preserve even coloring of pages.
    254 		 */
    255 		if (ncolors & (ncolors - 1) ) {
    256 			int try, picked = 1;
    257 			for (try = 1; try < ncolors; try *= 2) {
    258 				if (ncolors % try == 0) picked = try;
    259 			}
    260 			if (picked == 1) {
    261 				panic("desired number of cache colors %d is "
    262 			      	" > 1, but not even!", ncolors);
    263 			}
    264 			ncolors = picked;
    265 		}
    266 	}
    267 
    268 	/*
    269 	 * Knowing the size of the largest cache on this CPU, potentially
    270 	 * re-color our pages.
    271 	 */
    272 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    273 	uvm_page_recolor(ncolors);
    274 }
    275 
    276 
    277 static void
    278 cpu_attach(device_t parent, device_t self, void *aux)
    279 {
    280 	struct cpu_softc *sc = device_private(self);
    281 	struct cpu_attach_args *caa = aux;
    282 	struct cpu_info *ci;
    283 	uintptr_t ptr;
    284 	int cpunum = caa->cpu_number;
    285 	static bool again;
    286 
    287 	sc->sc_dev = self;
    288 
    289 	if (cpus_attached == ~0) {
    290 		aprint_error(": increase MAXCPUS\n");
    291 		return;
    292 	}
    293 
    294 	/*
    295 	 * If we're an Application Processor, allocate a cpu_info
    296 	 * structure, otherwise use the primary's.
    297 	 */
    298 	if (caa->cpu_role == CPU_ROLE_AP) {
    299 		if ((boothowto & RB_MD1) != 0) {
    300 			aprint_error(": multiprocessor boot disabled\n");
    301 			if (!pmf_device_register(self, NULL, NULL))
    302 				aprint_error_dev(self,
    303 				    "couldn't establish power handler\n");
    304 			return;
    305 		}
    306 		aprint_naive(": Application Processor\n");
    307 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    308 		    KM_SLEEP);
    309 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    310 		ci->ci_curldt = -1;
    311 #ifdef TRAPLOG
    312 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    313 #endif
    314 	} else {
    315 		aprint_naive(": %s Processor\n",
    316 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    317 		ci = &cpu_info_primary;
    318 		if (cpunum != lapic_cpu_number()) {
    319 			/* XXX should be done earlier. */
    320 			uint32_t reg;
    321 			aprint_verbose("\n");
    322 			aprint_verbose_dev(self, "running CPU at apic %d"
    323 			    " instead of at expected %d", lapic_cpu_number(),
    324 			    cpunum);
    325 			reg = i82489_readreg(LAPIC_ID);
    326 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    327 			    (cpunum << LAPIC_ID_SHIFT));
    328 		}
    329 		if (cpunum != lapic_cpu_number()) {
    330 			aprint_error_dev(self, "unable to reset apic id\n");
    331 		}
    332 	}
    333 
    334 	ci->ci_self = ci;
    335 	sc->sc_info = ci;
    336 	ci->ci_dev = self;
    337 	ci->ci_acpiid = caa->cpu_id;
    338 	ci->ci_cpuid = caa->cpu_number;
    339 	ci->ci_func = caa->cpu_func;
    340 
    341 	/* Must be before mi_cpu_attach(). */
    342 	cpu_vm_init(ci);
    343 
    344 	if (caa->cpu_role == CPU_ROLE_AP) {
    345 		int error;
    346 
    347 		error = mi_cpu_attach(ci);
    348 		if (error != 0) {
    349 			aprint_normal("\n");
    350 			aprint_error_dev(self,
    351 			    "mi_cpu_attach failed with %d\n", error);
    352 			return;
    353 		}
    354 		cpu_init_tss(ci);
    355 	} else {
    356 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    357 	}
    358 
    359 	ci->ci_cpumask = (1 << cpu_index(ci));
    360 	pmap_reference(pmap_kernel());
    361 	ci->ci_pmap = pmap_kernel();
    362 	ci->ci_tlbstate = TLBSTATE_STALE;
    363 
    364 	/*
    365 	 * Boot processor may not be attached first, but the below
    366 	 * must be done to allow booting other processors.
    367 	 */
    368 	if (!again) {
    369 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    370 		/* Basic init. */
    371 		cpu_intr_init(ci);
    372 		cpu_get_tsc_freq(ci);
    373 		cpu_init(ci);
    374 		cpu_set_tss_gates(ci);
    375 		pmap_cpu_init_late(ci);
    376 		if (caa->cpu_role != CPU_ROLE_SP) {
    377 			/* Enable lapic. */
    378 			lapic_enable();
    379 			lapic_set_lvt();
    380 			lapic_calibrate_timer(ci);
    381 		}
    382 		/* Make sure DELAY() is initialized. */
    383 		DELAY(1);
    384 		again = true;
    385 	}
    386 
    387 	/* further PCB init done later. */
    388 
    389 	switch (caa->cpu_role) {
    390 	case CPU_ROLE_SP:
    391 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    392 		cpu_identify(ci);
    393 		x86_errata();
    394 		x86_cpu_idle_init();
    395 		break;
    396 
    397 	case CPU_ROLE_BP:
    398 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    399 		cpu_identify(ci);
    400 		x86_errata();
    401 		x86_cpu_idle_init();
    402 		break;
    403 
    404 	case CPU_ROLE_AP:
    405 		/*
    406 		 * report on an AP
    407 		 */
    408 		cpu_intr_init(ci);
    409 		gdt_alloc_cpu(ci);
    410 		cpu_set_tss_gates(ci);
    411 		pmap_cpu_init_late(ci);
    412 		cpu_start_secondary(ci);
    413 		if (ci->ci_flags & CPUF_PRESENT) {
    414 			struct cpu_info *tmp;
    415 
    416 			cpu_identify(ci);
    417 			tmp = cpu_info_list;
    418 			while (tmp->ci_next)
    419 				tmp = tmp->ci_next;
    420 
    421 			tmp->ci_next = ci;
    422 		}
    423 		break;
    424 
    425 	default:
    426 		aprint_normal("\n");
    427 		panic("unknown processor type??\n");
    428 	}
    429 
    430 	pat_init(ci);
    431 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    432 
    433 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    434 		aprint_error_dev(self, "couldn't establish power handler\n");
    435 
    436 	if (mp_verbose) {
    437 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    438 		struct pcb *pcb = lwp_getpcb(l);
    439 
    440 		aprint_verbose_dev(self,
    441 		    "idle lwp at %p, idle sp at %p\n",
    442 		    l,
    443 #ifdef i386
    444 		    (void *)pcb->pcb_esp
    445 #else
    446 		    (void *)pcb->pcb_rsp
    447 #endif
    448 		);
    449 	}
    450 
    451 	/*
    452 	 * Postpone the "cpufeaturebus" scan.
    453 	 * It is safe to scan the pseudo-bus
    454 	 * only after all CPUs have attached.
    455 	 */
    456 	(void)config_defer(self, cpu_defer);
    457 }
    458 
    459 static void
    460 cpu_defer(device_t self)
    461 {
    462 	cpu_rescan(self, NULL, NULL);
    463 }
    464 
    465 static int
    466 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    467 {
    468 	struct cpu_softc *sc = device_private(self);
    469 	struct cpufeature_attach_args cfaa;
    470 	struct cpu_info *ci = sc->sc_info;
    471 
    472 	memset(&cfaa, 0, sizeof(cfaa));
    473 	cfaa.ci = ci;
    474 
    475 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    476 
    477 		if (ci->ci_frequency == NULL) {
    478 			cfaa.name = "frequency";
    479 			ci->ci_frequency = config_found_ia(self,
    480 			    "cpufeaturebus", &cfaa, NULL);
    481 		}
    482 
    483 		if (ci->ci_padlock == NULL) {
    484 			cfaa.name = "padlock";
    485 			ci->ci_padlock = config_found_ia(self,
    486 			    "cpufeaturebus", &cfaa, NULL);
    487 		}
    488 
    489 		if (ci->ci_temperature == NULL) {
    490 			cfaa.name = "temperature";
    491 			ci->ci_temperature = config_found_ia(self,
    492 			    "cpufeaturebus", &cfaa, NULL);
    493 		}
    494 
    495 		if (ci->ci_vm == NULL) {
    496 			cfaa.name = "vm";
    497 			ci->ci_vm = config_found_ia(self,
    498 			    "cpufeaturebus", &cfaa, NULL);
    499 		}
    500 	}
    501 
    502 	return 0;
    503 }
    504 
    505 static void
    506 cpu_childdetached(device_t self, device_t child)
    507 {
    508 	struct cpu_softc *sc = device_private(self);
    509 	struct cpu_info *ci = sc->sc_info;
    510 
    511 	if (ci->ci_frequency == child)
    512 		ci->ci_frequency = NULL;
    513 
    514 	if (ci->ci_padlock == child)
    515 		ci->ci_padlock = NULL;
    516 
    517 	if (ci->ci_temperature == child)
    518 		ci->ci_temperature = NULL;
    519 
    520 	if (ci->ci_vm == child)
    521 		ci->ci_vm = NULL;
    522 }
    523 
    524 /*
    525  * Initialize the processor appropriately.
    526  */
    527 
    528 void
    529 cpu_init(struct cpu_info *ci)
    530 {
    531 
    532 	lcr0(rcr0() | CR0_WP);
    533 
    534 	/*
    535 	 * On a P6 or above, enable global TLB caching if the
    536 	 * hardware supports it.
    537 	 */
    538 	if (cpu_feature[0] & CPUID_PGE)
    539 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    540 
    541 	/*
    542 	 * If we have FXSAVE/FXRESTOR, use them.
    543 	 */
    544 	if (cpu_feature[0] & CPUID_FXSR) {
    545 		lcr4(rcr4() | CR4_OSFXSR);
    546 
    547 		/*
    548 		 * If we have SSE/SSE2, enable XMM exceptions.
    549 		 */
    550 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    551 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    552 	}
    553 
    554 #ifdef MTRR
    555 	/*
    556 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    557 	 */
    558 	if (cpu_feature[0] & CPUID_MTRR) {
    559 		if ((ci->ci_flags & CPUF_AP) == 0)
    560 			i686_mtrr_init_first();
    561 		mtrr_init_cpu(ci);
    562 	}
    563 
    564 #ifdef i386
    565 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    566 		/*
    567 		 * Must be a K6-2 Step >= 7 or a K6-III.
    568 		 */
    569 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    570 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    571 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    572 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    573 				mtrr_funcs = &k6_mtrr_funcs;
    574 				k6_mtrr_init_first();
    575 				mtrr_init_cpu(ci);
    576 			}
    577 		}
    578 	}
    579 #endif	/* i386 */
    580 #endif /* MTRR */
    581 
    582 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    583 
    584 	if (ci != &cpu_info_primary) {
    585 		/* Synchronize TSC again, and check for drift. */
    586 		wbinvd();
    587 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    588 		tsc_sync_ap(ci);
    589 	} else {
    590 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    591 	}
    592 }
    593 
    594 void
    595 cpu_boot_secondary_processors(void)
    596 {
    597 	struct cpu_info *ci;
    598 	u_long i;
    599 
    600 	/* Now that we know the number of CPUs, patch the text segment. */
    601 	x86_patch(false);
    602 
    603 	for (i=0; i < maxcpus; i++) {
    604 		ci = cpu_lookup(i);
    605 		if (ci == NULL)
    606 			continue;
    607 		if (ci->ci_data.cpu_idlelwp == NULL)
    608 			continue;
    609 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    610 			continue;
    611 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    612 			continue;
    613 		cpu_boot_secondary(ci);
    614 	}
    615 
    616 	x86_mp_online = true;
    617 
    618 	/* Now that we know about the TSC, attach the timecounter. */
    619 	tsc_tc_init();
    620 
    621 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    622 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    623 }
    624 
    625 static void
    626 cpu_init_idle_lwp(struct cpu_info *ci)
    627 {
    628 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    629 	struct pcb *pcb = lwp_getpcb(l);
    630 
    631 	pcb->pcb_cr0 = rcr0();
    632 }
    633 
    634 void
    635 cpu_init_idle_lwps(void)
    636 {
    637 	struct cpu_info *ci;
    638 	u_long i;
    639 
    640 	for (i = 0; i < maxcpus; i++) {
    641 		ci = cpu_lookup(i);
    642 		if (ci == NULL)
    643 			continue;
    644 		if (ci->ci_data.cpu_idlelwp == NULL)
    645 			continue;
    646 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    647 			continue;
    648 		cpu_init_idle_lwp(ci);
    649 	}
    650 }
    651 
    652 void
    653 cpu_start_secondary(struct cpu_info *ci)
    654 {
    655 	extern paddr_t mp_pdirpa;
    656 	u_long psl;
    657 	int i;
    658 
    659 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    660 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    661 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    662 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    663 		return;
    664 	}
    665 
    666 	/*
    667 	 * Wait for it to become ready.   Setting cpu_starting opens the
    668 	 * initial gate and allows the AP to start soft initialization.
    669 	 */
    670 	KASSERT(cpu_starting == NULL);
    671 	cpu_starting = ci;
    672 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    673 #ifdef MPDEBUG
    674 		extern int cpu_trace[3];
    675 		static int otrace[3];
    676 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    677 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    678 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    679 			memcpy(otrace, cpu_trace, sizeof(otrace));
    680 		}
    681 #endif
    682 		i8254_delay(10);
    683 	}
    684 
    685 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    686 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    687 #if defined(MPDEBUG) && defined(DDB)
    688 		printf("dropping into debugger; continue from here to resume boot\n");
    689 		Debugger();
    690 #endif
    691 	} else {
    692 		/*
    693 		 * Synchronize time stamp counters. Invalidate cache and do
    694 		 * twice to try and minimize possible cache effects. Disable
    695 		 * interrupts to try and rule out any external interference.
    696 		 */
    697 		psl = x86_read_psl();
    698 		x86_disable_intr();
    699 		wbinvd();
    700 		tsc_sync_bp(ci);
    701 		x86_write_psl(psl);
    702 	}
    703 
    704 	CPU_START_CLEANUP(ci);
    705 	cpu_starting = NULL;
    706 }
    707 
    708 void
    709 cpu_boot_secondary(struct cpu_info *ci)
    710 {
    711 	int64_t drift;
    712 	u_long psl;
    713 	int i;
    714 
    715 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    716 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    717 		i8254_delay(10);
    718 	}
    719 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    720 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    721 #if defined(MPDEBUG) && defined(DDB)
    722 		printf("dropping into debugger; continue from here to resume boot\n");
    723 		Debugger();
    724 #endif
    725 	} else {
    726 		/* Synchronize TSC again, check for drift. */
    727 		drift = ci->ci_data.cpu_cc_skew;
    728 		psl = x86_read_psl();
    729 		x86_disable_intr();
    730 		wbinvd();
    731 		tsc_sync_bp(ci);
    732 		x86_write_psl(psl);
    733 		drift -= ci->ci_data.cpu_cc_skew;
    734 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    735 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    736 		tsc_sync_drift(drift);
    737 	}
    738 }
    739 
    740 /*
    741  * The CPU ends up here when its ready to run
    742  * This is called from code in mptramp.s; at this point, we are running
    743  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    744  * this processor will enter the idle loop and start looking for work.
    745  */
    746 void
    747 cpu_hatch(void *v)
    748 {
    749 	struct cpu_info *ci = (struct cpu_info *)v;
    750 	struct pcb *pcb;
    751 	int s, i;
    752 
    753 	cpu_init_msrs(ci, true);
    754 	cpu_probe(ci);
    755 
    756 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    757 	/* cpu_get_tsc_freq(ci); */
    758 
    759 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    760 
    761 	/*
    762 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    763 	 * to try and minimize possible cache effects.  Note that interrupts
    764 	 * are off at this point.
    765 	 */
    766 	wbinvd();
    767 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    768 	tsc_sync_ap(ci);
    769 
    770 	/*
    771 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    772 	 * in order to make the TSC drift as much as possible. so that
    773 	 * we can detect it later.  If not available, try 'pause'.
    774 	 * We'd like to use 'hlt', but we have interrupts off.
    775 	 */
    776 	while ((ci->ci_flags & CPUF_GO) == 0) {
    777 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    778 			x86_monitor(&ci->ci_flags, 0, 0);
    779 			if ((ci->ci_flags & CPUF_GO) != 0) {
    780 				continue;
    781 			}
    782 			x86_mwait(0, 0);
    783 		} else {
    784 			for (i = 10000; i != 0; i--) {
    785 				x86_pause();
    786 			}
    787 		}
    788 	}
    789 
    790 	/* Because the text may have been patched in x86_patch(). */
    791 	wbinvd();
    792 	x86_flush();
    793 	tlbflushg();
    794 
    795 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    796 
    797 #ifdef PAE
    798 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    799 	for (i = 0 ; i < PDP_SIZE; i++) {
    800 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    801 	}
    802 	lcr3(ci->ci_pae_l3_pdirpa);
    803 #else
    804 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    805 #endif
    806 
    807 	pcb = lwp_getpcb(curlwp);
    808 	pcb->pcb_cr3 = rcr3();
    809 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    810 	lcr0(pcb->pcb_cr0);
    811 
    812 	cpu_init_idt();
    813 	gdt_init_cpu(ci);
    814 	lapic_enable();
    815 	lapic_set_lvt();
    816 	lapic_initclocks();
    817 
    818 #ifdef i386
    819 #if NNPX > 0
    820 	npxinit(ci);
    821 #endif
    822 #else
    823 	fpuinit(ci);
    824 #endif
    825 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    826 	ltr(ci->ci_tss_sel);
    827 
    828 	cpu_init(ci);
    829 	cpu_get_tsc_freq(ci);
    830 
    831 	s = splhigh();
    832 #ifdef i386
    833 	lapic_tpr = 0;
    834 #else
    835 	lcr8(0);
    836 #endif
    837 	x86_enable_intr();
    838 	splx(s);
    839 	x86_errata();
    840 
    841 	aprint_debug_dev(ci->ci_dev, "running\n");
    842 }
    843 
    844 #if defined(DDB)
    845 
    846 #include <ddb/db_output.h>
    847 #include <machine/db_machdep.h>
    848 
    849 /*
    850  * Dump CPU information from ddb.
    851  */
    852 void
    853 cpu_debug_dump(void)
    854 {
    855 	struct cpu_info *ci;
    856 	CPU_INFO_ITERATOR cii;
    857 
    858 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    859 	for (CPU_INFO_FOREACH(cii, ci)) {
    860 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    861 		    ci,
    862 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    863 		    (long)ci->ci_cpuid,
    864 		    ci->ci_flags, ci->ci_ipis,
    865 		    ci->ci_curlwp,
    866 		    ci->ci_fpcurlwp);
    867 	}
    868 }
    869 #endif
    870 
    871 static void
    872 cpu_copy_trampoline(void)
    873 {
    874 	/*
    875 	 * Copy boot code.
    876 	 */
    877 	extern u_char cpu_spinup_trampoline[];
    878 	extern u_char cpu_spinup_trampoline_end[];
    879 
    880 	vaddr_t mp_trampoline_vaddr;
    881 
    882 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    883 	    UVM_KMF_VAONLY);
    884 
    885 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    886 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    887 	pmap_update(pmap_kernel());
    888 	memcpy((void *)mp_trampoline_vaddr,
    889 	    cpu_spinup_trampoline,
    890 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    891 
    892 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    893 	pmap_update(pmap_kernel());
    894 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    895 }
    896 
    897 #ifdef i386
    898 static void
    899 tss_init(struct i386tss *tss, void *stack, void *func)
    900 {
    901 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    902 
    903 	memset(tss, 0, sizeof *tss);
    904 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    905 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    906 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    907 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    908 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    909 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    910 	/* %cr3 contains the value associated to pmap_kernel */
    911 	tss->tss_cr3 = rcr3();
    912 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    913 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    914 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    915 	tss->__tss_eip = (int)func;
    916 }
    917 
    918 /* XXX */
    919 #define IDTVEC(name)	__CONCAT(X, name)
    920 typedef void (vector)(void);
    921 extern vector IDTVEC(tss_trap08);
    922 #ifdef DDB
    923 extern vector Xintrddbipi;
    924 extern int ddb_vec;
    925 #endif
    926 
    927 static void
    928 cpu_set_tss_gates(struct cpu_info *ci)
    929 {
    930 	struct segment_descriptor sd;
    931 
    932 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    933 	    UVM_KMF_WIRED);
    934 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    935 	    IDTVEC(tss_trap08));
    936 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    937 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    938 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    939 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    940 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    941 
    942 #if defined(DDB)
    943 	/*
    944 	 * Set up separate handler for the DDB IPI, so that it doesn't
    945 	 * stomp on a possibly corrupted stack.
    946 	 *
    947 	 * XXX overwriting the gate set in db_machine_init.
    948 	 * Should rearrange the code so that it's set only once.
    949 	 */
    950 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    951 	    UVM_KMF_WIRED);
    952 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    953 
    954 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    955 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    956 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    957 
    958 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    959 	    GSEL(GIPITSS_SEL, SEL_KPL));
    960 #endif
    961 }
    962 #else
    963 static void
    964 cpu_set_tss_gates(struct cpu_info *ci)
    965 {
    966 
    967 }
    968 #endif	/* i386 */
    969 
    970 int
    971 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    972 {
    973 	unsigned short dwordptr[2];
    974 	int error;
    975 
    976 	/*
    977 	 * Bootstrap code must be addressable in real mode
    978 	 * and it must be page aligned.
    979 	 */
    980 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    981 
    982 	/*
    983 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    984 	 */
    985 
    986 	outb(IO_RTC, NVRAM_RESET);
    987 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    988 
    989 	/*
    990 	 * "and the warm reset vector (DWORD based at 40:67) to point
    991 	 * to the AP startup code ..."
    992 	 */
    993 
    994 	dwordptr[0] = 0;
    995 	dwordptr[1] = target >> 4;
    996 
    997 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    998 
    999 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1000 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1001 		return ENODEV;
   1002 	}
   1003 
   1004 	/*
   1005 	 * ... prior to executing the following sequence:".  We'll also add in
   1006 	 * local cache flush, in case the BIOS has left the AP with its cache
   1007 	 * disabled.  It may not be able to cope with MP coherency.
   1008 	 */
   1009 	wbinvd();
   1010 
   1011 	if (ci->ci_flags & CPUF_AP) {
   1012 		error = x86_ipi_init(ci->ci_cpuid);
   1013 		if (error != 0) {
   1014 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1015 			    __func__);
   1016 			return error;
   1017 		}
   1018 		i8254_delay(10000);
   1019 
   1020 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1021 		if (error != 0) {
   1022 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1023 			    __func__);
   1024 			return error;
   1025 		}
   1026 		i8254_delay(200);
   1027 
   1028 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1029 		if (error != 0) {
   1030 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1031 			    __func__);
   1032 			return error;
   1033 		}
   1034 		i8254_delay(200);
   1035 	}
   1036 
   1037 	return 0;
   1038 }
   1039 
   1040 void
   1041 mp_cpu_start_cleanup(struct cpu_info *ci)
   1042 {
   1043 	/*
   1044 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1045 	 */
   1046 
   1047 	outb(IO_RTC, NVRAM_RESET);
   1048 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1049 }
   1050 
   1051 #ifdef __x86_64__
   1052 typedef void (vector)(void);
   1053 extern vector Xsyscall, Xsyscall32;
   1054 #endif
   1055 
   1056 void
   1057 cpu_init_msrs(struct cpu_info *ci, bool full)
   1058 {
   1059 #ifdef __x86_64__
   1060 	wrmsr(MSR_STAR,
   1061 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1062 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1063 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1064 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1065 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1066 
   1067 	if (full) {
   1068 		wrmsr(MSR_FSBASE, 0);
   1069 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1070 		wrmsr(MSR_KERNELGSBASE, 0);
   1071 	}
   1072 #endif	/* __x86_64__ */
   1073 
   1074 	if (cpu_feature[2] & CPUID_NOX)
   1075 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1076 }
   1077 
   1078 void
   1079 cpu_offline_md(void)
   1080 {
   1081 	int s;
   1082 
   1083 	s = splhigh();
   1084 #ifdef i386
   1085 #if NNPX > 0
   1086 	npxsave_cpu(true);
   1087 #endif
   1088 #else
   1089 	fpusave_cpu(true);
   1090 #endif
   1091 	splx(s);
   1092 }
   1093 
   1094 /* XXX joerg restructure and restart CPUs individually */
   1095 static bool
   1096 cpu_stop(device_t dv)
   1097 {
   1098 	struct cpu_softc *sc = device_private(dv);
   1099 	struct cpu_info *ci = sc->sc_info;
   1100 	int err;
   1101 
   1102 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1103 
   1104 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1105 		return true;
   1106 
   1107 	if (ci->ci_data.cpu_idlelwp == NULL)
   1108 		return true;
   1109 
   1110 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1111 
   1112 	if (sc->sc_wasonline) {
   1113 		mutex_enter(&cpu_lock);
   1114 		err = cpu_setstate(ci, false);
   1115 		mutex_exit(&cpu_lock);
   1116 
   1117 		if (err != 0)
   1118 			return false;
   1119 	}
   1120 
   1121 	return true;
   1122 }
   1123 
   1124 static bool
   1125 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1126 {
   1127 	struct cpu_softc *sc = device_private(dv);
   1128 	struct cpu_info *ci = sc->sc_info;
   1129 
   1130 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1131 		return true;
   1132 	else {
   1133 		cpufreq_suspend(ci);
   1134 	}
   1135 
   1136 	return cpu_stop(dv);
   1137 }
   1138 
   1139 static bool
   1140 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1141 {
   1142 	struct cpu_softc *sc = device_private(dv);
   1143 	struct cpu_info *ci = sc->sc_info;
   1144 	int err = 0;
   1145 
   1146 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1147 		return true;
   1148 
   1149 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1150 		goto out;
   1151 
   1152 	if (ci->ci_data.cpu_idlelwp == NULL)
   1153 		goto out;
   1154 
   1155 	if (sc->sc_wasonline) {
   1156 		mutex_enter(&cpu_lock);
   1157 		err = cpu_setstate(ci, true);
   1158 		mutex_exit(&cpu_lock);
   1159 	}
   1160 
   1161 out:
   1162 	if (err != 0)
   1163 		return false;
   1164 
   1165 	cpufreq_resume(ci);
   1166 
   1167 	return true;
   1168 }
   1169 
   1170 static bool
   1171 cpu_shutdown(device_t dv, int how)
   1172 {
   1173 	struct cpu_softc *sc = device_private(dv);
   1174 	struct cpu_info *ci = sc->sc_info;
   1175 
   1176 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1177 		return false;
   1178 
   1179 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1180 		return true;
   1181 
   1182 	return cpu_stop(dv);
   1183 }
   1184 
   1185 void
   1186 cpu_get_tsc_freq(struct cpu_info *ci)
   1187 {
   1188 	uint64_t last_tsc;
   1189 
   1190 	if (cpu_hascounter()) {
   1191 		last_tsc = cpu_counter_serializing();
   1192 		i8254_delay(100000);
   1193 		ci->ci_data.cpu_cc_freq =
   1194 		    (cpu_counter_serializing() - last_tsc) * 10;
   1195 	}
   1196 }
   1197 
   1198 void
   1199 x86_cpu_idle_mwait(void)
   1200 {
   1201 	struct cpu_info *ci = curcpu();
   1202 
   1203 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1204 
   1205 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1206 	if (__predict_false(ci->ci_want_resched)) {
   1207 		return;
   1208 	}
   1209 	x86_mwait(0, 0);
   1210 }
   1211 
   1212 void
   1213 x86_cpu_idle_halt(void)
   1214 {
   1215 	struct cpu_info *ci = curcpu();
   1216 
   1217 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1218 
   1219 	x86_disable_intr();
   1220 	if (!__predict_false(ci->ci_want_resched)) {
   1221 		x86_stihlt();
   1222 	} else {
   1223 		x86_enable_intr();
   1224 	}
   1225 }
   1226 
   1227 /*
   1228  * Loads pmap for the current CPU.
   1229  */
   1230 void
   1231 cpu_load_pmap(struct pmap *pmap)
   1232 {
   1233 #ifdef PAE
   1234 	int i, s;
   1235 	struct cpu_info *ci;
   1236 
   1237 	s = splvm(); /* just to be safe */
   1238 	ci = curcpu();
   1239 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1240 	for (i = 0 ; i < PDP_SIZE; i++) {
   1241 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1242 	}
   1243 	splx(s);
   1244 	tlbflush();
   1245 #else /* PAE */
   1246 	lcr3(pmap_pdirpa(pmap, 0));
   1247 #endif /* PAE */
   1248 }
   1249 
   1250 /*
   1251  * Notify all other cpus to halt.
   1252  */
   1253 
   1254 void
   1255 cpu_broadcast_halt(void)
   1256 {
   1257 	x86_broadcast_ipi(X86_IPI_HALT);
   1258 }
   1259 
   1260 /*
   1261  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1262  */
   1263 
   1264 void
   1265 cpu_kick(struct cpu_info *ci)
   1266 {
   1267 	x86_send_ipi(ci, 0);
   1268 }
   1269