cpu.c revision 1.48 1 1.48 jruoho /* $NetBSD: cpu.c,v 1.48 2010/08/09 15:46:18 jruoho Exp $ */
2 1.2 bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3 1.2 bouyer
4 1.2 bouyer /*-
5 1.2 bouyer * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 1.19 joerg * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 1.2 bouyer * All rights reserved.
8 1.2 bouyer *
9 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
10 1.2 bouyer * by RedBack Networks Inc.
11 1.2 bouyer *
12 1.2 bouyer * Author: Bill Sommerfeld
13 1.2 bouyer *
14 1.2 bouyer * Redistribution and use in source and binary forms, with or without
15 1.2 bouyer * modification, are permitted provided that the following conditions
16 1.2 bouyer * are met:
17 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
18 1.2 bouyer * notice, this list of conditions and the following disclaimer.
19 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
20 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
21 1.2 bouyer * documentation and/or other materials provided with the distribution.
22 1.2 bouyer *
23 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
34 1.2 bouyer */
35 1.2 bouyer
36 1.2 bouyer /*
37 1.2 bouyer * Copyright (c) 1999 Stefan Grefen
38 1.2 bouyer *
39 1.2 bouyer * Redistribution and use in source and binary forms, with or without
40 1.2 bouyer * modification, are permitted provided that the following conditions
41 1.2 bouyer * are met:
42 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
43 1.2 bouyer * notice, this list of conditions and the following disclaimer.
44 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
45 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
46 1.2 bouyer * documentation and/or other materials provided with the distribution.
47 1.2 bouyer * 3. All advertising materials mentioning features or use of this software
48 1.2 bouyer * must display the following acknowledgement:
49 1.2 bouyer * This product includes software developed by the NetBSD
50 1.2 bouyer * Foundation, Inc. and its contributors.
51 1.2 bouyer * 4. Neither the name of The NetBSD Foundation nor the names of its
52 1.2 bouyer * contributors may be used to endorse or promote products derived
53 1.2 bouyer * from this software without specific prior written permission.
54 1.2 bouyer *
55 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 1.2 bouyer * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 1.2 bouyer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 bouyer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 bouyer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 bouyer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 bouyer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 bouyer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 bouyer * SUCH DAMAGE.
66 1.2 bouyer */
67 1.2 bouyer
68 1.2 bouyer #include <sys/cdefs.h>
69 1.48 jruoho __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.48 2010/08/09 15:46:18 jruoho Exp $");
70 1.2 bouyer
71 1.2 bouyer #include "opt_ddb.h"
72 1.2 bouyer #include "opt_multiprocessor.h"
73 1.2 bouyer #include "opt_mpbios.h" /* for MPDEBUG */
74 1.2 bouyer #include "opt_mtrr.h"
75 1.2 bouyer #include "opt_xen.h"
76 1.2 bouyer
77 1.2 bouyer #include "lapic.h"
78 1.2 bouyer #include "ioapic.h"
79 1.2 bouyer
80 1.2 bouyer #include <sys/param.h>
81 1.2 bouyer #include <sys/proc.h>
82 1.2 bouyer #include <sys/systm.h>
83 1.2 bouyer #include <sys/device.h>
84 1.31 cegger #include <sys/kmem.h>
85 1.11 cegger #include <sys/cpu.h>
86 1.11 cegger #include <sys/atomic.h>
87 1.32 cegger #include <sys/reboot.h>
88 1.2 bouyer
89 1.2 bouyer #include <uvm/uvm_extern.h>
90 1.2 bouyer
91 1.2 bouyer #include <machine/cpufunc.h>
92 1.2 bouyer #include <machine/cpuvar.h>
93 1.2 bouyer #include <machine/pmap.h>
94 1.2 bouyer #include <machine/vmparam.h>
95 1.2 bouyer #include <machine/mpbiosvar.h>
96 1.2 bouyer #include <machine/pcb.h>
97 1.2 bouyer #include <machine/specialreg.h>
98 1.2 bouyer #include <machine/segments.h>
99 1.2 bouyer #include <machine/gdt.h>
100 1.2 bouyer #include <machine/mtrr.h>
101 1.2 bouyer #include <machine/pio.h>
102 1.2 bouyer
103 1.2 bouyer #include <xen/vcpuvar.h>
104 1.2 bouyer
105 1.2 bouyer #if NLAPIC > 0
106 1.2 bouyer #include <machine/apicvar.h>
107 1.2 bouyer #include <machine/i82489reg.h>
108 1.2 bouyer #include <machine/i82489var.h>
109 1.2 bouyer #endif
110 1.2 bouyer
111 1.2 bouyer #include <dev/ic/mc146818reg.h>
112 1.2 bouyer #include <dev/isa/isareg.h>
113 1.2 bouyer
114 1.38 cegger #if MAXCPUS > 32
115 1.38 cegger #error cpu_info contains 32bit bitmasks
116 1.38 cegger #endif
117 1.27 ad
118 1.10 cegger int cpu_match(device_t, cfdata_t, void *);
119 1.10 cegger void cpu_attach(device_t, device_t, void *);
120 1.10 cegger int vcpu_match(device_t, cfdata_t, void *);
121 1.10 cegger void vcpu_attach(device_t, device_t, void *);
122 1.10 cegger void cpu_attach_common(device_t, device_t, void *);
123 1.8 dogcow void cpu_offline_md(void);
124 1.2 bouyer
125 1.2 bouyer struct cpu_softc {
126 1.10 cegger device_t sc_dev; /* device tree glue */
127 1.2 bouyer struct cpu_info *sc_info; /* pointer to CPU info */
128 1.32 cegger bool sc_wasonline;
129 1.2 bouyer };
130 1.2 bouyer
131 1.5 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
132 1.2 bouyer void mp_cpu_start_cleanup(struct cpu_info *);
133 1.2 bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
134 1.2 bouyer mp_cpu_start_cleanup };
135 1.2 bouyer
136 1.10 cegger CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
137 1.2 bouyer cpu_match, cpu_attach, NULL, NULL);
138 1.10 cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
139 1.2 bouyer vcpu_match, vcpu_attach, NULL, NULL);
140 1.2 bouyer
141 1.2 bouyer /*
142 1.2 bouyer * Statically-allocated CPU info for the primary CPU (or the only
143 1.2 bouyer * CPU, on uniprocessors). The CPU info list is initialized to
144 1.2 bouyer * point at it.
145 1.2 bouyer */
146 1.2 bouyer #ifdef TRAPLOG
147 1.2 bouyer #include <machine/tlog.h>
148 1.2 bouyer struct tlog tlog_primary;
149 1.2 bouyer #endif
150 1.38 cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 1.7 bouyer .ci_dev = 0,
152 1.2 bouyer .ci_self = &cpu_info_primary,
153 1.4 bouyer .ci_idepth = -1,
154 1.2 bouyer .ci_curlwp = &lwp0,
155 1.25 ad .ci_curldt = -1,
156 1.2 bouyer #ifdef TRAPLOG
157 1.2 bouyer .ci_tlog = &tlog_primary,
158 1.2 bouyer #endif
159 1.2 bouyer
160 1.2 bouyer };
161 1.38 cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
162 1.7 bouyer .ci_dev = 0,
163 1.2 bouyer .ci_self = &phycpu_info_primary,
164 1.2 bouyer };
165 1.2 bouyer
166 1.2 bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
167 1.38 cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
168 1.2 bouyer
169 1.2 bouyer static void cpu_set_tss_gates(struct cpu_info *ci);
170 1.2 bouyer
171 1.11 cegger uint32_t cpus_attached = 0;
172 1.11 cegger uint32_t cpus_running = 0;
173 1.11 cegger
174 1.38 cegger uint32_t phycpus_attached = 0;
175 1.38 cegger uint32_t phycpus_running = 0;
176 1.38 cegger
177 1.43 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 1.43 jym * [0] basic features %edx
179 1.43 jym * [1] basic features %ecx
180 1.43 jym * [2] extended features %edx
181 1.43 jym * [3] extended features %ecx
182 1.43 jym * [4] VIA padlock features
183 1.43 jym */
184 1.43 jym
185 1.11 cegger bool x86_mp_online;
186 1.11 cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
187 1.2 bouyer
188 1.48 jruoho void (*cpu_freq_init)(int) = NULL;
189 1.48 jruoho struct sysctllog *cpu_freq_sysctllog = NULL;
190 1.48 jruoho
191 1.38 cegger #if defined(MULTIPROCESSOR)
192 1.2 bouyer void cpu_hatch(void *);
193 1.2 bouyer static void cpu_boot_secondary(struct cpu_info *ci);
194 1.2 bouyer static void cpu_start_secondary(struct cpu_info *ci);
195 1.2 bouyer static void cpu_copy_trampoline(void);
196 1.2 bouyer
197 1.2 bouyer /*
198 1.2 bouyer * Runs once per boot once multiprocessor goo has been detected and
199 1.2 bouyer * the local APIC on the boot processor has been mapped.
200 1.2 bouyer *
201 1.2 bouyer * Called from lapic_boot_init() (from mpbios_scan()).
202 1.2 bouyer */
203 1.2 bouyer void
204 1.10 cegger cpu_init_first(void)
205 1.2 bouyer {
206 1.2 bouyer
207 1.38 cegger cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 1.2 bouyer cpu_copy_trampoline();
209 1.2 bouyer }
210 1.38 cegger #endif /* MULTIPROCESSOR */
211 1.2 bouyer
212 1.2 bouyer int
213 1.10 cegger cpu_match(device_t parent, cfdata_t match, void *aux)
214 1.2 bouyer {
215 1.2 bouyer
216 1.2 bouyer return 1;
217 1.2 bouyer }
218 1.2 bouyer
219 1.2 bouyer void
220 1.10 cegger cpu_attach(device_t parent, device_t self, void *aux)
221 1.2 bouyer {
222 1.10 cegger struct cpu_softc *sc = device_private(self);
223 1.2 bouyer struct cpu_attach_args *caa = aux;
224 1.2 bouyer struct cpu_info *ci;
225 1.34 cegger uintptr_t ptr;
226 1.38 cegger static bool again = false;
227 1.2 bouyer
228 1.10 cegger sc->sc_dev = self;
229 1.10 cegger
230 1.38 cegger if (phycpus_attached == ~0) {
231 1.34 cegger aprint_error(": increase MAXCPUS\n");
232 1.34 cegger return;
233 1.34 cegger }
234 1.34 cegger
235 1.2 bouyer /*
236 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
237 1.2 bouyer * structure, otherwise use the primary's.
238 1.2 bouyer */
239 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
240 1.32 cegger if ((boothowto & RB_MD1) != 0) {
241 1.32 cegger aprint_error(": multiprocessor boot disabled\n");
242 1.32 cegger if (!pmf_device_register(self, NULL, NULL))
243 1.32 cegger aprint_error_dev(self,
244 1.32 cegger "couldn't establish power handler\n");
245 1.32 cegger return;
246 1.32 cegger }
247 1.32 cegger aprint_naive(": Application Processor\n");
248 1.34 cegger ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
249 1.34 cegger KM_SLEEP);
250 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
251 1.24 ad ci->ci_curldt = -1;
252 1.2 bouyer } else {
253 1.32 cegger aprint_naive(": %s Processor\n",
254 1.32 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
255 1.2 bouyer ci = &phycpu_info_primary;
256 1.2 bouyer }
257 1.2 bouyer
258 1.2 bouyer ci->ci_self = ci;
259 1.2 bouyer sc->sc_info = ci;
260 1.2 bouyer
261 1.2 bouyer ci->ci_dev = self;
262 1.23 ad ci->ci_cpuid = caa->cpu_number;
263 1.16 cegger ci->ci_vcpu = NULL;
264 1.2 bouyer
265 1.38 cegger /*
266 1.38 cegger * Boot processor may not be attached first, but the below
267 1.38 cegger * must be done to allow booting other processors.
268 1.38 cegger */
269 1.38 cegger if (!again) {
270 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
271 1.38 cegger /* Basic init */
272 1.38 cegger again = true;
273 1.38 cegger }
274 1.38 cegger
275 1.2 bouyer printf(": ");
276 1.2 bouyer switch (caa->cpu_role) {
277 1.2 bouyer case CPU_ROLE_SP:
278 1.2 bouyer printf("(uniprocessor)\n");
279 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
280 1.2 bouyer break;
281 1.2 bouyer
282 1.2 bouyer case CPU_ROLE_BP:
283 1.2 bouyer printf("(boot processor)\n");
284 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
285 1.2 bouyer break;
286 1.2 bouyer
287 1.2 bouyer case CPU_ROLE_AP:
288 1.2 bouyer /*
289 1.2 bouyer * report on an AP
290 1.2 bouyer */
291 1.2 bouyer printf("(application processor)\n");
292 1.38 cegger if (ci->ci_flags & CPUF_PRESENT) {
293 1.38 cegger struct cpu_info *tmp;
294 1.38 cegger
295 1.38 cegger tmp = phycpu_info_list;
296 1.38 cegger while (tmp->ci_next)
297 1.38 cegger tmp = tmp->ci_next;
298 1.38 cegger
299 1.38 cegger tmp->ci_next = ci;
300 1.38 cegger }
301 1.2 bouyer break;
302 1.2 bouyer
303 1.2 bouyer default:
304 1.2 bouyer panic("unknown processor type??\n");
305 1.2 bouyer }
306 1.34 cegger
307 1.38 cegger atomic_or_32(&phycpus_attached, ci->ci_cpumask);
308 1.34 cegger
309 1.2 bouyer return;
310 1.2 bouyer }
311 1.2 bouyer
312 1.2 bouyer int
313 1.10 cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
314 1.2 bouyer {
315 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
316 1.2 bouyer
317 1.2 bouyer if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
318 1.2 bouyer return 1;
319 1.2 bouyer return 0;
320 1.2 bouyer }
321 1.2 bouyer
322 1.2 bouyer void
323 1.10 cegger vcpu_attach(device_t parent, device_t self, void *aux)
324 1.2 bouyer {
325 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
326 1.2 bouyer
327 1.2 bouyer cpu_attach_common(parent, self, &vcaa->vcaa_caa);
328 1.2 bouyer }
329 1.2 bouyer
330 1.2 bouyer static void
331 1.2 bouyer cpu_vm_init(struct cpu_info *ci)
332 1.2 bouyer {
333 1.2 bouyer int ncolors = 2, i;
334 1.2 bouyer
335 1.2 bouyer for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
336 1.2 bouyer struct x86_cache_info *cai;
337 1.2 bouyer int tcolors;
338 1.2 bouyer
339 1.2 bouyer cai = &ci->ci_cinfo[i];
340 1.2 bouyer
341 1.2 bouyer tcolors = atop(cai->cai_totalsize);
342 1.2 bouyer switch(cai->cai_associativity) {
343 1.2 bouyer case 0xff:
344 1.2 bouyer tcolors = 1; /* fully associative */
345 1.2 bouyer break;
346 1.2 bouyer case 0:
347 1.2 bouyer case 1:
348 1.2 bouyer break;
349 1.2 bouyer default:
350 1.2 bouyer tcolors /= cai->cai_associativity;
351 1.2 bouyer }
352 1.2 bouyer ncolors = max(ncolors, tcolors);
353 1.2 bouyer }
354 1.2 bouyer
355 1.2 bouyer /*
356 1.2 bouyer * Knowing the size of the largest cache on this CPU, re-color
357 1.2 bouyer * our pages.
358 1.2 bouyer */
359 1.2 bouyer if (ncolors <= uvmexp.ncolors)
360 1.2 bouyer return;
361 1.28 bouyer aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
362 1.2 bouyer uvm_page_recolor(ncolors);
363 1.2 bouyer }
364 1.2 bouyer
365 1.2 bouyer void
366 1.11 cegger cpu_attach_common(device_t parent, device_t self, void *aux)
367 1.2 bouyer {
368 1.10 cegger struct cpu_softc *sc = device_private(self);
369 1.2 bouyer struct cpu_attach_args *caa = aux;
370 1.2 bouyer struct cpu_info *ci;
371 1.12 cegger uintptr_t ptr;
372 1.2 bouyer int cpunum = caa->cpu_number;
373 1.38 cegger static bool again = false;
374 1.2 bouyer
375 1.10 cegger sc->sc_dev = self;
376 1.10 cegger
377 1.2 bouyer /*
378 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
379 1.2 bouyer * structure, otherwise use the primary's.
380 1.2 bouyer */
381 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
382 1.12 cegger aprint_naive(": Application Processor\n");
383 1.31 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
384 1.31 cegger KM_SLEEP);
385 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
386 1.12 cegger memset(ci, 0, sizeof(*ci));
387 1.2 bouyer #ifdef TRAPLOG
388 1.31 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
389 1.2 bouyer #endif
390 1.2 bouyer } else {
391 1.12 cegger aprint_naive(": %s Processor\n",
392 1.12 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
393 1.2 bouyer ci = &cpu_info_primary;
394 1.38 cegger #if NLAPIC > 0
395 1.38 cegger if (cpunum != lapic_cpu_number()) {
396 1.38 cegger /* XXX should be done earlier */
397 1.38 cegger uint32_t reg;
398 1.38 cegger aprint_verbose("\n");
399 1.38 cegger aprint_verbose_dev(self, "running CPU at apic %d"
400 1.38 cegger " instead of at expected %d", lapic_cpu_number(),
401 1.38 cegger cpunum);
402 1.38 cegger reg = i82489_readreg(LAPIC_ID);
403 1.38 cegger i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
404 1.38 cegger (cpunum << LAPIC_ID_SHIFT));
405 1.38 cegger }
406 1.2 bouyer if (cpunum != lapic_cpu_number()) {
407 1.38 cegger aprint_error_dev(self, "unable to reset apic id\n");
408 1.2 bouyer }
409 1.2 bouyer #endif
410 1.2 bouyer }
411 1.2 bouyer
412 1.2 bouyer ci->ci_self = ci;
413 1.2 bouyer sc->sc_info = ci;
414 1.2 bouyer ci->ci_dev = self;
415 1.23 ad ci->ci_cpuid = cpunum;
416 1.16 cegger
417 1.16 cegger KASSERT(HYPERVISOR_shared_info != NULL);
418 1.16 cegger ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
419 1.16 cegger
420 1.2 bouyer ci->ci_func = caa->cpu_func;
421 1.2 bouyer
422 1.38 cegger /* Must be called before mi_cpu_attach(). */
423 1.38 cegger cpu_vm_init(ci);
424 1.38 cegger
425 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
426 1.2 bouyer int error;
427 1.2 bouyer
428 1.2 bouyer error = mi_cpu_attach(ci);
429 1.2 bouyer if (error != 0) {
430 1.2 bouyer aprint_normal("\n");
431 1.38 cegger aprint_error_dev(self,
432 1.38 cegger "mi_cpu_attach failed with %d\n", error);
433 1.2 bouyer return;
434 1.2 bouyer }
435 1.2 bouyer } else {
436 1.2 bouyer KASSERT(ci->ci_data.cpu_idlelwp != NULL);
437 1.2 bouyer }
438 1.2 bouyer
439 1.23 ad ci->ci_cpumask = (1 << cpu_index(ci));
440 1.2 bouyer pmap_reference(pmap_kernel());
441 1.2 bouyer ci->ci_pmap = pmap_kernel();
442 1.2 bouyer ci->ci_tlbstate = TLBSTATE_STALE;
443 1.2 bouyer
444 1.38 cegger /*
445 1.38 cegger * Boot processor may not be attached first, but the below
446 1.38 cegger * must be done to allow booting other processors.
447 1.38 cegger */
448 1.38 cegger if (!again) {
449 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
450 1.38 cegger /* Basic init. */
451 1.38 cegger cpu_intr_init(ci);
452 1.38 cegger cpu_get_tsc_freq(ci);
453 1.38 cegger cpu_init(ci);
454 1.38 cegger cpu_set_tss_gates(ci);
455 1.38 cegger pmap_cpu_init_late(ci);
456 1.38 cegger #if NLAPIC > 0
457 1.38 cegger if (caa->cpu_role != CPU_ROLE_SP) {
458 1.38 cegger /* Enable lapic. */
459 1.38 cegger lapic_enable();
460 1.38 cegger lapic_set_lvt();
461 1.38 cegger lapic_calibrate_timer();
462 1.38 cegger }
463 1.38 cegger #endif
464 1.38 cegger /* Make sure DELAY() is initialized. */
465 1.38 cegger DELAY(1);
466 1.38 cegger again = true;
467 1.38 cegger }
468 1.38 cegger
469 1.2 bouyer /* further PCB init done later. */
470 1.2 bouyer
471 1.2 bouyer switch (caa->cpu_role) {
472 1.2 bouyer case CPU_ROLE_SP:
473 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
474 1.21 ad cpu_identify(ci);
475 1.12 cegger #if 0
476 1.12 cegger x86_errata();
477 1.12 cegger #endif
478 1.38 cegger x86_cpu_idle_init();
479 1.2 bouyer break;
480 1.2 bouyer
481 1.2 bouyer case CPU_ROLE_BP:
482 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
483 1.21 ad cpu_identify(ci);
484 1.2 bouyer cpu_init(ci);
485 1.14 bouyer #if 0
486 1.12 cegger x86_errata();
487 1.12 cegger #endif
488 1.38 cegger x86_cpu_idle_init();
489 1.2 bouyer break;
490 1.2 bouyer
491 1.2 bouyer case CPU_ROLE_AP:
492 1.2 bouyer /*
493 1.2 bouyer * report on an AP
494 1.2 bouyer */
495 1.2 bouyer
496 1.2 bouyer #if defined(MULTIPROCESSOR)
497 1.2 bouyer cpu_intr_init(ci);
498 1.2 bouyer gdt_alloc_cpu(ci);
499 1.2 bouyer cpu_set_tss_gates(ci);
500 1.12 cegger pmap_cpu_init_early(ci);
501 1.12 cegger pmap_cpu_init_late(ci);
502 1.2 bouyer cpu_start_secondary(ci);
503 1.2 bouyer if (ci->ci_flags & CPUF_PRESENT) {
504 1.30 cegger struct cpu_info *tmp;
505 1.30 cegger
506 1.2 bouyer identifycpu(ci);
507 1.30 cegger tmp = cpu_info_list;
508 1.30 cegger while (tmp->ci_next)
509 1.30 cegger tmp = tmp->ci_next;
510 1.30 cegger
511 1.30 cegger tmp->ci_next = ci;
512 1.2 bouyer }
513 1.2 bouyer #else
514 1.38 cegger aprint_error_dev(self, "not started\n");
515 1.2 bouyer #endif
516 1.2 bouyer break;
517 1.2 bouyer
518 1.2 bouyer default:
519 1.12 cegger aprint_normal("\n");
520 1.2 bouyer panic("unknown processor type??\n");
521 1.2 bouyer }
522 1.2 bouyer
523 1.46 cegger pat_init(ci);
524 1.34 cegger atomic_or_32(&cpus_attached, ci->ci_cpumask);
525 1.2 bouyer
526 1.12 cegger #if 0
527 1.12 cegger if (!pmf_device_register(self, cpu_suspend, cpu_resume))
528 1.12 cegger aprint_error_dev(self, "couldn't establish power handler\n");
529 1.12 cegger #endif
530 1.12 cegger
531 1.2 bouyer #if defined(MULTIPROCESSOR)
532 1.2 bouyer if (mp_verbose) {
533 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
534 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
535 1.2 bouyer
536 1.38 cegger aprint_verbose_dev(self,
537 1.38 cegger "idle lwp at %p, idle sp at 0x%p\n",
538 1.12 cegger l,
539 1.12 cegger #ifdef i386
540 1.37 rmind (void *)pcb->pcb_esp
541 1.12 cegger #else
542 1.37 rmind (void *)pcb->pcb_rsp
543 1.12 cegger #endif
544 1.12 cegger );
545 1.12 cegger
546 1.2 bouyer }
547 1.2 bouyer #endif
548 1.2 bouyer }
549 1.2 bouyer
550 1.2 bouyer /*
551 1.2 bouyer * Initialize the processor appropriately.
552 1.2 bouyer */
553 1.2 bouyer
554 1.2 bouyer void
555 1.10 cegger cpu_init(struct cpu_info *ci)
556 1.2 bouyer {
557 1.2 bouyer
558 1.2 bouyer /*
559 1.2 bouyer * On a P6 or above, enable global TLB caching if the
560 1.2 bouyer * hardware supports it.
561 1.2 bouyer */
562 1.43 jym if (cpu_feature[0] & CPUID_PGE)
563 1.2 bouyer lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
564 1.2 bouyer
565 1.2 bouyer #ifdef XXXMTRR
566 1.2 bouyer /*
567 1.2 bouyer * On a P6 or above, initialize MTRR's if the hardware supports them.
568 1.2 bouyer */
569 1.43 jym if (cpu_feature[0] & CPUID_MTRR) {
570 1.2 bouyer if ((ci->ci_flags & CPUF_AP) == 0)
571 1.2 bouyer i686_mtrr_init_first();
572 1.2 bouyer mtrr_init_cpu(ci);
573 1.2 bouyer }
574 1.2 bouyer #endif
575 1.2 bouyer /*
576 1.2 bouyer * If we have FXSAVE/FXRESTOR, use them.
577 1.2 bouyer */
578 1.43 jym if (cpu_feature[0] & CPUID_FXSR) {
579 1.2 bouyer lcr4(rcr4() | CR4_OSFXSR);
580 1.2 bouyer
581 1.2 bouyer /*
582 1.2 bouyer * If we have SSE/SSE2, enable XMM exceptions.
583 1.2 bouyer */
584 1.43 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
585 1.2 bouyer lcr4(rcr4() | CR4_OSXMMEXCPT);
586 1.2 bouyer }
587 1.2 bouyer
588 1.47 jym #ifdef __x86_64__
589 1.47 jym /* No user PGD mapped for this CPU yet */
590 1.47 jym ci->ci_xen_current_user_pgd = 0;
591 1.47 jym #endif
592 1.47 jym
593 1.34 cegger atomic_or_32(&cpus_running, ci->ci_cpumask);
594 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
595 1.2 bouyer }
596 1.2 bouyer
597 1.2 bouyer
598 1.2 bouyer #ifdef MULTIPROCESSOR
599 1.2 bouyer void
600 1.10 cegger cpu_boot_secondary_processors(void)
601 1.2 bouyer {
602 1.2 bouyer struct cpu_info *ci;
603 1.2 bouyer u_long i;
604 1.2 bouyer
605 1.38 cegger for (i = 0; i < maxcpus; i++) {
606 1.38 cegger ci = cpu_lookup(i);
607 1.2 bouyer if (ci == NULL)
608 1.2 bouyer continue;
609 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
610 1.2 bouyer continue;
611 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
612 1.2 bouyer continue;
613 1.2 bouyer if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
614 1.2 bouyer continue;
615 1.2 bouyer cpu_boot_secondary(ci);
616 1.2 bouyer }
617 1.11 cegger
618 1.11 cegger x86_mp_online = true;
619 1.2 bouyer }
620 1.2 bouyer
621 1.2 bouyer static void
622 1.2 bouyer cpu_init_idle_lwp(struct cpu_info *ci)
623 1.2 bouyer {
624 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
625 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
626 1.2 bouyer
627 1.2 bouyer pcb->pcb_cr0 = rcr0();
628 1.2 bouyer }
629 1.2 bouyer
630 1.2 bouyer void
631 1.10 cegger cpu_init_idle_lwps(void)
632 1.2 bouyer {
633 1.2 bouyer struct cpu_info *ci;
634 1.2 bouyer u_long i;
635 1.2 bouyer
636 1.38 cegger for (i = 0; i < maxcpus; i++) {
637 1.38 cegger ci = cpu_lookup(i);
638 1.2 bouyer if (ci == NULL)
639 1.2 bouyer continue;
640 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
641 1.2 bouyer continue;
642 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
643 1.2 bouyer continue;
644 1.2 bouyer cpu_init_idle_lwp(ci);
645 1.2 bouyer }
646 1.2 bouyer }
647 1.2 bouyer
648 1.2 bouyer void
649 1.10 cegger cpu_start_secondary(struct cpu_info *ci)
650 1.2 bouyer {
651 1.2 bouyer int i;
652 1.2 bouyer struct pmap *kpm = pmap_kernel();
653 1.11 cegger extern uint32_t mp_pdirpa;
654 1.2 bouyer
655 1.2 bouyer mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
656 1.2 bouyer
657 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_AP);
658 1.2 bouyer
659 1.11 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
660 1.2 bouyer
661 1.2 bouyer ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
662 1.11 cegger if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
663 1.11 cegger return;
664 1.2 bouyer
665 1.2 bouyer /*
666 1.2 bouyer * wait for it to become ready
667 1.2 bouyer */
668 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
669 1.11 cegger #ifdef MPDEBUG
670 1.11 cegger extern int cpu_trace[3];
671 1.11 cegger static int otrace[3];
672 1.11 cegger if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
673 1.11 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
674 1.11 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
675 1.11 cegger memcpy(otrace, cpu_trace, sizeof(otrace));
676 1.11 cegger }
677 1.11 cegger #endif
678 1.2 bouyer delay(10);
679 1.2 bouyer }
680 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0) {
681 1.9 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
682 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
683 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
684 1.2 bouyer Debugger();
685 1.2 bouyer #endif
686 1.2 bouyer }
687 1.2 bouyer
688 1.2 bouyer CPU_START_CLEANUP(ci);
689 1.2 bouyer }
690 1.2 bouyer
691 1.2 bouyer void
692 1.10 cegger cpu_boot_secondary(struct cpu_info *ci)
693 1.2 bouyer {
694 1.2 bouyer int i;
695 1.2 bouyer
696 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_GO);
697 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
698 1.2 bouyer delay(10);
699 1.2 bouyer }
700 1.11 cegger if ((ci->ci_flags & CPUF_RUNNING) == 0) {
701 1.11 cegger aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
702 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
703 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
704 1.2 bouyer Debugger();
705 1.2 bouyer #endif
706 1.2 bouyer }
707 1.2 bouyer }
708 1.2 bouyer
709 1.2 bouyer /*
710 1.2 bouyer * The CPU ends up here when its ready to run
711 1.2 bouyer * This is called from code in mptramp.s; at this point, we are running
712 1.2 bouyer * in the idle pcb/idle stack of the new CPU. When this function returns,
713 1.2 bouyer * this processor will enter the idle loop and start looking for work.
714 1.2 bouyer *
715 1.2 bouyer * XXX should share some of this with init386 in machdep.c
716 1.2 bouyer */
717 1.2 bouyer void
718 1.2 bouyer cpu_hatch(void *v)
719 1.2 bouyer {
720 1.2 bouyer struct cpu_info *ci = (struct cpu_info *)v;
721 1.37 rmind struct pcb *pcb;
722 1.11 cegger int s, i;
723 1.11 cegger
724 1.21 ad cpu_probe(ci);
725 1.11 cegger
726 1.43 jym cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
727 1.43 jym cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
728 1.2 bouyer
729 1.43 jym cpu_init_msrs(ci, true);
730 1.2 bouyer
731 1.11 cegger KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
732 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
733 1.11 cegger while ((ci->ci_flags & CPUF_GO) == 0) {
734 1.11 cegger /* Don't use delay, boot CPU may be patching the text. */
735 1.11 cegger for (i = 10000; i != 0; i--)
736 1.11 cegger x86_pause();
737 1.11 cegger }
738 1.2 bouyer
739 1.11 cegger /* Because the text may have been patched in x86_patch(). */
740 1.11 cegger wbinvd();
741 1.11 cegger x86_flush();
742 1.2 bouyer
743 1.11 cegger KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
744 1.2 bouyer
745 1.37 rmind pcb = lwp_getpcb(curlwp);
746 1.12 cegger lcr3(pmap_kernel()->pm_pdirpa);
747 1.37 rmind pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
748 1.37 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
749 1.37 rmind lcr0(pcb->pcb_cr0);
750 1.37 rmind
751 1.2 bouyer cpu_init_idt();
752 1.11 cegger gdt_init_cpu(ci);
753 1.11 cegger lapic_enable();
754 1.2 bouyer lapic_set_lvt();
755 1.11 cegger lapic_initclocks();
756 1.11 cegger
757 1.12 cegger #ifdef i386
758 1.2 bouyer npxinit(ci);
759 1.12 cegger #else
760 1.12 cegger fpuinit(ci);
761 1.12 cegger #endif
762 1.2 bouyer
763 1.2 bouyer lldt(GSEL(GLDT_SEL, SEL_KPL));
764 1.12 cegger ltr(ci->ci_tss_sel);
765 1.2 bouyer
766 1.2 bouyer cpu_init(ci);
767 1.11 cegger cpu_get_tsc_freq(ci);
768 1.2 bouyer
769 1.2 bouyer s = splhigh();
770 1.11 cegger #ifdef i386
771 1.2 bouyer lapic_tpr = 0;
772 1.11 cegger #else
773 1.11 cegger lcr8(0);
774 1.11 cegger #endif
775 1.11 cegger x86_enable_intr();
776 1.11 cegger splx(s);
777 1.12 cegger #if 0
778 1.11 cegger x86_errata();
779 1.11 cegger #endif
780 1.2 bouyer
781 1.11 cegger aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
782 1.11 cegger (long)ci->ci_cpuid);
783 1.2 bouyer }
784 1.2 bouyer
785 1.2 bouyer #if defined(DDB)
786 1.2 bouyer
787 1.2 bouyer #include <ddb/db_output.h>
788 1.2 bouyer #include <machine/db_machdep.h>
789 1.2 bouyer
790 1.2 bouyer /*
791 1.2 bouyer * Dump CPU information from ddb.
792 1.2 bouyer */
793 1.2 bouyer void
794 1.2 bouyer cpu_debug_dump(void)
795 1.2 bouyer {
796 1.2 bouyer struct cpu_info *ci;
797 1.2 bouyer CPU_INFO_ITERATOR cii;
798 1.2 bouyer
799 1.13 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
800 1.2 bouyer for (CPU_INFO_FOREACH(cii, ci)) {
801 1.2 bouyer db_printf("%p %s %ld %x %x %10p %10p\n",
802 1.2 bouyer ci,
803 1.9 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
804 1.12 cegger (long)ci->ci_cpuid,
805 1.2 bouyer ci->ci_flags, ci->ci_ipis,
806 1.2 bouyer ci->ci_curlwp,
807 1.2 bouyer ci->ci_fpcurlwp);
808 1.2 bouyer }
809 1.2 bouyer }
810 1.38 cegger #endif /* DDB */
811 1.2 bouyer
812 1.2 bouyer static void
813 1.10 cegger cpu_copy_trampoline(void)
814 1.2 bouyer {
815 1.2 bouyer /*
816 1.2 bouyer * Copy boot code.
817 1.2 bouyer */
818 1.2 bouyer extern u_char cpu_spinup_trampoline[];
819 1.2 bouyer extern u_char cpu_spinup_trampoline_end[];
820 1.11 cegger
821 1.11 cegger vaddr_t mp_trampoline_vaddr;
822 1.11 cegger
823 1.11 cegger mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
824 1.11 cegger UVM_KMF_VAONLY);
825 1.11 cegger
826 1.11 cegger pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
827 1.36 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
828 1.11 cegger pmap_update(pmap_kernel());
829 1.11 cegger memcpy((void *)mp_trampoline_vaddr,
830 1.11 cegger cpu_spinup_trampoline,
831 1.11 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
832 1.11 cegger
833 1.11 cegger pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
834 1.11 cegger pmap_update(pmap_kernel());
835 1.11 cegger uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
836 1.2 bouyer }
837 1.2 bouyer
838 1.38 cegger #endif /* MULTIPROCESSOR */
839 1.2 bouyer
840 1.11 cegger #ifdef i386
841 1.11 cegger #if 0
842 1.11 cegger static void
843 1.11 cegger tss_init(struct i386tss *tss, void *stack, void *func)
844 1.11 cegger {
845 1.11 cegger memset(tss, 0, sizeof *tss);
846 1.11 cegger tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
847 1.11 cegger tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
848 1.11 cegger tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
849 1.11 cegger tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
850 1.11 cegger tss->tss_gs = tss->__tss_es = tss->__tss_ds =
851 1.11 cegger tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
852 1.11 cegger tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
853 1.11 cegger tss->tss_esp = (int)((char *)stack + USPACE - 16);
854 1.11 cegger tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
855 1.11 cegger tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
856 1.11 cegger tss->__tss_eip = (int)func;
857 1.11 cegger }
858 1.11 cegger #endif
859 1.2 bouyer
860 1.2 bouyer /* XXX */
861 1.2 bouyer #define IDTVEC(name) __CONCAT(X, name)
862 1.2 bouyer typedef void (vector)(void);
863 1.2 bouyer extern vector IDTVEC(tss_trap08);
864 1.2 bouyer #ifdef DDB
865 1.2 bouyer extern vector Xintrddbipi;
866 1.2 bouyer extern int ddb_vec;
867 1.2 bouyer #endif
868 1.2 bouyer
869 1.2 bouyer static void
870 1.2 bouyer cpu_set_tss_gates(struct cpu_info *ci)
871 1.2 bouyer {
872 1.11 cegger #if 0
873 1.11 cegger struct segment_descriptor sd;
874 1.11 cegger
875 1.11 cegger ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
876 1.11 cegger UVM_KMF_WIRED);
877 1.11 cegger tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
878 1.11 cegger IDTVEC(tss_trap08));
879 1.11 cegger setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
880 1.11 cegger SDT_SYS386TSS, SEL_KPL, 0, 0);
881 1.11 cegger ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
882 1.11 cegger setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
883 1.11 cegger GSEL(GTRAPTSS_SEL, SEL_KPL));
884 1.11 cegger #endif
885 1.11 cegger
886 1.2 bouyer #if defined(DDB) && defined(MULTIPROCESSOR)
887 1.2 bouyer /*
888 1.2 bouyer * Set up separate handler for the DDB IPI, so that it doesn't
889 1.2 bouyer * stomp on a possibly corrupted stack.
890 1.2 bouyer *
891 1.2 bouyer * XXX overwriting the gate set in db_machine_init.
892 1.2 bouyer * Should rearrange the code so that it's set only once.
893 1.2 bouyer */
894 1.2 bouyer ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
895 1.2 bouyer UVM_KMF_WIRED);
896 1.6 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
897 1.2 bouyer Xintrddbipi);
898 1.2 bouyer
899 1.2 bouyer setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
900 1.2 bouyer SDT_SYS386TSS, SEL_KPL, 0, 0);
901 1.2 bouyer ci->ci_gdt[GIPITSS_SEL].sd = sd;
902 1.2 bouyer
903 1.2 bouyer setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
904 1.2 bouyer GSEL(GIPITSS_SEL, SEL_KPL));
905 1.2 bouyer #endif
906 1.2 bouyer }
907 1.11 cegger #else
908 1.11 cegger static void
909 1.11 cegger cpu_set_tss_gates(struct cpu_info *ci)
910 1.11 cegger {
911 1.11 cegger
912 1.11 cegger }
913 1.11 cegger #endif /* i386 */
914 1.2 bouyer
915 1.2 bouyer int
916 1.5 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
917 1.2 bouyer {
918 1.2 bouyer #if 0
919 1.2 bouyer #if NLAPIC > 0
920 1.2 bouyer int error;
921 1.2 bouyer #endif
922 1.2 bouyer unsigned short dwordptr[2];
923 1.2 bouyer
924 1.2 bouyer /*
925 1.11 cegger * Bootstrap code must be addressable in real mode
926 1.11 cegger * and it must be page aligned.
927 1.11 cegger */
928 1.11 cegger KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
929 1.11 cegger
930 1.11 cegger /*
931 1.2 bouyer * "The BSP must initialize CMOS shutdown code to 0Ah ..."
932 1.2 bouyer */
933 1.2 bouyer
934 1.2 bouyer outb(IO_RTC, NVRAM_RESET);
935 1.2 bouyer outb(IO_RTC+1, NVRAM_RESET_JUMP);
936 1.2 bouyer
937 1.2 bouyer /*
938 1.2 bouyer * "and the warm reset vector (DWORD based at 40:67) to point
939 1.2 bouyer * to the AP startup code ..."
940 1.2 bouyer */
941 1.2 bouyer
942 1.2 bouyer dwordptr[0] = 0;
943 1.5 joerg dwordptr[1] = target >> 4;
944 1.2 bouyer
945 1.36 cegger pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
946 1.45 rmind pmap_update(pmap_kernel());
947 1.45 rmind
948 1.11 cegger memcpy ((uint8_t *) 0x467, dwordptr, 4);
949 1.45 rmind
950 1.2 bouyer pmap_kremove (0, PAGE_SIZE);
951 1.45 rmind pmap_update(pmap_kernel());
952 1.2 bouyer
953 1.2 bouyer #if NLAPIC > 0
954 1.2 bouyer /*
955 1.2 bouyer * ... prior to executing the following sequence:"
956 1.2 bouyer */
957 1.2 bouyer
958 1.2 bouyer if (ci->ci_flags & CPUF_AP) {
959 1.23 ad if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
960 1.2 bouyer return error;
961 1.2 bouyer
962 1.2 bouyer delay(10000);
963 1.2 bouyer
964 1.2 bouyer if (cpu_feature & CPUID_APIC) {
965 1.23 ad error = x86_ipi_init(ci->ci_cpuid);
966 1.11 cegger if (error != 0) {
967 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
968 1.11 cegger __func__);
969 1.11 cegger return error;
970 1.11 cegger }
971 1.11 cegger
972 1.11 cegger delay(10000);
973 1.2 bouyer
974 1.23 ad error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
975 1.11 cegger LAPIC_DLMODE_STARTUP);
976 1.11 cegger if (error != 0) {
977 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
978 1.11 cegger __func__);
979 1.2 bouyer return error;
980 1.11 cegger }
981 1.2 bouyer delay(200);
982 1.2 bouyer
983 1.23 ad error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
984 1.11 cegger LAPIC_DLMODE_STARTUP);
985 1.11 cegger if (error != 0) {
986 1.11 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
987 1.11 cegger __func__);
988 1.2 bouyer return error;
989 1.11 cegger }
990 1.2 bouyer delay(200);
991 1.2 bouyer }
992 1.2 bouyer }
993 1.2 bouyer #endif
994 1.2 bouyer #endif /* 0 */
995 1.2 bouyer return 0;
996 1.2 bouyer }
997 1.2 bouyer
998 1.2 bouyer void
999 1.2 bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
1000 1.2 bouyer {
1001 1.2 bouyer #if 0
1002 1.2 bouyer /*
1003 1.2 bouyer * Ensure the NVRAM reset byte contains something vaguely sane.
1004 1.2 bouyer */
1005 1.2 bouyer
1006 1.2 bouyer outb(IO_RTC, NVRAM_RESET);
1007 1.2 bouyer outb(IO_RTC+1, NVRAM_RESET_RST);
1008 1.2 bouyer #endif
1009 1.2 bouyer }
1010 1.2 bouyer
1011 1.2 bouyer void
1012 1.3 bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
1013 1.2 bouyer {
1014 1.43 jym #ifdef __x86_64__
1015 1.3 bouyer if (full) {
1016 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1017 1.11 cegger HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1018 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1019 1.3 bouyer }
1020 1.43 jym #endif /* __x86_64__ */
1021 1.44 jym
1022 1.44 jym if (cpu_feature[2] & CPUID_NOX)
1023 1.44 jym wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1024 1.2 bouyer }
1025 1.2 bouyer
1026 1.11 cegger void
1027 1.11 cegger cpu_offline_md(void)
1028 1.11 cegger {
1029 1.11 cegger int s;
1030 1.11 cegger
1031 1.11 cegger s = splhigh();
1032 1.11 cegger #ifdef __i386__
1033 1.11 cegger npxsave_cpu(true);
1034 1.11 cegger #else
1035 1.11 cegger fpusave_cpu(true);
1036 1.11 cegger #endif
1037 1.11 cegger splx(s);
1038 1.11 cegger }
1039 1.11 cegger
1040 1.11 cegger #if 0
1041 1.11 cegger /* XXX joerg restructure and restart CPUs individually */
1042 1.11 cegger static bool
1043 1.41 dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
1044 1.11 cegger {
1045 1.11 cegger struct cpu_softc *sc = device_private(dv);
1046 1.11 cegger struct cpu_info *ci = sc->sc_info;
1047 1.11 cegger int err;
1048 1.11 cegger
1049 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1050 1.11 cegger return true;
1051 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1052 1.11 cegger return true;
1053 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1054 1.11 cegger return true;
1055 1.11 cegger
1056 1.11 cegger sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1057 1.11 cegger
1058 1.11 cegger if (sc->sc_wasonline) {
1059 1.11 cegger mutex_enter(&cpu_lock);
1060 1.29 rmind err = cpu_setstate(ci, false);
1061 1.11 cegger mutex_exit(&cpu_lock);
1062 1.11 cegger
1063 1.11 cegger if (err)
1064 1.11 cegger return false;
1065 1.11 cegger }
1066 1.11 cegger
1067 1.11 cegger return true;
1068 1.11 cegger }
1069 1.11 cegger
1070 1.11 cegger static bool
1071 1.41 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1072 1.11 cegger {
1073 1.11 cegger struct cpu_softc *sc = device_private(dv);
1074 1.11 cegger struct cpu_info *ci = sc->sc_info;
1075 1.11 cegger int err = 0;
1076 1.11 cegger
1077 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1078 1.11 cegger return true;
1079 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1080 1.11 cegger return true;
1081 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1082 1.11 cegger return true;
1083 1.11 cegger
1084 1.11 cegger if (sc->sc_wasonline) {
1085 1.11 cegger mutex_enter(&cpu_lock);
1086 1.29 rmind err = cpu_setstate(ci, true);
1087 1.11 cegger mutex_exit(&cpu_lock);
1088 1.11 cegger }
1089 1.11 cegger
1090 1.11 cegger return err == 0;
1091 1.11 cegger }
1092 1.11 cegger #endif
1093 1.11 cegger
1094 1.2 bouyer void
1095 1.2 bouyer cpu_get_tsc_freq(struct cpu_info *ci)
1096 1.2 bouyer {
1097 1.16 cegger const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1098 1.2 bouyer delay(1000000);
1099 1.2 bouyer uint64_t freq = 1000000000ULL << 32;
1100 1.2 bouyer freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1101 1.2 bouyer if ( tinfo->tsc_shift < 0 )
1102 1.2 bouyer freq = freq << -tinfo->tsc_shift;
1103 1.2 bouyer else
1104 1.2 bouyer freq = freq >> tinfo->tsc_shift;
1105 1.20 ad ci->ci_data.cpu_cc_freq = freq;
1106 1.2 bouyer }
1107 1.19 joerg
1108 1.19 joerg void
1109 1.19 joerg x86_cpu_idle_xen(void)
1110 1.19 joerg {
1111 1.19 joerg struct cpu_info *ci = curcpu();
1112 1.19 joerg
1113 1.19 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1114 1.19 joerg
1115 1.19 joerg x86_disable_intr();
1116 1.19 joerg if (!__predict_false(ci->ci_want_resched)) {
1117 1.19 joerg idle_block();
1118 1.19 joerg } else {
1119 1.19 joerg x86_enable_intr();
1120 1.19 joerg }
1121 1.19 joerg }
1122 1.47 jym
1123 1.47 jym /*
1124 1.47 jym * Loads pmap for the current CPU.
1125 1.47 jym */
1126 1.47 jym void
1127 1.47 jym cpu_load_pmap(struct pmap *pmap)
1128 1.47 jym {
1129 1.47 jym #ifdef i386
1130 1.47 jym #ifdef PAE
1131 1.47 jym int i, s;
1132 1.47 jym struct cpu_info *ci;
1133 1.47 jym
1134 1.47 jym s = splvm(); /* just to be safe */
1135 1.47 jym ci = curcpu();
1136 1.47 jym paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1137 1.47 jym /* don't update the kernel L3 slot */
1138 1.47 jym for (i = 0 ; i < PDP_SIZE - 1; i++) {
1139 1.47 jym xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1140 1.47 jym xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1141 1.47 jym }
1142 1.47 jym splx(s);
1143 1.47 jym tlbflush();
1144 1.47 jym #else /* PAE */
1145 1.47 jym lcr3(pmap_pdirpa(pmap, 0));
1146 1.47 jym #endif /* PAE */
1147 1.47 jym #endif /* i386 */
1148 1.47 jym
1149 1.47 jym #ifdef __x86_64__
1150 1.47 jym int i, s;
1151 1.47 jym pd_entry_t *old_pgd, *new_pgd;
1152 1.47 jym paddr_t addr;
1153 1.47 jym struct cpu_info *ci;
1154 1.47 jym
1155 1.47 jym /* kernel pmap always in cr3 and should never go in user cr3 */
1156 1.47 jym if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1157 1.47 jym ci = curcpu();
1158 1.47 jym /*
1159 1.47 jym * Map user space address in kernel space and load
1160 1.47 jym * user cr3
1161 1.47 jym */
1162 1.47 jym s = splvm();
1163 1.47 jym new_pgd = pmap->pm_pdir;
1164 1.47 jym old_pgd = pmap_kernel()->pm_pdir;
1165 1.47 jym addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1166 1.47 jym for (i = 0; i < PDIR_SLOT_PTE;
1167 1.47 jym i++, addr += sizeof(pd_entry_t)) {
1168 1.47 jym if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1169 1.47 jym xpq_queue_pte_update(addr, new_pgd[i]);
1170 1.47 jym }
1171 1.47 jym tlbflush();
1172 1.47 jym xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1173 1.47 jym ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1174 1.47 jym splx(s);
1175 1.47 jym }
1176 1.47 jym #endif /* __x86_64__ */
1177 1.47 jym }
1178