cpu.c revision 1.39 1 1.39 rmind /* $NetBSD: cpu.c,v 1.39 2009/11/27 03:23:15 rmind Exp $ */
2 1.2 bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3 1.2 bouyer
4 1.2 bouyer /*-
5 1.2 bouyer * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 1.19 joerg * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 1.2 bouyer * All rights reserved.
8 1.2 bouyer *
9 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
10 1.2 bouyer * by RedBack Networks Inc.
11 1.2 bouyer *
12 1.2 bouyer * Author: Bill Sommerfeld
13 1.2 bouyer *
14 1.2 bouyer * Redistribution and use in source and binary forms, with or without
15 1.2 bouyer * modification, are permitted provided that the following conditions
16 1.2 bouyer * are met:
17 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
18 1.2 bouyer * notice, this list of conditions and the following disclaimer.
19 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
20 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
21 1.2 bouyer * documentation and/or other materials provided with the distribution.
22 1.2 bouyer *
23 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
34 1.2 bouyer */
35 1.2 bouyer
36 1.2 bouyer /*
37 1.2 bouyer * Copyright (c) 1999 Stefan Grefen
38 1.2 bouyer *
39 1.2 bouyer * Redistribution and use in source and binary forms, with or without
40 1.2 bouyer * modification, are permitted provided that the following conditions
41 1.2 bouyer * are met:
42 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
43 1.2 bouyer * notice, this list of conditions and the following disclaimer.
44 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
45 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
46 1.2 bouyer * documentation and/or other materials provided with the distribution.
47 1.2 bouyer * 3. All advertising materials mentioning features or use of this software
48 1.2 bouyer * must display the following acknowledgement:
49 1.2 bouyer * This product includes software developed by the NetBSD
50 1.2 bouyer * Foundation, Inc. and its contributors.
51 1.2 bouyer * 4. Neither the name of The NetBSD Foundation nor the names of its
52 1.2 bouyer * contributors may be used to endorse or promote products derived
53 1.2 bouyer * from this software without specific prior written permission.
54 1.2 bouyer *
55 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 1.2 bouyer * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 1.2 bouyer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 bouyer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 bouyer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 bouyer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 bouyer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 bouyer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 bouyer * SUCH DAMAGE.
66 1.2 bouyer */
67 1.2 bouyer
68 1.2 bouyer #include <sys/cdefs.h>
69 1.39 rmind __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.39 2009/11/27 03:23:15 rmind Exp $");
70 1.2 bouyer
71 1.2 bouyer #include "opt_ddb.h"
72 1.2 bouyer #include "opt_multiprocessor.h"
73 1.2 bouyer #include "opt_mpbios.h" /* for MPDEBUG */
74 1.2 bouyer #include "opt_mtrr.h"
75 1.2 bouyer #include "opt_xen.h"
76 1.2 bouyer
77 1.2 bouyer #include "lapic.h"
78 1.2 bouyer #include "ioapic.h"
79 1.2 bouyer
80 1.2 bouyer #include <sys/param.h>
81 1.2 bouyer #include <sys/proc.h>
82 1.2 bouyer #include <sys/systm.h>
83 1.2 bouyer #include <sys/device.h>
84 1.31 cegger #include <sys/kmem.h>
85 1.11 cegger #include <sys/cpu.h>
86 1.11 cegger #include <sys/atomic.h>
87 1.32 cegger #include <sys/reboot.h>
88 1.2 bouyer
89 1.2 bouyer #include <uvm/uvm_extern.h>
90 1.2 bouyer
91 1.2 bouyer #include <machine/cpufunc.h>
92 1.2 bouyer #include <machine/cpuvar.h>
93 1.2 bouyer #include <machine/pmap.h>
94 1.2 bouyer #include <machine/vmparam.h>
95 1.2 bouyer #include <machine/mpbiosvar.h>
96 1.2 bouyer #include <machine/pcb.h>
97 1.2 bouyer #include <machine/specialreg.h>
98 1.2 bouyer #include <machine/segments.h>
99 1.2 bouyer #include <machine/gdt.h>
100 1.2 bouyer #include <machine/mtrr.h>
101 1.2 bouyer #include <machine/pio.h>
102 1.2 bouyer
103 1.2 bouyer #include <xen/vcpuvar.h>
104 1.2 bouyer
105 1.2 bouyer #if NLAPIC > 0
106 1.2 bouyer #include <machine/apicvar.h>
107 1.2 bouyer #include <machine/i82489reg.h>
108 1.2 bouyer #include <machine/i82489var.h>
109 1.2 bouyer #endif
110 1.2 bouyer
111 1.2 bouyer #include <dev/ic/mc146818reg.h>
112 1.2 bouyer #include <dev/isa/isareg.h>
113 1.2 bouyer
114 1.38 cegger #if MAXCPUS > 32
115 1.38 cegger #error cpu_info contains 32bit bitmasks
116 1.38 cegger #endif
117 1.27 ad
118 1.10 cegger int cpu_match(device_t, cfdata_t, void *);
119 1.10 cegger void cpu_attach(device_t, device_t, void *);
120 1.10 cegger int vcpu_match(device_t, cfdata_t, void *);
121 1.10 cegger void vcpu_attach(device_t, device_t, void *);
122 1.10 cegger void cpu_attach_common(device_t, device_t, void *);
123 1.8 dogcow void cpu_offline_md(void);
124 1.2 bouyer
125 1.2 bouyer struct cpu_softc {
126 1.10 cegger device_t sc_dev; /* device tree glue */
127 1.2 bouyer struct cpu_info *sc_info; /* pointer to CPU info */
128 1.32 cegger bool sc_wasonline;
129 1.2 bouyer };
130 1.2 bouyer
131 1.5 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
132 1.2 bouyer void mp_cpu_start_cleanup(struct cpu_info *);
133 1.2 bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
134 1.2 bouyer mp_cpu_start_cleanup };
135 1.2 bouyer
136 1.10 cegger CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
137 1.2 bouyer cpu_match, cpu_attach, NULL, NULL);
138 1.10 cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
139 1.2 bouyer vcpu_match, vcpu_attach, NULL, NULL);
140 1.2 bouyer
141 1.2 bouyer /*
142 1.2 bouyer * Statically-allocated CPU info for the primary CPU (or the only
143 1.2 bouyer * CPU, on uniprocessors). The CPU info list is initialized to
144 1.2 bouyer * point at it.
145 1.2 bouyer */
146 1.2 bouyer #ifdef TRAPLOG
147 1.2 bouyer #include <machine/tlog.h>
148 1.2 bouyer struct tlog tlog_primary;
149 1.2 bouyer #endif
150 1.38 cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 1.7 bouyer .ci_dev = 0,
152 1.2 bouyer .ci_self = &cpu_info_primary,
153 1.4 bouyer .ci_idepth = -1,
154 1.2 bouyer .ci_curlwp = &lwp0,
155 1.25 ad .ci_curldt = -1,
156 1.2 bouyer #ifdef TRAPLOG
157 1.2 bouyer .ci_tlog = &tlog_primary,
158 1.2 bouyer #endif
159 1.2 bouyer
160 1.2 bouyer };
161 1.38 cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
162 1.7 bouyer .ci_dev = 0,
163 1.2 bouyer .ci_self = &phycpu_info_primary,
164 1.2 bouyer };
165 1.2 bouyer
166 1.2 bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
167 1.38 cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
168 1.2 bouyer
169 1.2 bouyer static void cpu_set_tss_gates(struct cpu_info *ci);
170 1.2 bouyer
171 1.11 cegger uint32_t cpus_attached = 0;
172 1.11 cegger uint32_t cpus_running = 0;
173 1.11 cegger
174 1.38 cegger uint32_t phycpus_attached = 0;
175 1.38 cegger uint32_t phycpus_running = 0;
176 1.38 cegger
177 1.11 cegger bool x86_mp_online;
178 1.11 cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179 1.2 bouyer
180 1.38 cegger #if defined(MULTIPROCESSOR)
181 1.2 bouyer void cpu_hatch(void *);
182 1.2 bouyer static void cpu_boot_secondary(struct cpu_info *ci);
183 1.2 bouyer static void cpu_start_secondary(struct cpu_info *ci);
184 1.2 bouyer static void cpu_copy_trampoline(void);
185 1.2 bouyer
186 1.2 bouyer /*
187 1.2 bouyer * Runs once per boot once multiprocessor goo has been detected and
188 1.2 bouyer * the local APIC on the boot processor has been mapped.
189 1.2 bouyer *
190 1.2 bouyer * Called from lapic_boot_init() (from mpbios_scan()).
191 1.2 bouyer */
192 1.2 bouyer void
193 1.10 cegger cpu_init_first(void)
194 1.2 bouyer {
195 1.2 bouyer
196 1.38 cegger cpu_info_primary.ci_cpuid = lapic_cpu_number();
197 1.2 bouyer cpu_copy_trampoline();
198 1.2 bouyer }
199 1.38 cegger #endif /* MULTIPROCESSOR */
200 1.2 bouyer
201 1.2 bouyer int
202 1.10 cegger cpu_match(device_t parent, cfdata_t match, void *aux)
203 1.2 bouyer {
204 1.2 bouyer
205 1.2 bouyer return 1;
206 1.2 bouyer }
207 1.2 bouyer
208 1.2 bouyer void
209 1.10 cegger cpu_attach(device_t parent, device_t self, void *aux)
210 1.2 bouyer {
211 1.10 cegger struct cpu_softc *sc = device_private(self);
212 1.2 bouyer struct cpu_attach_args *caa = aux;
213 1.2 bouyer struct cpu_info *ci;
214 1.34 cegger uintptr_t ptr;
215 1.38 cegger static bool again = false;
216 1.2 bouyer
217 1.10 cegger sc->sc_dev = self;
218 1.10 cegger
219 1.38 cegger if (phycpus_attached == ~0) {
220 1.34 cegger aprint_error(": increase MAXCPUS\n");
221 1.34 cegger return;
222 1.34 cegger }
223 1.34 cegger
224 1.2 bouyer /*
225 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
226 1.2 bouyer * structure, otherwise use the primary's.
227 1.2 bouyer */
228 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
229 1.32 cegger if ((boothowto & RB_MD1) != 0) {
230 1.32 cegger aprint_error(": multiprocessor boot disabled\n");
231 1.32 cegger if (!pmf_device_register(self, NULL, NULL))
232 1.32 cegger aprint_error_dev(self,
233 1.32 cegger "couldn't establish power handler\n");
234 1.32 cegger return;
235 1.32 cegger }
236 1.32 cegger aprint_naive(": Application Processor\n");
237 1.34 cegger ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
238 1.34 cegger KM_SLEEP);
239 1.34 cegger ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
240 1.34 cegger ~(CACHE_LINE_SIZE - 1));
241 1.24 ad ci->ci_curldt = -1;
242 1.2 bouyer } else {
243 1.32 cegger aprint_naive(": %s Processor\n",
244 1.32 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
245 1.2 bouyer ci = &phycpu_info_primary;
246 1.2 bouyer }
247 1.2 bouyer
248 1.2 bouyer ci->ci_self = ci;
249 1.2 bouyer sc->sc_info = ci;
250 1.2 bouyer
251 1.2 bouyer ci->ci_dev = self;
252 1.23 ad ci->ci_cpuid = caa->cpu_number;
253 1.16 cegger ci->ci_vcpu = NULL;
254 1.2 bouyer
255 1.38 cegger /*
256 1.38 cegger * Boot processor may not be attached first, but the below
257 1.38 cegger * must be done to allow booting other processors.
258 1.38 cegger */
259 1.38 cegger if (!again) {
260 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
261 1.38 cegger /* Basic init */
262 1.38 cegger again = true;
263 1.38 cegger }
264 1.38 cegger
265 1.2 bouyer printf(": ");
266 1.2 bouyer switch (caa->cpu_role) {
267 1.2 bouyer case CPU_ROLE_SP:
268 1.2 bouyer printf("(uniprocessor)\n");
269 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
270 1.2 bouyer break;
271 1.2 bouyer
272 1.2 bouyer case CPU_ROLE_BP:
273 1.2 bouyer printf("(boot processor)\n");
274 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
275 1.2 bouyer break;
276 1.2 bouyer
277 1.2 bouyer case CPU_ROLE_AP:
278 1.2 bouyer /*
279 1.2 bouyer * report on an AP
280 1.2 bouyer */
281 1.2 bouyer printf("(application processor)\n");
282 1.38 cegger if (ci->ci_flags & CPUF_PRESENT) {
283 1.38 cegger struct cpu_info *tmp;
284 1.38 cegger
285 1.38 cegger tmp = phycpu_info_list;
286 1.38 cegger while (tmp->ci_next)
287 1.38 cegger tmp = tmp->ci_next;
288 1.38 cegger
289 1.38 cegger tmp->ci_next = ci;
290 1.38 cegger }
291 1.2 bouyer break;
292 1.2 bouyer
293 1.2 bouyer default:
294 1.2 bouyer panic("unknown processor type??\n");
295 1.2 bouyer }
296 1.34 cegger
297 1.38 cegger atomic_or_32(&phycpus_attached, ci->ci_cpumask);
298 1.34 cegger
299 1.2 bouyer return;
300 1.2 bouyer }
301 1.2 bouyer
302 1.2 bouyer int
303 1.10 cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
304 1.2 bouyer {
305 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
306 1.2 bouyer
307 1.2 bouyer if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
308 1.2 bouyer return 1;
309 1.2 bouyer return 0;
310 1.2 bouyer }
311 1.2 bouyer
312 1.2 bouyer void
313 1.10 cegger vcpu_attach(device_t parent, device_t self, void *aux)
314 1.2 bouyer {
315 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
316 1.2 bouyer
317 1.2 bouyer cpu_attach_common(parent, self, &vcaa->vcaa_caa);
318 1.2 bouyer }
319 1.2 bouyer
320 1.2 bouyer static void
321 1.2 bouyer cpu_vm_init(struct cpu_info *ci)
322 1.2 bouyer {
323 1.2 bouyer int ncolors = 2, i;
324 1.2 bouyer
325 1.2 bouyer for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
326 1.2 bouyer struct x86_cache_info *cai;
327 1.2 bouyer int tcolors;
328 1.2 bouyer
329 1.2 bouyer cai = &ci->ci_cinfo[i];
330 1.2 bouyer
331 1.2 bouyer tcolors = atop(cai->cai_totalsize);
332 1.2 bouyer switch(cai->cai_associativity) {
333 1.2 bouyer case 0xff:
334 1.2 bouyer tcolors = 1; /* fully associative */
335 1.2 bouyer break;
336 1.2 bouyer case 0:
337 1.2 bouyer case 1:
338 1.2 bouyer break;
339 1.2 bouyer default:
340 1.2 bouyer tcolors /= cai->cai_associativity;
341 1.2 bouyer }
342 1.2 bouyer ncolors = max(ncolors, tcolors);
343 1.2 bouyer }
344 1.2 bouyer
345 1.2 bouyer /*
346 1.2 bouyer * Knowing the size of the largest cache on this CPU, re-color
347 1.2 bouyer * our pages.
348 1.2 bouyer */
349 1.2 bouyer if (ncolors <= uvmexp.ncolors)
350 1.2 bouyer return;
351 1.28 bouyer aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
352 1.2 bouyer uvm_page_recolor(ncolors);
353 1.2 bouyer }
354 1.2 bouyer
355 1.2 bouyer void
356 1.11 cegger cpu_attach_common(device_t parent, device_t self, void *aux)
357 1.2 bouyer {
358 1.10 cegger struct cpu_softc *sc = device_private(self);
359 1.2 bouyer struct cpu_attach_args *caa = aux;
360 1.2 bouyer struct cpu_info *ci;
361 1.12 cegger uintptr_t ptr;
362 1.2 bouyer int cpunum = caa->cpu_number;
363 1.38 cegger static bool again = false;
364 1.2 bouyer
365 1.10 cegger sc->sc_dev = self;
366 1.10 cegger
367 1.2 bouyer /*
368 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
369 1.2 bouyer * structure, otherwise use the primary's.
370 1.2 bouyer */
371 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
372 1.12 cegger aprint_naive(": Application Processor\n");
373 1.31 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
374 1.31 cegger KM_SLEEP);
375 1.12 cegger ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
376 1.12 cegger ~(CACHE_LINE_SIZE - 1));
377 1.12 cegger memset(ci, 0, sizeof(*ci));
378 1.2 bouyer #ifdef TRAPLOG
379 1.31 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
380 1.2 bouyer #endif
381 1.2 bouyer } else {
382 1.12 cegger aprint_naive(": %s Processor\n",
383 1.12 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
384 1.2 bouyer ci = &cpu_info_primary;
385 1.38 cegger #if NLAPIC > 0
386 1.38 cegger if (cpunum != lapic_cpu_number()) {
387 1.38 cegger /* XXX should be done earlier */
388 1.38 cegger uint32_t reg;
389 1.38 cegger aprint_verbose("\n");
390 1.38 cegger aprint_verbose_dev(self, "running CPU at apic %d"
391 1.38 cegger " instead of at expected %d", lapic_cpu_number(),
392 1.38 cegger cpunum);
393 1.38 cegger reg = i82489_readreg(LAPIC_ID);
394 1.38 cegger i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
395 1.38 cegger (cpunum << LAPIC_ID_SHIFT));
396 1.38 cegger }
397 1.2 bouyer if (cpunum != lapic_cpu_number()) {
398 1.38 cegger aprint_error_dev(self, "unable to reset apic id\n");
399 1.2 bouyer }
400 1.2 bouyer #endif
401 1.2 bouyer }
402 1.2 bouyer
403 1.2 bouyer ci->ci_self = ci;
404 1.2 bouyer sc->sc_info = ci;
405 1.2 bouyer ci->ci_dev = self;
406 1.23 ad ci->ci_cpuid = cpunum;
407 1.16 cegger
408 1.16 cegger KASSERT(HYPERVISOR_shared_info != NULL);
409 1.16 cegger ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
410 1.16 cegger
411 1.2 bouyer ci->ci_func = caa->cpu_func;
412 1.2 bouyer
413 1.38 cegger /* Must be called before mi_cpu_attach(). */
414 1.38 cegger cpu_vm_init(ci);
415 1.38 cegger
416 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
417 1.2 bouyer int error;
418 1.2 bouyer
419 1.2 bouyer error = mi_cpu_attach(ci);
420 1.2 bouyer if (error != 0) {
421 1.2 bouyer aprint_normal("\n");
422 1.38 cegger aprint_error_dev(self,
423 1.38 cegger "mi_cpu_attach failed with %d\n", error);
424 1.2 bouyer return;
425 1.2 bouyer }
426 1.2 bouyer } else {
427 1.2 bouyer KASSERT(ci->ci_data.cpu_idlelwp != NULL);
428 1.2 bouyer }
429 1.2 bouyer
430 1.23 ad ci->ci_cpumask = (1 << cpu_index(ci));
431 1.2 bouyer pmap_reference(pmap_kernel());
432 1.2 bouyer ci->ci_pmap = pmap_kernel();
433 1.2 bouyer ci->ci_tlbstate = TLBSTATE_STALE;
434 1.2 bouyer
435 1.38 cegger /*
436 1.38 cegger * Boot processor may not be attached first, but the below
437 1.38 cegger * must be done to allow booting other processors.
438 1.38 cegger */
439 1.38 cegger if (!again) {
440 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
441 1.38 cegger /* Basic init. */
442 1.38 cegger cpu_intr_init(ci);
443 1.38 cegger cpu_get_tsc_freq(ci);
444 1.38 cegger cpu_init(ci);
445 1.38 cegger cpu_set_tss_gates(ci);
446 1.38 cegger pmap_cpu_init_late(ci);
447 1.38 cegger #if NLAPIC > 0
448 1.38 cegger if (caa->cpu_role != CPU_ROLE_SP) {
449 1.38 cegger /* Enable lapic. */
450 1.38 cegger lapic_enable();
451 1.38 cegger lapic_set_lvt();
452 1.38 cegger lapic_calibrate_timer();
453 1.38 cegger }
454 1.38 cegger #endif
455 1.38 cegger /* Make sure DELAY() is initialized. */
456 1.38 cegger DELAY(1);
457 1.38 cegger again = true;
458 1.38 cegger }
459 1.38 cegger
460 1.2 bouyer /* further PCB init done later. */
461 1.2 bouyer
462 1.2 bouyer switch (caa->cpu_role) {
463 1.2 bouyer case CPU_ROLE_SP:
464 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
465 1.21 ad cpu_identify(ci);
466 1.12 cegger #if 0
467 1.12 cegger x86_errata();
468 1.12 cegger #endif
469 1.38 cegger x86_cpu_idle_init();
470 1.2 bouyer break;
471 1.2 bouyer
472 1.2 bouyer case CPU_ROLE_BP:
473 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
474 1.21 ad cpu_identify(ci);
475 1.2 bouyer cpu_init(ci);
476 1.14 bouyer #if 0
477 1.12 cegger x86_errata();
478 1.12 cegger #endif
479 1.38 cegger x86_cpu_idle_init();
480 1.2 bouyer break;
481 1.2 bouyer
482 1.2 bouyer case CPU_ROLE_AP:
483 1.2 bouyer /*
484 1.2 bouyer * report on an AP
485 1.2 bouyer */
486 1.2 bouyer
487 1.2 bouyer #if defined(MULTIPROCESSOR)
488 1.2 bouyer cpu_intr_init(ci);
489 1.2 bouyer gdt_alloc_cpu(ci);
490 1.2 bouyer cpu_set_tss_gates(ci);
491 1.12 cegger pmap_cpu_init_early(ci);
492 1.12 cegger pmap_cpu_init_late(ci);
493 1.2 bouyer cpu_start_secondary(ci);
494 1.2 bouyer if (ci->ci_flags & CPUF_PRESENT) {
495 1.30 cegger struct cpu_info *tmp;
496 1.30 cegger
497 1.2 bouyer identifycpu(ci);
498 1.30 cegger tmp = cpu_info_list;
499 1.30 cegger while (tmp->ci_next)
500 1.30 cegger tmp = tmp->ci_next;
501 1.30 cegger
502 1.30 cegger tmp->ci_next = ci;
503 1.2 bouyer }
504 1.2 bouyer #else
505 1.38 cegger aprint_error_dev(self, "not started\n");
506 1.2 bouyer #endif
507 1.2 bouyer break;
508 1.2 bouyer
509 1.2 bouyer default:
510 1.12 cegger aprint_normal("\n");
511 1.2 bouyer panic("unknown processor type??\n");
512 1.2 bouyer }
513 1.2 bouyer
514 1.34 cegger atomic_or_32(&cpus_attached, ci->ci_cpumask);
515 1.2 bouyer
516 1.12 cegger #if 0
517 1.12 cegger if (!pmf_device_register(self, cpu_suspend, cpu_resume))
518 1.12 cegger aprint_error_dev(self, "couldn't establish power handler\n");
519 1.12 cegger #endif
520 1.12 cegger
521 1.2 bouyer #if defined(MULTIPROCESSOR)
522 1.2 bouyer if (mp_verbose) {
523 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
524 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
525 1.2 bouyer
526 1.38 cegger aprint_verbose_dev(self,
527 1.38 cegger "idle lwp at %p, idle sp at 0x%p\n",
528 1.12 cegger l,
529 1.12 cegger #ifdef i386
530 1.37 rmind (void *)pcb->pcb_esp
531 1.12 cegger #else
532 1.37 rmind (void *)pcb->pcb_rsp
533 1.12 cegger #endif
534 1.12 cegger );
535 1.12 cegger
536 1.2 bouyer }
537 1.2 bouyer #endif
538 1.2 bouyer }
539 1.2 bouyer
540 1.2 bouyer /*
541 1.2 bouyer * Initialize the processor appropriately.
542 1.2 bouyer */
543 1.2 bouyer
544 1.2 bouyer void
545 1.10 cegger cpu_init(struct cpu_info *ci)
546 1.2 bouyer {
547 1.2 bouyer
548 1.2 bouyer /*
549 1.2 bouyer * On a P6 or above, enable global TLB caching if the
550 1.2 bouyer * hardware supports it.
551 1.2 bouyer */
552 1.2 bouyer if (cpu_feature & CPUID_PGE)
553 1.2 bouyer lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
554 1.2 bouyer
555 1.2 bouyer #ifdef XXXMTRR
556 1.2 bouyer /*
557 1.2 bouyer * On a P6 or above, initialize MTRR's if the hardware supports them.
558 1.2 bouyer */
559 1.2 bouyer if (cpu_feature & CPUID_MTRR) {
560 1.2 bouyer if ((ci->ci_flags & CPUF_AP) == 0)
561 1.2 bouyer i686_mtrr_init_first();
562 1.2 bouyer mtrr_init_cpu(ci);
563 1.2 bouyer }
564 1.2 bouyer #endif
565 1.2 bouyer /*
566 1.2 bouyer * If we have FXSAVE/FXRESTOR, use them.
567 1.2 bouyer */
568 1.2 bouyer if (cpu_feature & CPUID_FXSR) {
569 1.2 bouyer lcr4(rcr4() | CR4_OSFXSR);
570 1.2 bouyer
571 1.2 bouyer /*
572 1.2 bouyer * If we have SSE/SSE2, enable XMM exceptions.
573 1.2 bouyer */
574 1.2 bouyer if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
575 1.2 bouyer lcr4(rcr4() | CR4_OSXMMEXCPT);
576 1.2 bouyer }
577 1.2 bouyer
578 1.34 cegger atomic_or_32(&cpus_running, ci->ci_cpumask);
579 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
580 1.2 bouyer }
581 1.2 bouyer
582 1.2 bouyer
583 1.2 bouyer #ifdef MULTIPROCESSOR
584 1.2 bouyer void
585 1.10 cegger cpu_boot_secondary_processors(void)
586 1.2 bouyer {
587 1.2 bouyer struct cpu_info *ci;
588 1.2 bouyer u_long i;
589 1.2 bouyer
590 1.38 cegger for (i = 0; i < maxcpus; i++) {
591 1.38 cegger ci = cpu_lookup(i);
592 1.2 bouyer if (ci == NULL)
593 1.2 bouyer continue;
594 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
595 1.2 bouyer continue;
596 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
597 1.2 bouyer continue;
598 1.2 bouyer if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
599 1.2 bouyer continue;
600 1.2 bouyer cpu_boot_secondary(ci);
601 1.2 bouyer }
602 1.11 cegger
603 1.11 cegger x86_mp_online = true;
604 1.2 bouyer }
605 1.2 bouyer
606 1.2 bouyer static void
607 1.2 bouyer cpu_init_idle_lwp(struct cpu_info *ci)
608 1.2 bouyer {
609 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
610 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
611 1.2 bouyer
612 1.2 bouyer pcb->pcb_cr0 = rcr0();
613 1.2 bouyer }
614 1.2 bouyer
615 1.2 bouyer void
616 1.10 cegger cpu_init_idle_lwps(void)
617 1.2 bouyer {
618 1.2 bouyer struct cpu_info *ci;
619 1.2 bouyer u_long i;
620 1.2 bouyer
621 1.38 cegger for (i = 0; i < maxcpus; i++) {
622 1.38 cegger ci = cpu_lookup(i);
623 1.2 bouyer if (ci == NULL)
624 1.2 bouyer continue;
625 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
626 1.2 bouyer continue;
627 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
628 1.2 bouyer continue;
629 1.2 bouyer cpu_init_idle_lwp(ci);
630 1.2 bouyer }
631 1.2 bouyer }
632 1.2 bouyer
633 1.2 bouyer void
634 1.10 cegger cpu_start_secondary(struct cpu_info *ci)
635 1.2 bouyer {
636 1.2 bouyer int i;
637 1.2 bouyer struct pmap *kpm = pmap_kernel();
638 1.11 cegger extern uint32_t mp_pdirpa;
639 1.2 bouyer
640 1.2 bouyer mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
641 1.2 bouyer
642 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_AP);
643 1.2 bouyer
644 1.11 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
645 1.2 bouyer
646 1.2 bouyer ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
647 1.11 cegger if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
648 1.11 cegger return;
649 1.2 bouyer
650 1.2 bouyer /*
651 1.2 bouyer * wait for it to become ready
652 1.2 bouyer */
653 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
654 1.11 cegger #ifdef MPDEBUG
655 1.11 cegger extern int cpu_trace[3];
656 1.11 cegger static int otrace[3];
657 1.11 cegger if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
658 1.11 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
659 1.11 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
660 1.11 cegger memcpy(otrace, cpu_trace, sizeof(otrace));
661 1.11 cegger }
662 1.11 cegger #endif
663 1.2 bouyer delay(10);
664 1.2 bouyer }
665 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0) {
666 1.9 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
667 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
668 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
669 1.2 bouyer Debugger();
670 1.2 bouyer #endif
671 1.2 bouyer }
672 1.2 bouyer
673 1.2 bouyer CPU_START_CLEANUP(ci);
674 1.2 bouyer }
675 1.2 bouyer
676 1.2 bouyer void
677 1.10 cegger cpu_boot_secondary(struct cpu_info *ci)
678 1.2 bouyer {
679 1.2 bouyer int i;
680 1.2 bouyer
681 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_GO);
682 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
683 1.2 bouyer delay(10);
684 1.2 bouyer }
685 1.11 cegger if ((ci->ci_flags & CPUF_RUNNING) == 0) {
686 1.11 cegger aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
687 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
688 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
689 1.2 bouyer Debugger();
690 1.2 bouyer #endif
691 1.2 bouyer }
692 1.2 bouyer }
693 1.2 bouyer
694 1.2 bouyer /*
695 1.2 bouyer * The CPU ends up here when its ready to run
696 1.2 bouyer * This is called from code in mptramp.s; at this point, we are running
697 1.2 bouyer * in the idle pcb/idle stack of the new CPU. When this function returns,
698 1.2 bouyer * this processor will enter the idle loop and start looking for work.
699 1.2 bouyer *
700 1.2 bouyer * XXX should share some of this with init386 in machdep.c
701 1.2 bouyer */
702 1.2 bouyer void
703 1.2 bouyer cpu_hatch(void *v)
704 1.2 bouyer {
705 1.2 bouyer struct cpu_info *ci = (struct cpu_info *)v;
706 1.37 rmind struct pcb *pcb;
707 1.37 rmind uint32_t blacklist_features;
708 1.11 cegger int s, i;
709 1.11 cegger
710 1.2 bouyer #ifdef __x86_64__
711 1.11 cegger cpu_init_msrs(ci, true);
712 1.2 bouyer #endif
713 1.2 bouyer
714 1.21 ad cpu_probe(ci);
715 1.11 cegger
716 1.2 bouyer /* not on Xen... */
717 1.11 cegger blacklist_features = ~(CPUID_PGE|CPUID_PSE|CPUID_MTRR|CPUID_FXSR|CPUID_NOX); /* XXX add CPUID_SVM */
718 1.2 bouyer
719 1.11 cegger cpu_feature &= blacklist_features;
720 1.2 bouyer
721 1.11 cegger KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
722 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
723 1.11 cegger while ((ci->ci_flags & CPUF_GO) == 0) {
724 1.11 cegger /* Don't use delay, boot CPU may be patching the text. */
725 1.11 cegger for (i = 10000; i != 0; i--)
726 1.11 cegger x86_pause();
727 1.11 cegger }
728 1.2 bouyer
729 1.11 cegger /* Because the text may have been patched in x86_patch(). */
730 1.11 cegger wbinvd();
731 1.11 cegger x86_flush();
732 1.2 bouyer
733 1.11 cegger KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
734 1.2 bouyer
735 1.37 rmind pcb = lwp_getpcb(curlwp);
736 1.12 cegger lcr3(pmap_kernel()->pm_pdirpa);
737 1.37 rmind pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
738 1.37 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
739 1.37 rmind lcr0(pcb->pcb_cr0);
740 1.37 rmind
741 1.2 bouyer cpu_init_idt();
742 1.11 cegger gdt_init_cpu(ci);
743 1.11 cegger lapic_enable();
744 1.2 bouyer lapic_set_lvt();
745 1.11 cegger lapic_initclocks();
746 1.11 cegger
747 1.12 cegger #ifdef i386
748 1.2 bouyer npxinit(ci);
749 1.12 cegger #else
750 1.12 cegger fpuinit(ci);
751 1.12 cegger #endif
752 1.2 bouyer
753 1.2 bouyer lldt(GSEL(GLDT_SEL, SEL_KPL));
754 1.12 cegger ltr(ci->ci_tss_sel);
755 1.2 bouyer
756 1.2 bouyer cpu_init(ci);
757 1.11 cegger cpu_get_tsc_freq(ci);
758 1.2 bouyer
759 1.2 bouyer s = splhigh();
760 1.11 cegger #ifdef i386
761 1.2 bouyer lapic_tpr = 0;
762 1.11 cegger #else
763 1.11 cegger lcr8(0);
764 1.11 cegger #endif
765 1.11 cegger x86_enable_intr();
766 1.11 cegger splx(s);
767 1.12 cegger #if 0
768 1.11 cegger x86_errata();
769 1.11 cegger #endif
770 1.2 bouyer
771 1.11 cegger aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
772 1.11 cegger (long)ci->ci_cpuid);
773 1.2 bouyer }
774 1.2 bouyer
775 1.2 bouyer #if defined(DDB)
776 1.2 bouyer
777 1.2 bouyer #include <ddb/db_output.h>
778 1.2 bouyer #include <machine/db_machdep.h>
779 1.2 bouyer
780 1.2 bouyer /*
781 1.2 bouyer * Dump CPU information from ddb.
782 1.2 bouyer */
783 1.2 bouyer void
784 1.2 bouyer cpu_debug_dump(void)
785 1.2 bouyer {
786 1.2 bouyer struct cpu_info *ci;
787 1.2 bouyer CPU_INFO_ITERATOR cii;
788 1.2 bouyer
789 1.13 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
790 1.2 bouyer for (CPU_INFO_FOREACH(cii, ci)) {
791 1.2 bouyer db_printf("%p %s %ld %x %x %10p %10p\n",
792 1.2 bouyer ci,
793 1.9 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
794 1.12 cegger (long)ci->ci_cpuid,
795 1.2 bouyer ci->ci_flags, ci->ci_ipis,
796 1.2 bouyer ci->ci_curlwp,
797 1.2 bouyer ci->ci_fpcurlwp);
798 1.2 bouyer }
799 1.2 bouyer }
800 1.38 cegger #endif /* DDB */
801 1.2 bouyer
802 1.2 bouyer static void
803 1.10 cegger cpu_copy_trampoline(void)
804 1.2 bouyer {
805 1.2 bouyer /*
806 1.2 bouyer * Copy boot code.
807 1.2 bouyer */
808 1.2 bouyer extern u_char cpu_spinup_trampoline[];
809 1.2 bouyer extern u_char cpu_spinup_trampoline_end[];
810 1.11 cegger
811 1.11 cegger vaddr_t mp_trampoline_vaddr;
812 1.11 cegger
813 1.11 cegger mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
814 1.11 cegger UVM_KMF_VAONLY);
815 1.11 cegger
816 1.11 cegger pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
817 1.36 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
818 1.11 cegger pmap_update(pmap_kernel());
819 1.11 cegger memcpy((void *)mp_trampoline_vaddr,
820 1.11 cegger cpu_spinup_trampoline,
821 1.11 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
822 1.11 cegger
823 1.11 cegger pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
824 1.11 cegger pmap_update(pmap_kernel());
825 1.11 cegger uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
826 1.2 bouyer }
827 1.2 bouyer
828 1.38 cegger #endif /* MULTIPROCESSOR */
829 1.2 bouyer
830 1.11 cegger #ifdef i386
831 1.11 cegger #if 0
832 1.11 cegger static void
833 1.11 cegger tss_init(struct i386tss *tss, void *stack, void *func)
834 1.11 cegger {
835 1.11 cegger memset(tss, 0, sizeof *tss);
836 1.11 cegger tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
837 1.11 cegger tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
838 1.11 cegger tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
839 1.11 cegger tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
840 1.11 cegger tss->tss_gs = tss->__tss_es = tss->__tss_ds =
841 1.11 cegger tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
842 1.11 cegger tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
843 1.11 cegger tss->tss_esp = (int)((char *)stack + USPACE - 16);
844 1.11 cegger tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
845 1.11 cegger tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
846 1.11 cegger tss->__tss_eip = (int)func;
847 1.11 cegger }
848 1.11 cegger #endif
849 1.2 bouyer
850 1.2 bouyer /* XXX */
851 1.2 bouyer #define IDTVEC(name) __CONCAT(X, name)
852 1.2 bouyer typedef void (vector)(void);
853 1.2 bouyer extern vector IDTVEC(tss_trap08);
854 1.2 bouyer #ifdef DDB
855 1.2 bouyer extern vector Xintrddbipi;
856 1.2 bouyer extern int ddb_vec;
857 1.2 bouyer #endif
858 1.2 bouyer
859 1.2 bouyer static void
860 1.2 bouyer cpu_set_tss_gates(struct cpu_info *ci)
861 1.2 bouyer {
862 1.11 cegger #if 0
863 1.11 cegger struct segment_descriptor sd;
864 1.11 cegger
865 1.11 cegger ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
866 1.11 cegger UVM_KMF_WIRED);
867 1.11 cegger tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
868 1.11 cegger IDTVEC(tss_trap08));
869 1.11 cegger setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
870 1.11 cegger SDT_SYS386TSS, SEL_KPL, 0, 0);
871 1.11 cegger ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
872 1.11 cegger setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
873 1.11 cegger GSEL(GTRAPTSS_SEL, SEL_KPL));
874 1.11 cegger #endif
875 1.11 cegger
876 1.2 bouyer #if defined(DDB) && defined(MULTIPROCESSOR)
877 1.2 bouyer /*
878 1.2 bouyer * Set up separate handler for the DDB IPI, so that it doesn't
879 1.2 bouyer * stomp on a possibly corrupted stack.
880 1.2 bouyer *
881 1.2 bouyer * XXX overwriting the gate set in db_machine_init.
882 1.2 bouyer * Should rearrange the code so that it's set only once.
883 1.2 bouyer */
884 1.2 bouyer ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
885 1.2 bouyer UVM_KMF_WIRED);
886 1.6 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
887 1.2 bouyer Xintrddbipi);
888 1.2 bouyer
889 1.2 bouyer setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
890 1.2 bouyer SDT_SYS386TSS, SEL_KPL, 0, 0);
891 1.2 bouyer ci->ci_gdt[GIPITSS_SEL].sd = sd;
892 1.2 bouyer
893 1.2 bouyer setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
894 1.2 bouyer GSEL(GIPITSS_SEL, SEL_KPL));
895 1.2 bouyer #endif
896 1.2 bouyer }
897 1.11 cegger #else
898 1.11 cegger static void
899 1.11 cegger cpu_set_tss_gates(struct cpu_info *ci)
900 1.11 cegger {
901 1.11 cegger
902 1.11 cegger }
903 1.11 cegger #endif /* i386 */
904 1.2 bouyer
905 1.2 bouyer int
906 1.5 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
907 1.2 bouyer {
908 1.2 bouyer #if 0
909 1.2 bouyer #if NLAPIC > 0
910 1.2 bouyer int error;
911 1.2 bouyer #endif
912 1.2 bouyer unsigned short dwordptr[2];
913 1.2 bouyer
914 1.2 bouyer /*
915 1.11 cegger * Bootstrap code must be addressable in real mode
916 1.11 cegger * and it must be page aligned.
917 1.11 cegger */
918 1.11 cegger KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
919 1.11 cegger
920 1.11 cegger /*
921 1.2 bouyer * "The BSP must initialize CMOS shutdown code to 0Ah ..."
922 1.2 bouyer */
923 1.2 bouyer
924 1.2 bouyer outb(IO_RTC, NVRAM_RESET);
925 1.2 bouyer outb(IO_RTC+1, NVRAM_RESET_JUMP);
926 1.2 bouyer
927 1.2 bouyer /*
928 1.2 bouyer * "and the warm reset vector (DWORD based at 40:67) to point
929 1.2 bouyer * to the AP startup code ..."
930 1.2 bouyer */
931 1.2 bouyer
932 1.2 bouyer dwordptr[0] = 0;
933 1.5 joerg dwordptr[1] = target >> 4;
934 1.2 bouyer
935 1.36 cegger pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
936 1.11 cegger memcpy ((uint8_t *) 0x467, dwordptr, 4);
937 1.2 bouyer pmap_kremove (0, PAGE_SIZE);
938 1.2 bouyer
939 1.2 bouyer #if NLAPIC > 0
940 1.2 bouyer /*
941 1.2 bouyer * ... prior to executing the following sequence:"
942 1.2 bouyer */
943 1.2 bouyer
944 1.2 bouyer if (ci->ci_flags & CPUF_AP) {
945 1.23 ad if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
946 1.2 bouyer return error;
947 1.2 bouyer
948 1.2 bouyer delay(10000);
949 1.2 bouyer
950 1.2 bouyer if (cpu_feature & CPUID_APIC) {
951 1.23 ad error = x86_ipi_init(ci->ci_cpuid);
952 1.11 cegger if (error != 0) {
953 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
954 1.11 cegger __func__);
955 1.11 cegger return error;
956 1.11 cegger }
957 1.11 cegger
958 1.11 cegger delay(10000);
959 1.2 bouyer
960 1.23 ad error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
961 1.11 cegger LAPIC_DLMODE_STARTUP);
962 1.11 cegger if (error != 0) {
963 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
964 1.11 cegger __func__);
965 1.2 bouyer return error;
966 1.11 cegger }
967 1.2 bouyer delay(200);
968 1.2 bouyer
969 1.23 ad error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
970 1.11 cegger LAPIC_DLMODE_STARTUP);
971 1.11 cegger if (error != 0) {
972 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
973 1.11 cegger __func__);
974 1.2 bouyer return error;
975 1.11 cegger }
976 1.2 bouyer delay(200);
977 1.2 bouyer }
978 1.2 bouyer }
979 1.2 bouyer #endif
980 1.2 bouyer #endif /* 0 */
981 1.2 bouyer return 0;
982 1.2 bouyer }
983 1.2 bouyer
984 1.2 bouyer void
985 1.2 bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
986 1.2 bouyer {
987 1.2 bouyer #if 0
988 1.2 bouyer /*
989 1.2 bouyer * Ensure the NVRAM reset byte contains something vaguely sane.
990 1.2 bouyer */
991 1.2 bouyer
992 1.2 bouyer outb(IO_RTC, NVRAM_RESET);
993 1.2 bouyer outb(IO_RTC+1, NVRAM_RESET_RST);
994 1.2 bouyer #endif
995 1.2 bouyer }
996 1.2 bouyer
997 1.2 bouyer #ifdef __x86_64__
998 1.2 bouyer
999 1.2 bouyer void
1000 1.3 bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
1001 1.2 bouyer {
1002 1.3 bouyer if (full) {
1003 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1004 1.11 cegger HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1005 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1006 1.3 bouyer }
1007 1.2 bouyer }
1008 1.2 bouyer #endif /* __x86_64__ */
1009 1.2 bouyer
1010 1.11 cegger void
1011 1.11 cegger cpu_offline_md(void)
1012 1.11 cegger {
1013 1.11 cegger int s;
1014 1.11 cegger
1015 1.11 cegger s = splhigh();
1016 1.11 cegger #ifdef __i386__
1017 1.11 cegger npxsave_cpu(true);
1018 1.11 cegger #else
1019 1.11 cegger fpusave_cpu(true);
1020 1.11 cegger #endif
1021 1.11 cegger splx(s);
1022 1.11 cegger }
1023 1.11 cegger
1024 1.11 cegger #if 0
1025 1.11 cegger /* XXX joerg restructure and restart CPUs individually */
1026 1.11 cegger static bool
1027 1.11 cegger cpu_suspend(device_t dv PMF_FN_ARGS)
1028 1.11 cegger {
1029 1.11 cegger struct cpu_softc *sc = device_private(dv);
1030 1.11 cegger struct cpu_info *ci = sc->sc_info;
1031 1.11 cegger int err;
1032 1.11 cegger
1033 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1034 1.11 cegger return true;
1035 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1036 1.11 cegger return true;
1037 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1038 1.11 cegger return true;
1039 1.11 cegger
1040 1.11 cegger sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1041 1.11 cegger
1042 1.11 cegger if (sc->sc_wasonline) {
1043 1.11 cegger mutex_enter(&cpu_lock);
1044 1.29 rmind err = cpu_setstate(ci, false);
1045 1.11 cegger mutex_exit(&cpu_lock);
1046 1.11 cegger
1047 1.11 cegger if (err)
1048 1.11 cegger return false;
1049 1.11 cegger }
1050 1.11 cegger
1051 1.11 cegger return true;
1052 1.11 cegger }
1053 1.11 cegger
1054 1.11 cegger static bool
1055 1.11 cegger cpu_resume(device_t dv PMF_FN_ARGS)
1056 1.11 cegger {
1057 1.11 cegger struct cpu_softc *sc = device_private(dv);
1058 1.11 cegger struct cpu_info *ci = sc->sc_info;
1059 1.11 cegger int err = 0;
1060 1.11 cegger
1061 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1062 1.11 cegger return true;
1063 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1064 1.11 cegger return true;
1065 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1066 1.11 cegger return true;
1067 1.11 cegger
1068 1.11 cegger if (sc->sc_wasonline) {
1069 1.11 cegger mutex_enter(&cpu_lock);
1070 1.29 rmind err = cpu_setstate(ci, true);
1071 1.11 cegger mutex_exit(&cpu_lock);
1072 1.11 cegger }
1073 1.11 cegger
1074 1.11 cegger return err == 0;
1075 1.11 cegger }
1076 1.11 cegger #endif
1077 1.11 cegger
1078 1.2 bouyer void
1079 1.2 bouyer cpu_get_tsc_freq(struct cpu_info *ci)
1080 1.2 bouyer {
1081 1.16 cegger const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1082 1.2 bouyer delay(1000000);
1083 1.2 bouyer uint64_t freq = 1000000000ULL << 32;
1084 1.2 bouyer freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1085 1.2 bouyer if ( tinfo->tsc_shift < 0 )
1086 1.2 bouyer freq = freq << -tinfo->tsc_shift;
1087 1.2 bouyer else
1088 1.2 bouyer freq = freq >> tinfo->tsc_shift;
1089 1.20 ad ci->ci_data.cpu_cc_freq = freq;
1090 1.2 bouyer }
1091 1.19 joerg
1092 1.19 joerg void
1093 1.19 joerg x86_cpu_idle_xen(void)
1094 1.19 joerg {
1095 1.19 joerg struct cpu_info *ci = curcpu();
1096 1.19 joerg
1097 1.19 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1098 1.19 joerg
1099 1.19 joerg x86_disable_intr();
1100 1.19 joerg if (!__predict_false(ci->ci_want_resched)) {
1101 1.19 joerg idle_block();
1102 1.19 joerg } else {
1103 1.19 joerg x86_enable_intr();
1104 1.19 joerg }
1105 1.19 joerg }
1106