cpu.c revision 1.42.2.3 1 1.42.2.3 rmind /* $NetBSD: cpu.c,v 1.42.2.3 2010/07/03 01:19:30 rmind Exp $ */
2 1.2 bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3 1.2 bouyer
4 1.2 bouyer /*-
5 1.2 bouyer * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 1.19 joerg * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 1.2 bouyer * All rights reserved.
8 1.2 bouyer *
9 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
10 1.2 bouyer * by RedBack Networks Inc.
11 1.2 bouyer *
12 1.2 bouyer * Author: Bill Sommerfeld
13 1.2 bouyer *
14 1.2 bouyer * Redistribution and use in source and binary forms, with or without
15 1.2 bouyer * modification, are permitted provided that the following conditions
16 1.2 bouyer * are met:
17 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
18 1.2 bouyer * notice, this list of conditions and the following disclaimer.
19 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
20 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
21 1.2 bouyer * documentation and/or other materials provided with the distribution.
22 1.2 bouyer *
23 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
34 1.2 bouyer */
35 1.2 bouyer
36 1.2 bouyer /*
37 1.2 bouyer * Copyright (c) 1999 Stefan Grefen
38 1.2 bouyer *
39 1.2 bouyer * Redistribution and use in source and binary forms, with or without
40 1.2 bouyer * modification, are permitted provided that the following conditions
41 1.2 bouyer * are met:
42 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
43 1.2 bouyer * notice, this list of conditions and the following disclaimer.
44 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
45 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
46 1.2 bouyer * documentation and/or other materials provided with the distribution.
47 1.2 bouyer * 3. All advertising materials mentioning features or use of this software
48 1.2 bouyer * must display the following acknowledgement:
49 1.2 bouyer * This product includes software developed by the NetBSD
50 1.2 bouyer * Foundation, Inc. and its contributors.
51 1.2 bouyer * 4. Neither the name of The NetBSD Foundation nor the names of its
52 1.2 bouyer * contributors may be used to endorse or promote products derived
53 1.2 bouyer * from this software without specific prior written permission.
54 1.2 bouyer *
55 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 1.2 bouyer * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 1.2 bouyer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 bouyer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 bouyer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 bouyer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 bouyer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 bouyer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 bouyer * SUCH DAMAGE.
66 1.2 bouyer */
67 1.2 bouyer
68 1.2 bouyer #include <sys/cdefs.h>
69 1.42.2.3 rmind __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.42.2.3 2010/07/03 01:19:30 rmind Exp $");
70 1.2 bouyer
71 1.2 bouyer #include "opt_ddb.h"
72 1.2 bouyer #include "opt_multiprocessor.h"
73 1.2 bouyer #include "opt_mpbios.h" /* for MPDEBUG */
74 1.2 bouyer #include "opt_mtrr.h"
75 1.2 bouyer #include "opt_xen.h"
76 1.2 bouyer
77 1.2 bouyer #include "lapic.h"
78 1.2 bouyer #include "ioapic.h"
79 1.2 bouyer
80 1.2 bouyer #include <sys/param.h>
81 1.2 bouyer #include <sys/proc.h>
82 1.2 bouyer #include <sys/systm.h>
83 1.2 bouyer #include <sys/device.h>
84 1.31 cegger #include <sys/kmem.h>
85 1.11 cegger #include <sys/cpu.h>
86 1.11 cegger #include <sys/atomic.h>
87 1.32 cegger #include <sys/reboot.h>
88 1.2 bouyer
89 1.2 bouyer #include <uvm/uvm_extern.h>
90 1.2 bouyer
91 1.2 bouyer #include <machine/cpufunc.h>
92 1.2 bouyer #include <machine/cpuvar.h>
93 1.2 bouyer #include <machine/pmap.h>
94 1.2 bouyer #include <machine/vmparam.h>
95 1.2 bouyer #include <machine/mpbiosvar.h>
96 1.2 bouyer #include <machine/pcb.h>
97 1.2 bouyer #include <machine/specialreg.h>
98 1.2 bouyer #include <machine/segments.h>
99 1.2 bouyer #include <machine/gdt.h>
100 1.2 bouyer #include <machine/mtrr.h>
101 1.2 bouyer #include <machine/pio.h>
102 1.2 bouyer
103 1.2 bouyer #include <xen/vcpuvar.h>
104 1.2 bouyer
105 1.2 bouyer #if NLAPIC > 0
106 1.2 bouyer #include <machine/apicvar.h>
107 1.2 bouyer #include <machine/i82489reg.h>
108 1.2 bouyer #include <machine/i82489var.h>
109 1.2 bouyer #endif
110 1.2 bouyer
111 1.2 bouyer #include <dev/ic/mc146818reg.h>
112 1.2 bouyer #include <dev/isa/isareg.h>
113 1.2 bouyer
114 1.38 cegger #if MAXCPUS > 32
115 1.38 cegger #error cpu_info contains 32bit bitmasks
116 1.38 cegger #endif
117 1.27 ad
118 1.10 cegger int cpu_match(device_t, cfdata_t, void *);
119 1.10 cegger void cpu_attach(device_t, device_t, void *);
120 1.10 cegger int vcpu_match(device_t, cfdata_t, void *);
121 1.10 cegger void vcpu_attach(device_t, device_t, void *);
122 1.10 cegger void cpu_attach_common(device_t, device_t, void *);
123 1.8 dogcow void cpu_offline_md(void);
124 1.2 bouyer
125 1.2 bouyer struct cpu_softc {
126 1.10 cegger device_t sc_dev; /* device tree glue */
127 1.2 bouyer struct cpu_info *sc_info; /* pointer to CPU info */
128 1.32 cegger bool sc_wasonline;
129 1.2 bouyer };
130 1.2 bouyer
131 1.5 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
132 1.2 bouyer void mp_cpu_start_cleanup(struct cpu_info *);
133 1.2 bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
134 1.2 bouyer mp_cpu_start_cleanup };
135 1.2 bouyer
136 1.10 cegger CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
137 1.2 bouyer cpu_match, cpu_attach, NULL, NULL);
138 1.10 cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
139 1.2 bouyer vcpu_match, vcpu_attach, NULL, NULL);
140 1.2 bouyer
141 1.2 bouyer /*
142 1.2 bouyer * Statically-allocated CPU info for the primary CPU (or the only
143 1.2 bouyer * CPU, on uniprocessors). The CPU info list is initialized to
144 1.2 bouyer * point at it.
145 1.2 bouyer */
146 1.2 bouyer #ifdef TRAPLOG
147 1.2 bouyer #include <machine/tlog.h>
148 1.2 bouyer struct tlog tlog_primary;
149 1.2 bouyer #endif
150 1.38 cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 1.7 bouyer .ci_dev = 0,
152 1.2 bouyer .ci_self = &cpu_info_primary,
153 1.4 bouyer .ci_idepth = -1,
154 1.2 bouyer .ci_curlwp = &lwp0,
155 1.25 ad .ci_curldt = -1,
156 1.2 bouyer #ifdef TRAPLOG
157 1.2 bouyer .ci_tlog = &tlog_primary,
158 1.2 bouyer #endif
159 1.2 bouyer
160 1.2 bouyer };
161 1.38 cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
162 1.7 bouyer .ci_dev = 0,
163 1.2 bouyer .ci_self = &phycpu_info_primary,
164 1.2 bouyer };
165 1.2 bouyer
166 1.2 bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
167 1.38 cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
168 1.2 bouyer
169 1.2 bouyer static void cpu_set_tss_gates(struct cpu_info *ci);
170 1.2 bouyer
171 1.11 cegger uint32_t cpus_attached = 0;
172 1.11 cegger uint32_t cpus_running = 0;
173 1.11 cegger
174 1.38 cegger uint32_t phycpus_attached = 0;
175 1.38 cegger uint32_t phycpus_running = 0;
176 1.38 cegger
177 1.42.2.1 rmind uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 1.42.2.1 rmind * [0] basic features %edx
179 1.42.2.1 rmind * [1] basic features %ecx
180 1.42.2.1 rmind * [2] extended features %edx
181 1.42.2.1 rmind * [3] extended features %ecx
182 1.42.2.1 rmind * [4] VIA padlock features
183 1.42.2.1 rmind */
184 1.42.2.1 rmind
185 1.11 cegger bool x86_mp_online;
186 1.11 cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
187 1.2 bouyer
188 1.38 cegger #if defined(MULTIPROCESSOR)
189 1.2 bouyer void cpu_hatch(void *);
190 1.2 bouyer static void cpu_boot_secondary(struct cpu_info *ci);
191 1.2 bouyer static void cpu_start_secondary(struct cpu_info *ci);
192 1.2 bouyer static void cpu_copy_trampoline(void);
193 1.2 bouyer
194 1.2 bouyer /*
195 1.2 bouyer * Runs once per boot once multiprocessor goo has been detected and
196 1.2 bouyer * the local APIC on the boot processor has been mapped.
197 1.2 bouyer *
198 1.2 bouyer * Called from lapic_boot_init() (from mpbios_scan()).
199 1.2 bouyer */
200 1.2 bouyer void
201 1.10 cegger cpu_init_first(void)
202 1.2 bouyer {
203 1.2 bouyer
204 1.38 cegger cpu_info_primary.ci_cpuid = lapic_cpu_number();
205 1.2 bouyer cpu_copy_trampoline();
206 1.2 bouyer }
207 1.38 cegger #endif /* MULTIPROCESSOR */
208 1.2 bouyer
209 1.2 bouyer int
210 1.10 cegger cpu_match(device_t parent, cfdata_t match, void *aux)
211 1.2 bouyer {
212 1.2 bouyer
213 1.2 bouyer return 1;
214 1.2 bouyer }
215 1.2 bouyer
216 1.2 bouyer void
217 1.10 cegger cpu_attach(device_t parent, device_t self, void *aux)
218 1.2 bouyer {
219 1.10 cegger struct cpu_softc *sc = device_private(self);
220 1.2 bouyer struct cpu_attach_args *caa = aux;
221 1.2 bouyer struct cpu_info *ci;
222 1.34 cegger uintptr_t ptr;
223 1.38 cegger static bool again = false;
224 1.2 bouyer
225 1.10 cegger sc->sc_dev = self;
226 1.10 cegger
227 1.38 cegger if (phycpus_attached == ~0) {
228 1.34 cegger aprint_error(": increase MAXCPUS\n");
229 1.34 cegger return;
230 1.34 cegger }
231 1.34 cegger
232 1.2 bouyer /*
233 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
234 1.2 bouyer * structure, otherwise use the primary's.
235 1.2 bouyer */
236 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
237 1.32 cegger if ((boothowto & RB_MD1) != 0) {
238 1.32 cegger aprint_error(": multiprocessor boot disabled\n");
239 1.32 cegger if (!pmf_device_register(self, NULL, NULL))
240 1.32 cegger aprint_error_dev(self,
241 1.32 cegger "couldn't establish power handler\n");
242 1.32 cegger return;
243 1.32 cegger }
244 1.32 cegger aprint_naive(": Application Processor\n");
245 1.34 cegger ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
246 1.34 cegger KM_SLEEP);
247 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
248 1.24 ad ci->ci_curldt = -1;
249 1.2 bouyer } else {
250 1.32 cegger aprint_naive(": %s Processor\n",
251 1.32 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
252 1.2 bouyer ci = &phycpu_info_primary;
253 1.2 bouyer }
254 1.2 bouyer
255 1.2 bouyer ci->ci_self = ci;
256 1.2 bouyer sc->sc_info = ci;
257 1.2 bouyer
258 1.2 bouyer ci->ci_dev = self;
259 1.23 ad ci->ci_cpuid = caa->cpu_number;
260 1.16 cegger ci->ci_vcpu = NULL;
261 1.2 bouyer
262 1.38 cegger /*
263 1.38 cegger * Boot processor may not be attached first, but the below
264 1.38 cegger * must be done to allow booting other processors.
265 1.38 cegger */
266 1.38 cegger if (!again) {
267 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
268 1.38 cegger /* Basic init */
269 1.38 cegger again = true;
270 1.38 cegger }
271 1.38 cegger
272 1.2 bouyer printf(": ");
273 1.2 bouyer switch (caa->cpu_role) {
274 1.2 bouyer case CPU_ROLE_SP:
275 1.2 bouyer printf("(uniprocessor)\n");
276 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
277 1.2 bouyer break;
278 1.2 bouyer
279 1.2 bouyer case CPU_ROLE_BP:
280 1.2 bouyer printf("(boot processor)\n");
281 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
282 1.2 bouyer break;
283 1.2 bouyer
284 1.2 bouyer case CPU_ROLE_AP:
285 1.2 bouyer /*
286 1.2 bouyer * report on an AP
287 1.2 bouyer */
288 1.2 bouyer printf("(application processor)\n");
289 1.38 cegger if (ci->ci_flags & CPUF_PRESENT) {
290 1.38 cegger struct cpu_info *tmp;
291 1.38 cegger
292 1.38 cegger tmp = phycpu_info_list;
293 1.38 cegger while (tmp->ci_next)
294 1.38 cegger tmp = tmp->ci_next;
295 1.38 cegger
296 1.38 cegger tmp->ci_next = ci;
297 1.38 cegger }
298 1.2 bouyer break;
299 1.2 bouyer
300 1.2 bouyer default:
301 1.2 bouyer panic("unknown processor type??\n");
302 1.2 bouyer }
303 1.34 cegger
304 1.38 cegger atomic_or_32(&phycpus_attached, ci->ci_cpumask);
305 1.34 cegger
306 1.2 bouyer return;
307 1.2 bouyer }
308 1.2 bouyer
309 1.2 bouyer int
310 1.10 cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
311 1.2 bouyer {
312 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
313 1.2 bouyer
314 1.2 bouyer if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
315 1.2 bouyer return 1;
316 1.2 bouyer return 0;
317 1.2 bouyer }
318 1.2 bouyer
319 1.2 bouyer void
320 1.10 cegger vcpu_attach(device_t parent, device_t self, void *aux)
321 1.2 bouyer {
322 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
323 1.2 bouyer
324 1.2 bouyer cpu_attach_common(parent, self, &vcaa->vcaa_caa);
325 1.2 bouyer }
326 1.2 bouyer
327 1.2 bouyer static void
328 1.2 bouyer cpu_vm_init(struct cpu_info *ci)
329 1.2 bouyer {
330 1.2 bouyer int ncolors = 2, i;
331 1.2 bouyer
332 1.2 bouyer for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
333 1.2 bouyer struct x86_cache_info *cai;
334 1.2 bouyer int tcolors;
335 1.2 bouyer
336 1.2 bouyer cai = &ci->ci_cinfo[i];
337 1.2 bouyer
338 1.2 bouyer tcolors = atop(cai->cai_totalsize);
339 1.2 bouyer switch(cai->cai_associativity) {
340 1.2 bouyer case 0xff:
341 1.2 bouyer tcolors = 1; /* fully associative */
342 1.2 bouyer break;
343 1.2 bouyer case 0:
344 1.2 bouyer case 1:
345 1.2 bouyer break;
346 1.2 bouyer default:
347 1.2 bouyer tcolors /= cai->cai_associativity;
348 1.2 bouyer }
349 1.2 bouyer ncolors = max(ncolors, tcolors);
350 1.2 bouyer }
351 1.2 bouyer
352 1.2 bouyer /*
353 1.2 bouyer * Knowing the size of the largest cache on this CPU, re-color
354 1.2 bouyer * our pages.
355 1.2 bouyer */
356 1.2 bouyer if (ncolors <= uvmexp.ncolors)
357 1.2 bouyer return;
358 1.28 bouyer aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
359 1.2 bouyer uvm_page_recolor(ncolors);
360 1.2 bouyer }
361 1.2 bouyer
362 1.2 bouyer void
363 1.11 cegger cpu_attach_common(device_t parent, device_t self, void *aux)
364 1.2 bouyer {
365 1.10 cegger struct cpu_softc *sc = device_private(self);
366 1.2 bouyer struct cpu_attach_args *caa = aux;
367 1.2 bouyer struct cpu_info *ci;
368 1.12 cegger uintptr_t ptr;
369 1.2 bouyer int cpunum = caa->cpu_number;
370 1.38 cegger static bool again = false;
371 1.2 bouyer
372 1.10 cegger sc->sc_dev = self;
373 1.10 cegger
374 1.2 bouyer /*
375 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
376 1.2 bouyer * structure, otherwise use the primary's.
377 1.2 bouyer */
378 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
379 1.12 cegger aprint_naive(": Application Processor\n");
380 1.31 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
381 1.31 cegger KM_SLEEP);
382 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
383 1.12 cegger memset(ci, 0, sizeof(*ci));
384 1.2 bouyer #ifdef TRAPLOG
385 1.31 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
386 1.2 bouyer #endif
387 1.2 bouyer } else {
388 1.12 cegger aprint_naive(": %s Processor\n",
389 1.12 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
390 1.2 bouyer ci = &cpu_info_primary;
391 1.38 cegger #if NLAPIC > 0
392 1.38 cegger if (cpunum != lapic_cpu_number()) {
393 1.38 cegger /* XXX should be done earlier */
394 1.38 cegger uint32_t reg;
395 1.38 cegger aprint_verbose("\n");
396 1.38 cegger aprint_verbose_dev(self, "running CPU at apic %d"
397 1.38 cegger " instead of at expected %d", lapic_cpu_number(),
398 1.38 cegger cpunum);
399 1.38 cegger reg = i82489_readreg(LAPIC_ID);
400 1.38 cegger i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
401 1.38 cegger (cpunum << LAPIC_ID_SHIFT));
402 1.38 cegger }
403 1.2 bouyer if (cpunum != lapic_cpu_number()) {
404 1.38 cegger aprint_error_dev(self, "unable to reset apic id\n");
405 1.2 bouyer }
406 1.2 bouyer #endif
407 1.2 bouyer }
408 1.2 bouyer
409 1.2 bouyer ci->ci_self = ci;
410 1.2 bouyer sc->sc_info = ci;
411 1.2 bouyer ci->ci_dev = self;
412 1.23 ad ci->ci_cpuid = cpunum;
413 1.16 cegger
414 1.16 cegger KASSERT(HYPERVISOR_shared_info != NULL);
415 1.16 cegger ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
416 1.16 cegger
417 1.2 bouyer ci->ci_func = caa->cpu_func;
418 1.2 bouyer
419 1.38 cegger /* Must be called before mi_cpu_attach(). */
420 1.38 cegger cpu_vm_init(ci);
421 1.38 cegger
422 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
423 1.2 bouyer int error;
424 1.2 bouyer
425 1.2 bouyer error = mi_cpu_attach(ci);
426 1.2 bouyer if (error != 0) {
427 1.2 bouyer aprint_normal("\n");
428 1.38 cegger aprint_error_dev(self,
429 1.38 cegger "mi_cpu_attach failed with %d\n", error);
430 1.2 bouyer return;
431 1.2 bouyer }
432 1.2 bouyer } else {
433 1.2 bouyer KASSERT(ci->ci_data.cpu_idlelwp != NULL);
434 1.2 bouyer }
435 1.2 bouyer
436 1.23 ad ci->ci_cpumask = (1 << cpu_index(ci));
437 1.2 bouyer pmap_reference(pmap_kernel());
438 1.2 bouyer ci->ci_pmap = pmap_kernel();
439 1.2 bouyer ci->ci_tlbstate = TLBSTATE_STALE;
440 1.2 bouyer
441 1.38 cegger /*
442 1.38 cegger * Boot processor may not be attached first, but the below
443 1.38 cegger * must be done to allow booting other processors.
444 1.38 cegger */
445 1.38 cegger if (!again) {
446 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
447 1.38 cegger /* Basic init. */
448 1.38 cegger cpu_intr_init(ci);
449 1.38 cegger cpu_get_tsc_freq(ci);
450 1.38 cegger cpu_init(ci);
451 1.38 cegger cpu_set_tss_gates(ci);
452 1.38 cegger #if NLAPIC > 0
453 1.38 cegger if (caa->cpu_role != CPU_ROLE_SP) {
454 1.38 cegger /* Enable lapic. */
455 1.38 cegger lapic_enable();
456 1.38 cegger lapic_set_lvt();
457 1.38 cegger lapic_calibrate_timer();
458 1.38 cegger }
459 1.38 cegger #endif
460 1.38 cegger /* Make sure DELAY() is initialized. */
461 1.38 cegger DELAY(1);
462 1.38 cegger again = true;
463 1.38 cegger }
464 1.38 cegger
465 1.2 bouyer /* further PCB init done later. */
466 1.2 bouyer
467 1.2 bouyer switch (caa->cpu_role) {
468 1.2 bouyer case CPU_ROLE_SP:
469 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
470 1.21 ad cpu_identify(ci);
471 1.12 cegger #if 0
472 1.12 cegger x86_errata();
473 1.12 cegger #endif
474 1.38 cegger x86_cpu_idle_init();
475 1.2 bouyer break;
476 1.2 bouyer
477 1.2 bouyer case CPU_ROLE_BP:
478 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
479 1.21 ad cpu_identify(ci);
480 1.2 bouyer cpu_init(ci);
481 1.14 bouyer #if 0
482 1.12 cegger x86_errata();
483 1.12 cegger #endif
484 1.38 cegger x86_cpu_idle_init();
485 1.2 bouyer break;
486 1.2 bouyer
487 1.2 bouyer case CPU_ROLE_AP:
488 1.2 bouyer /*
489 1.2 bouyer * report on an AP
490 1.2 bouyer */
491 1.2 bouyer
492 1.2 bouyer #if defined(MULTIPROCESSOR)
493 1.2 bouyer cpu_intr_init(ci);
494 1.2 bouyer gdt_alloc_cpu(ci);
495 1.2 bouyer cpu_set_tss_gates(ci);
496 1.2 bouyer cpu_start_secondary(ci);
497 1.2 bouyer if (ci->ci_flags & CPUF_PRESENT) {
498 1.30 cegger struct cpu_info *tmp;
499 1.30 cegger
500 1.2 bouyer identifycpu(ci);
501 1.30 cegger tmp = cpu_info_list;
502 1.30 cegger while (tmp->ci_next)
503 1.30 cegger tmp = tmp->ci_next;
504 1.30 cegger
505 1.30 cegger tmp->ci_next = ci;
506 1.2 bouyer }
507 1.2 bouyer #else
508 1.38 cegger aprint_error_dev(self, "not started\n");
509 1.2 bouyer #endif
510 1.2 bouyer break;
511 1.2 bouyer
512 1.2 bouyer default:
513 1.12 cegger aprint_normal("\n");
514 1.2 bouyer panic("unknown processor type??\n");
515 1.2 bouyer }
516 1.2 bouyer
517 1.34 cegger atomic_or_32(&cpus_attached, ci->ci_cpumask);
518 1.2 bouyer
519 1.12 cegger #if 0
520 1.12 cegger if (!pmf_device_register(self, cpu_suspend, cpu_resume))
521 1.12 cegger aprint_error_dev(self, "couldn't establish power handler\n");
522 1.12 cegger #endif
523 1.12 cegger
524 1.2 bouyer #if defined(MULTIPROCESSOR)
525 1.2 bouyer if (mp_verbose) {
526 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
527 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
528 1.2 bouyer
529 1.38 cegger aprint_verbose_dev(self,
530 1.38 cegger "idle lwp at %p, idle sp at 0x%p\n",
531 1.12 cegger l,
532 1.12 cegger #ifdef i386
533 1.37 rmind (void *)pcb->pcb_esp
534 1.12 cegger #else
535 1.37 rmind (void *)pcb->pcb_rsp
536 1.12 cegger #endif
537 1.12 cegger );
538 1.12 cegger
539 1.2 bouyer }
540 1.2 bouyer #endif
541 1.2 bouyer }
542 1.2 bouyer
543 1.2 bouyer /*
544 1.2 bouyer * Initialize the processor appropriately.
545 1.2 bouyer */
546 1.2 bouyer
547 1.2 bouyer void
548 1.10 cegger cpu_init(struct cpu_info *ci)
549 1.2 bouyer {
550 1.2 bouyer
551 1.2 bouyer /*
552 1.2 bouyer * On a P6 or above, enable global TLB caching if the
553 1.2 bouyer * hardware supports it.
554 1.2 bouyer */
555 1.42.2.1 rmind if (cpu_feature[0] & CPUID_PGE)
556 1.2 bouyer lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
557 1.2 bouyer
558 1.2 bouyer #ifdef XXXMTRR
559 1.2 bouyer /*
560 1.2 bouyer * On a P6 or above, initialize MTRR's if the hardware supports them.
561 1.2 bouyer */
562 1.42.2.1 rmind if (cpu_feature[0] & CPUID_MTRR) {
563 1.2 bouyer if ((ci->ci_flags & CPUF_AP) == 0)
564 1.2 bouyer i686_mtrr_init_first();
565 1.2 bouyer mtrr_init_cpu(ci);
566 1.2 bouyer }
567 1.2 bouyer #endif
568 1.2 bouyer /*
569 1.2 bouyer * If we have FXSAVE/FXRESTOR, use them.
570 1.2 bouyer */
571 1.42.2.1 rmind if (cpu_feature[0] & CPUID_FXSR) {
572 1.2 bouyer lcr4(rcr4() | CR4_OSFXSR);
573 1.2 bouyer
574 1.2 bouyer /*
575 1.2 bouyer * If we have SSE/SSE2, enable XMM exceptions.
576 1.2 bouyer */
577 1.42.2.1 rmind if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
578 1.2 bouyer lcr4(rcr4() | CR4_OSXMMEXCPT);
579 1.2 bouyer }
580 1.2 bouyer
581 1.34 cegger atomic_or_32(&cpus_running, ci->ci_cpumask);
582 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
583 1.2 bouyer }
584 1.2 bouyer
585 1.2 bouyer
586 1.2 bouyer #ifdef MULTIPROCESSOR
587 1.2 bouyer void
588 1.10 cegger cpu_boot_secondary_processors(void)
589 1.2 bouyer {
590 1.2 bouyer struct cpu_info *ci;
591 1.2 bouyer u_long i;
592 1.2 bouyer
593 1.38 cegger for (i = 0; i < maxcpus; i++) {
594 1.38 cegger ci = cpu_lookup(i);
595 1.2 bouyer if (ci == NULL)
596 1.2 bouyer continue;
597 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
598 1.2 bouyer continue;
599 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
600 1.2 bouyer continue;
601 1.2 bouyer if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
602 1.2 bouyer continue;
603 1.2 bouyer cpu_boot_secondary(ci);
604 1.2 bouyer }
605 1.11 cegger
606 1.11 cegger x86_mp_online = true;
607 1.2 bouyer }
608 1.2 bouyer
609 1.2 bouyer static void
610 1.2 bouyer cpu_init_idle_lwp(struct cpu_info *ci)
611 1.2 bouyer {
612 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
613 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
614 1.2 bouyer
615 1.2 bouyer pcb->pcb_cr0 = rcr0();
616 1.2 bouyer }
617 1.2 bouyer
618 1.2 bouyer void
619 1.10 cegger cpu_init_idle_lwps(void)
620 1.2 bouyer {
621 1.2 bouyer struct cpu_info *ci;
622 1.2 bouyer u_long i;
623 1.2 bouyer
624 1.38 cegger for (i = 0; i < maxcpus; i++) {
625 1.38 cegger ci = cpu_lookup(i);
626 1.2 bouyer if (ci == NULL)
627 1.2 bouyer continue;
628 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
629 1.2 bouyer continue;
630 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
631 1.2 bouyer continue;
632 1.2 bouyer cpu_init_idle_lwp(ci);
633 1.2 bouyer }
634 1.2 bouyer }
635 1.2 bouyer
636 1.2 bouyer void
637 1.10 cegger cpu_start_secondary(struct cpu_info *ci)
638 1.2 bouyer {
639 1.2 bouyer int i;
640 1.2 bouyer struct pmap *kpm = pmap_kernel();
641 1.11 cegger extern uint32_t mp_pdirpa;
642 1.2 bouyer
643 1.2 bouyer mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
644 1.2 bouyer
645 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_AP);
646 1.2 bouyer
647 1.11 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
648 1.2 bouyer
649 1.2 bouyer ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
650 1.11 cegger if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
651 1.11 cegger return;
652 1.2 bouyer
653 1.2 bouyer /*
654 1.2 bouyer * wait for it to become ready
655 1.2 bouyer */
656 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
657 1.11 cegger #ifdef MPDEBUG
658 1.11 cegger extern int cpu_trace[3];
659 1.11 cegger static int otrace[3];
660 1.11 cegger if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
661 1.11 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
662 1.11 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
663 1.11 cegger memcpy(otrace, cpu_trace, sizeof(otrace));
664 1.11 cegger }
665 1.11 cegger #endif
666 1.2 bouyer delay(10);
667 1.2 bouyer }
668 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0) {
669 1.9 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
670 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
671 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
672 1.2 bouyer Debugger();
673 1.2 bouyer #endif
674 1.2 bouyer }
675 1.2 bouyer
676 1.2 bouyer CPU_START_CLEANUP(ci);
677 1.2 bouyer }
678 1.2 bouyer
679 1.2 bouyer void
680 1.10 cegger cpu_boot_secondary(struct cpu_info *ci)
681 1.2 bouyer {
682 1.2 bouyer int i;
683 1.2 bouyer
684 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_GO);
685 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
686 1.2 bouyer delay(10);
687 1.2 bouyer }
688 1.11 cegger if ((ci->ci_flags & CPUF_RUNNING) == 0) {
689 1.11 cegger aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
690 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
691 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
692 1.2 bouyer Debugger();
693 1.2 bouyer #endif
694 1.2 bouyer }
695 1.2 bouyer }
696 1.2 bouyer
697 1.2 bouyer /*
698 1.2 bouyer * The CPU ends up here when its ready to run
699 1.2 bouyer * This is called from code in mptramp.s; at this point, we are running
700 1.2 bouyer * in the idle pcb/idle stack of the new CPU. When this function returns,
701 1.2 bouyer * this processor will enter the idle loop and start looking for work.
702 1.2 bouyer *
703 1.2 bouyer * XXX should share some of this with init386 in machdep.c
704 1.2 bouyer */
705 1.2 bouyer void
706 1.2 bouyer cpu_hatch(void *v)
707 1.2 bouyer {
708 1.2 bouyer struct cpu_info *ci = (struct cpu_info *)v;
709 1.37 rmind struct pcb *pcb;
710 1.11 cegger int s, i;
711 1.11 cegger
712 1.21 ad cpu_probe(ci);
713 1.11 cegger
714 1.42.2.1 rmind cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
715 1.42.2.1 rmind cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
716 1.2 bouyer
717 1.42.2.1 rmind cpu_init_msrs(ci, true);
718 1.2 bouyer
719 1.11 cegger KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
720 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
721 1.11 cegger while ((ci->ci_flags & CPUF_GO) == 0) {
722 1.11 cegger /* Don't use delay, boot CPU may be patching the text. */
723 1.11 cegger for (i = 10000; i != 0; i--)
724 1.11 cegger x86_pause();
725 1.11 cegger }
726 1.2 bouyer
727 1.11 cegger /* Because the text may have been patched in x86_patch(). */
728 1.11 cegger wbinvd();
729 1.11 cegger x86_flush();
730 1.2 bouyer
731 1.11 cegger KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
732 1.2 bouyer
733 1.37 rmind pcb = lwp_getpcb(curlwp);
734 1.12 cegger lcr3(pmap_kernel()->pm_pdirpa);
735 1.37 rmind pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
736 1.37 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
737 1.37 rmind lcr0(pcb->pcb_cr0);
738 1.37 rmind
739 1.2 bouyer cpu_init_idt();
740 1.11 cegger gdt_init_cpu(ci);
741 1.11 cegger lapic_enable();
742 1.2 bouyer lapic_set_lvt();
743 1.11 cegger lapic_initclocks();
744 1.11 cegger
745 1.12 cegger #ifdef i386
746 1.2 bouyer npxinit(ci);
747 1.12 cegger #else
748 1.12 cegger fpuinit(ci);
749 1.12 cegger #endif
750 1.2 bouyer
751 1.2 bouyer lldt(GSEL(GLDT_SEL, SEL_KPL));
752 1.12 cegger ltr(ci->ci_tss_sel);
753 1.2 bouyer
754 1.2 bouyer cpu_init(ci);
755 1.11 cegger cpu_get_tsc_freq(ci);
756 1.2 bouyer
757 1.2 bouyer s = splhigh();
758 1.11 cegger #ifdef i386
759 1.2 bouyer lapic_tpr = 0;
760 1.11 cegger #else
761 1.11 cegger lcr8(0);
762 1.11 cegger #endif
763 1.11 cegger x86_enable_intr();
764 1.11 cegger splx(s);
765 1.12 cegger #if 0
766 1.11 cegger x86_errata();
767 1.11 cegger #endif
768 1.2 bouyer
769 1.11 cegger aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
770 1.11 cegger (long)ci->ci_cpuid);
771 1.2 bouyer }
772 1.2 bouyer
773 1.2 bouyer #if defined(DDB)
774 1.2 bouyer
775 1.2 bouyer #include <ddb/db_output.h>
776 1.2 bouyer #include <machine/db_machdep.h>
777 1.2 bouyer
778 1.2 bouyer /*
779 1.2 bouyer * Dump CPU information from ddb.
780 1.2 bouyer */
781 1.2 bouyer void
782 1.2 bouyer cpu_debug_dump(void)
783 1.2 bouyer {
784 1.2 bouyer struct cpu_info *ci;
785 1.2 bouyer CPU_INFO_ITERATOR cii;
786 1.2 bouyer
787 1.13 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
788 1.2 bouyer for (CPU_INFO_FOREACH(cii, ci)) {
789 1.2 bouyer db_printf("%p %s %ld %x %x %10p %10p\n",
790 1.2 bouyer ci,
791 1.9 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
792 1.12 cegger (long)ci->ci_cpuid,
793 1.2 bouyer ci->ci_flags, ci->ci_ipis,
794 1.2 bouyer ci->ci_curlwp,
795 1.2 bouyer ci->ci_fpcurlwp);
796 1.2 bouyer }
797 1.2 bouyer }
798 1.38 cegger #endif /* DDB */
799 1.2 bouyer
800 1.2 bouyer static void
801 1.10 cegger cpu_copy_trampoline(void)
802 1.2 bouyer {
803 1.2 bouyer /*
804 1.2 bouyer * Copy boot code.
805 1.2 bouyer */
806 1.2 bouyer extern u_char cpu_spinup_trampoline[];
807 1.2 bouyer extern u_char cpu_spinup_trampoline_end[];
808 1.11 cegger
809 1.11 cegger vaddr_t mp_trampoline_vaddr;
810 1.11 cegger
811 1.11 cegger mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
812 1.11 cegger UVM_KMF_VAONLY);
813 1.11 cegger
814 1.11 cegger pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
815 1.36 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
816 1.11 cegger pmap_update(pmap_kernel());
817 1.11 cegger memcpy((void *)mp_trampoline_vaddr,
818 1.11 cegger cpu_spinup_trampoline,
819 1.11 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
820 1.11 cegger
821 1.11 cegger pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
822 1.11 cegger pmap_update(pmap_kernel());
823 1.11 cegger uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
824 1.2 bouyer }
825 1.2 bouyer
826 1.38 cegger #endif /* MULTIPROCESSOR */
827 1.2 bouyer
828 1.11 cegger #ifdef i386
829 1.11 cegger #if 0
830 1.11 cegger static void
831 1.11 cegger tss_init(struct i386tss *tss, void *stack, void *func)
832 1.11 cegger {
833 1.11 cegger memset(tss, 0, sizeof *tss);
834 1.11 cegger tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
835 1.11 cegger tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
836 1.11 cegger tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
837 1.11 cegger tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
838 1.11 cegger tss->tss_gs = tss->__tss_es = tss->__tss_ds =
839 1.11 cegger tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
840 1.11 cegger tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
841 1.11 cegger tss->tss_esp = (int)((char *)stack + USPACE - 16);
842 1.11 cegger tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
843 1.11 cegger tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
844 1.11 cegger tss->__tss_eip = (int)func;
845 1.11 cegger }
846 1.11 cegger #endif
847 1.2 bouyer
848 1.2 bouyer /* XXX */
849 1.2 bouyer #define IDTVEC(name) __CONCAT(X, name)
850 1.2 bouyer typedef void (vector)(void);
851 1.2 bouyer extern vector IDTVEC(tss_trap08);
852 1.2 bouyer #ifdef DDB
853 1.2 bouyer extern vector Xintrddbipi;
854 1.2 bouyer extern int ddb_vec;
855 1.2 bouyer #endif
856 1.2 bouyer
857 1.2 bouyer static void
858 1.2 bouyer cpu_set_tss_gates(struct cpu_info *ci)
859 1.2 bouyer {
860 1.11 cegger #if 0
861 1.11 cegger struct segment_descriptor sd;
862 1.11 cegger
863 1.11 cegger ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
864 1.11 cegger UVM_KMF_WIRED);
865 1.11 cegger tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
866 1.11 cegger IDTVEC(tss_trap08));
867 1.11 cegger setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
868 1.11 cegger SDT_SYS386TSS, SEL_KPL, 0, 0);
869 1.11 cegger ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
870 1.11 cegger setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
871 1.11 cegger GSEL(GTRAPTSS_SEL, SEL_KPL));
872 1.11 cegger #endif
873 1.11 cegger
874 1.2 bouyer #if defined(DDB) && defined(MULTIPROCESSOR)
875 1.2 bouyer /*
876 1.2 bouyer * Set up separate handler for the DDB IPI, so that it doesn't
877 1.2 bouyer * stomp on a possibly corrupted stack.
878 1.2 bouyer *
879 1.2 bouyer * XXX overwriting the gate set in db_machine_init.
880 1.2 bouyer * Should rearrange the code so that it's set only once.
881 1.2 bouyer */
882 1.2 bouyer ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
883 1.2 bouyer UVM_KMF_WIRED);
884 1.6 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
885 1.2 bouyer Xintrddbipi);
886 1.2 bouyer
887 1.2 bouyer setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
888 1.2 bouyer SDT_SYS386TSS, SEL_KPL, 0, 0);
889 1.2 bouyer ci->ci_gdt[GIPITSS_SEL].sd = sd;
890 1.2 bouyer
891 1.2 bouyer setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
892 1.2 bouyer GSEL(GIPITSS_SEL, SEL_KPL));
893 1.2 bouyer #endif
894 1.2 bouyer }
895 1.11 cegger #else
896 1.11 cegger static void
897 1.11 cegger cpu_set_tss_gates(struct cpu_info *ci)
898 1.11 cegger {
899 1.11 cegger
900 1.11 cegger }
901 1.11 cegger #endif /* i386 */
902 1.2 bouyer
903 1.2 bouyer int
904 1.5 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
905 1.2 bouyer {
906 1.2 bouyer #if 0
907 1.2 bouyer #if NLAPIC > 0
908 1.2 bouyer int error;
909 1.2 bouyer #endif
910 1.2 bouyer unsigned short dwordptr[2];
911 1.2 bouyer
912 1.2 bouyer /*
913 1.11 cegger * Bootstrap code must be addressable in real mode
914 1.11 cegger * and it must be page aligned.
915 1.11 cegger */
916 1.11 cegger KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
917 1.11 cegger
918 1.11 cegger /*
919 1.2 bouyer * "The BSP must initialize CMOS shutdown code to 0Ah ..."
920 1.2 bouyer */
921 1.2 bouyer
922 1.2 bouyer outb(IO_RTC, NVRAM_RESET);
923 1.2 bouyer outb(IO_RTC+1, NVRAM_RESET_JUMP);
924 1.2 bouyer
925 1.2 bouyer /*
926 1.2 bouyer * "and the warm reset vector (DWORD based at 40:67) to point
927 1.2 bouyer * to the AP startup code ..."
928 1.2 bouyer */
929 1.2 bouyer
930 1.2 bouyer dwordptr[0] = 0;
931 1.5 joerg dwordptr[1] = target >> 4;
932 1.2 bouyer
933 1.36 cegger pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
934 1.42.2.3 rmind pmap_update(pmap_kernel());
935 1.42.2.3 rmind
936 1.11 cegger memcpy ((uint8_t *) 0x467, dwordptr, 4);
937 1.42.2.3 rmind
938 1.2 bouyer pmap_kremove (0, PAGE_SIZE);
939 1.42.2.3 rmind pmap_update(pmap_kernel());
940 1.2 bouyer
941 1.2 bouyer #if NLAPIC > 0
942 1.2 bouyer /*
943 1.2 bouyer * ... prior to executing the following sequence:"
944 1.2 bouyer */
945 1.2 bouyer
946 1.2 bouyer if (ci->ci_flags & CPUF_AP) {
947 1.23 ad if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
948 1.2 bouyer return error;
949 1.2 bouyer
950 1.2 bouyer delay(10000);
951 1.2 bouyer
952 1.2 bouyer if (cpu_feature & CPUID_APIC) {
953 1.23 ad error = x86_ipi_init(ci->ci_cpuid);
954 1.11 cegger if (error != 0) {
955 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
956 1.11 cegger __func__);
957 1.11 cegger return error;
958 1.11 cegger }
959 1.11 cegger
960 1.11 cegger delay(10000);
961 1.2 bouyer
962 1.23 ad error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
963 1.11 cegger LAPIC_DLMODE_STARTUP);
964 1.11 cegger if (error != 0) {
965 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
966 1.11 cegger __func__);
967 1.2 bouyer return error;
968 1.11 cegger }
969 1.2 bouyer delay(200);
970 1.2 bouyer
971 1.23 ad error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
972 1.11 cegger LAPIC_DLMODE_STARTUP);
973 1.11 cegger if (error != 0) {
974 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
975 1.11 cegger __func__);
976 1.2 bouyer return error;
977 1.11 cegger }
978 1.2 bouyer delay(200);
979 1.2 bouyer }
980 1.2 bouyer }
981 1.2 bouyer #endif
982 1.2 bouyer #endif /* 0 */
983 1.2 bouyer return 0;
984 1.2 bouyer }
985 1.2 bouyer
986 1.2 bouyer void
987 1.2 bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
988 1.2 bouyer {
989 1.2 bouyer #if 0
990 1.2 bouyer /*
991 1.2 bouyer * Ensure the NVRAM reset byte contains something vaguely sane.
992 1.2 bouyer */
993 1.2 bouyer
994 1.2 bouyer outb(IO_RTC, NVRAM_RESET);
995 1.2 bouyer outb(IO_RTC+1, NVRAM_RESET_RST);
996 1.2 bouyer #endif
997 1.2 bouyer }
998 1.2 bouyer
999 1.2 bouyer void
1000 1.3 bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
1001 1.2 bouyer {
1002 1.42.2.1 rmind #ifdef __x86_64__
1003 1.3 bouyer if (full) {
1004 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1005 1.11 cegger HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1006 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1007 1.3 bouyer }
1008 1.2 bouyer #endif /* __x86_64__ */
1009 1.2 bouyer
1010 1.42.2.1 rmind if (cpu_feature[2] & CPUID_NOX)
1011 1.42.2.1 rmind wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1012 1.42.2.1 rmind }
1013 1.42.2.1 rmind
1014 1.11 cegger void
1015 1.11 cegger cpu_offline_md(void)
1016 1.11 cegger {
1017 1.11 cegger int s;
1018 1.11 cegger
1019 1.11 cegger s = splhigh();
1020 1.11 cegger #ifdef __i386__
1021 1.11 cegger npxsave_cpu(true);
1022 1.11 cegger #else
1023 1.11 cegger fpusave_cpu(true);
1024 1.11 cegger #endif
1025 1.11 cegger splx(s);
1026 1.11 cegger }
1027 1.11 cegger
1028 1.11 cegger #if 0
1029 1.11 cegger /* XXX joerg restructure and restart CPUs individually */
1030 1.11 cegger static bool
1031 1.41 dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
1032 1.11 cegger {
1033 1.11 cegger struct cpu_softc *sc = device_private(dv);
1034 1.11 cegger struct cpu_info *ci = sc->sc_info;
1035 1.11 cegger int err;
1036 1.11 cegger
1037 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1038 1.11 cegger return true;
1039 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1040 1.11 cegger return true;
1041 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1042 1.11 cegger return true;
1043 1.11 cegger
1044 1.11 cegger sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1045 1.11 cegger
1046 1.11 cegger if (sc->sc_wasonline) {
1047 1.11 cegger mutex_enter(&cpu_lock);
1048 1.29 rmind err = cpu_setstate(ci, false);
1049 1.11 cegger mutex_exit(&cpu_lock);
1050 1.11 cegger
1051 1.11 cegger if (err)
1052 1.11 cegger return false;
1053 1.11 cegger }
1054 1.11 cegger
1055 1.11 cegger return true;
1056 1.11 cegger }
1057 1.11 cegger
1058 1.11 cegger static bool
1059 1.41 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1060 1.11 cegger {
1061 1.11 cegger struct cpu_softc *sc = device_private(dv);
1062 1.11 cegger struct cpu_info *ci = sc->sc_info;
1063 1.11 cegger int err = 0;
1064 1.11 cegger
1065 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1066 1.11 cegger return true;
1067 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1068 1.11 cegger return true;
1069 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1070 1.11 cegger return true;
1071 1.11 cegger
1072 1.11 cegger if (sc->sc_wasonline) {
1073 1.11 cegger mutex_enter(&cpu_lock);
1074 1.29 rmind err = cpu_setstate(ci, true);
1075 1.11 cegger mutex_exit(&cpu_lock);
1076 1.11 cegger }
1077 1.11 cegger
1078 1.11 cegger return err == 0;
1079 1.11 cegger }
1080 1.11 cegger #endif
1081 1.11 cegger
1082 1.2 bouyer void
1083 1.2 bouyer cpu_get_tsc_freq(struct cpu_info *ci)
1084 1.2 bouyer {
1085 1.16 cegger const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1086 1.2 bouyer delay(1000000);
1087 1.2 bouyer uint64_t freq = 1000000000ULL << 32;
1088 1.2 bouyer freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1089 1.2 bouyer if ( tinfo->tsc_shift < 0 )
1090 1.2 bouyer freq = freq << -tinfo->tsc_shift;
1091 1.2 bouyer else
1092 1.2 bouyer freq = freq >> tinfo->tsc_shift;
1093 1.20 ad ci->ci_data.cpu_cc_freq = freq;
1094 1.2 bouyer }
1095 1.19 joerg
1096 1.19 joerg void
1097 1.19 joerg x86_cpu_idle_xen(void)
1098 1.19 joerg {
1099 1.19 joerg struct cpu_info *ci = curcpu();
1100 1.19 joerg
1101 1.19 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1102 1.19 joerg
1103 1.19 joerg x86_disable_intr();
1104 1.19 joerg if (!__predict_false(ci->ci_want_resched)) {
1105 1.19 joerg idle_block();
1106 1.19 joerg } else {
1107 1.19 joerg x86_enable_intr();
1108 1.19 joerg }
1109 1.19 joerg }
1110