cpu.c revision 1.56.2.2 1 1.56.2.2 cherry /* $NetBSD: cpu.c,v 1.56.2.2 2011/06/23 14:19:50 cherry Exp $ */
2 1.2 bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3 1.2 bouyer
4 1.2 bouyer /*-
5 1.2 bouyer * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 1.19 joerg * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 1.2 bouyer * All rights reserved.
8 1.2 bouyer *
9 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
10 1.2 bouyer * by RedBack Networks Inc.
11 1.2 bouyer *
12 1.2 bouyer * Author: Bill Sommerfeld
13 1.2 bouyer *
14 1.2 bouyer * Redistribution and use in source and binary forms, with or without
15 1.2 bouyer * modification, are permitted provided that the following conditions
16 1.2 bouyer * are met:
17 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
18 1.2 bouyer * notice, this list of conditions and the following disclaimer.
19 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
20 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
21 1.2 bouyer * documentation and/or other materials provided with the distribution.
22 1.2 bouyer *
23 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
34 1.2 bouyer */
35 1.2 bouyer
36 1.2 bouyer /*
37 1.2 bouyer * Copyright (c) 1999 Stefan Grefen
38 1.2 bouyer *
39 1.2 bouyer * Redistribution and use in source and binary forms, with or without
40 1.2 bouyer * modification, are permitted provided that the following conditions
41 1.2 bouyer * are met:
42 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
43 1.2 bouyer * notice, this list of conditions and the following disclaimer.
44 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
45 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
46 1.2 bouyer * documentation and/or other materials provided with the distribution.
47 1.2 bouyer * 3. All advertising materials mentioning features or use of this software
48 1.2 bouyer * must display the following acknowledgement:
49 1.2 bouyer * This product includes software developed by the NetBSD
50 1.2 bouyer * Foundation, Inc. and its contributors.
51 1.2 bouyer * 4. Neither the name of The NetBSD Foundation nor the names of its
52 1.2 bouyer * contributors may be used to endorse or promote products derived
53 1.2 bouyer * from this software without specific prior written permission.
54 1.2 bouyer *
55 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 1.2 bouyer * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 1.2 bouyer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 bouyer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 bouyer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 bouyer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 bouyer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 bouyer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 bouyer * SUCH DAMAGE.
66 1.2 bouyer */
67 1.2 bouyer
68 1.2 bouyer #include <sys/cdefs.h>
69 1.56.2.2 cherry __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56.2.2 2011/06/23 14:19:50 cherry Exp $");
70 1.2 bouyer
71 1.2 bouyer #include "opt_ddb.h"
72 1.2 bouyer #include "opt_multiprocessor.h"
73 1.2 bouyer #include "opt_mpbios.h" /* for MPDEBUG */
74 1.2 bouyer #include "opt_mtrr.h"
75 1.2 bouyer #include "opt_xen.h"
76 1.2 bouyer
77 1.2 bouyer #include "lapic.h"
78 1.2 bouyer #include "ioapic.h"
79 1.2 bouyer
80 1.2 bouyer #include <sys/param.h>
81 1.2 bouyer #include <sys/proc.h>
82 1.2 bouyer #include <sys/systm.h>
83 1.2 bouyer #include <sys/device.h>
84 1.31 cegger #include <sys/kmem.h>
85 1.11 cegger #include <sys/cpu.h>
86 1.11 cegger #include <sys/atomic.h>
87 1.32 cegger #include <sys/reboot.h>
88 1.56.2.1 cherry #include <sys/idle.h>
89 1.2 bouyer
90 1.51 uebayasi #include <uvm/uvm.h>
91 1.2 bouyer
92 1.2 bouyer #include <machine/cpufunc.h>
93 1.2 bouyer #include <machine/cpuvar.h>
94 1.2 bouyer #include <machine/pmap.h>
95 1.2 bouyer #include <machine/vmparam.h>
96 1.2 bouyer #include <machine/mpbiosvar.h>
97 1.2 bouyer #include <machine/pcb.h>
98 1.2 bouyer #include <machine/specialreg.h>
99 1.2 bouyer #include <machine/segments.h>
100 1.2 bouyer #include <machine/gdt.h>
101 1.2 bouyer #include <machine/mtrr.h>
102 1.2 bouyer #include <machine/pio.h>
103 1.56.2.1 cherry #include <machine/fpu.h>
104 1.2 bouyer
105 1.56.2.1 cherry #include <xen/xen.h>
106 1.56.2.1 cherry #include <xen/xen3-public/vcpu.h>
107 1.2 bouyer #include <xen/vcpuvar.h>
108 1.2 bouyer
109 1.2 bouyer #if NLAPIC > 0
110 1.2 bouyer #include <machine/apicvar.h>
111 1.2 bouyer #include <machine/i82489reg.h>
112 1.2 bouyer #include <machine/i82489var.h>
113 1.2 bouyer #endif
114 1.2 bouyer
115 1.2 bouyer #include <dev/ic/mc146818reg.h>
116 1.2 bouyer #include <dev/isa/isareg.h>
117 1.2 bouyer
118 1.38 cegger #if MAXCPUS > 32
119 1.38 cegger #error cpu_info contains 32bit bitmasks
120 1.38 cegger #endif
121 1.27 ad
122 1.56 jruoho static int cpu_match(device_t, cfdata_t, void *);
123 1.56 jruoho static void cpu_attach(device_t, device_t, void *);
124 1.56 jruoho static void cpu_defer(device_t);
125 1.56 jruoho static int cpu_rescan(device_t, const char *, const int *);
126 1.56 jruoho static void cpu_childdetached(device_t, device_t);
127 1.56 jruoho static int vcpu_match(device_t, cfdata_t, void *);
128 1.56 jruoho static void vcpu_attach(device_t, device_t, void *);
129 1.56 jruoho static void cpu_attach_common(device_t, device_t, void *);
130 1.56 jruoho void cpu_offline_md(void);
131 1.2 bouyer
132 1.2 bouyer struct cpu_softc {
133 1.10 cegger device_t sc_dev; /* device tree glue */
134 1.2 bouyer struct cpu_info *sc_info; /* pointer to CPU info */
135 1.32 cegger bool sc_wasonline;
136 1.2 bouyer };
137 1.2 bouyer
138 1.5 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
139 1.2 bouyer void mp_cpu_start_cleanup(struct cpu_info *);
140 1.2 bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
141 1.2 bouyer mp_cpu_start_cleanup };
142 1.2 bouyer
143 1.53 jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
144 1.53 jruoho cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
145 1.53 jruoho
146 1.10 cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
147 1.2 bouyer vcpu_match, vcpu_attach, NULL, NULL);
148 1.2 bouyer
149 1.2 bouyer /*
150 1.2 bouyer * Statically-allocated CPU info for the primary CPU (or the only
151 1.2 bouyer * CPU, on uniprocessors). The CPU info list is initialized to
152 1.2 bouyer * point at it.
153 1.2 bouyer */
154 1.2 bouyer #ifdef TRAPLOG
155 1.2 bouyer #include <machine/tlog.h>
156 1.2 bouyer struct tlog tlog_primary;
157 1.2 bouyer #endif
158 1.38 cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
159 1.7 bouyer .ci_dev = 0,
160 1.2 bouyer .ci_self = &cpu_info_primary,
161 1.4 bouyer .ci_idepth = -1,
162 1.2 bouyer .ci_curlwp = &lwp0,
163 1.25 ad .ci_curldt = -1,
164 1.56.2.2 cherry .ci_cpumask = 1,
165 1.2 bouyer #ifdef TRAPLOG
166 1.2 bouyer .ci_tlog = &tlog_primary,
167 1.2 bouyer #endif
168 1.2 bouyer
169 1.2 bouyer };
170 1.38 cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
171 1.7 bouyer .ci_dev = 0,
172 1.2 bouyer .ci_self = &phycpu_info_primary,
173 1.2 bouyer };
174 1.2 bouyer
175 1.2 bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
176 1.38 cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
177 1.2 bouyer
178 1.2 bouyer static void cpu_set_tss_gates(struct cpu_info *ci);
179 1.2 bouyer
180 1.56.2.2 cherry uint32_t cpus_attached = 1;
181 1.11 cegger uint32_t cpus_running = 0;
182 1.11 cegger
183 1.38 cegger uint32_t phycpus_attached = 0;
184 1.38 cegger uint32_t phycpus_running = 0;
185 1.38 cegger
186 1.43 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
187 1.43 jym * [0] basic features %edx
188 1.43 jym * [1] basic features %ecx
189 1.43 jym * [2] extended features %edx
190 1.43 jym * [3] extended features %ecx
191 1.43 jym * [4] VIA padlock features
192 1.43 jym */
193 1.43 jym
194 1.11 cegger bool x86_mp_online;
195 1.11 cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
196 1.2 bouyer
197 1.38 cegger #if defined(MULTIPROCESSOR)
198 1.2 bouyer void cpu_hatch(void *);
199 1.2 bouyer static void cpu_boot_secondary(struct cpu_info *ci);
200 1.2 bouyer static void cpu_start_secondary(struct cpu_info *ci);
201 1.38 cegger #endif /* MULTIPROCESSOR */
202 1.2 bouyer
203 1.56 jruoho static int
204 1.10 cegger cpu_match(device_t parent, cfdata_t match, void *aux)
205 1.2 bouyer {
206 1.2 bouyer
207 1.2 bouyer return 1;
208 1.2 bouyer }
209 1.2 bouyer
210 1.56 jruoho static void
211 1.10 cegger cpu_attach(device_t parent, device_t self, void *aux)
212 1.2 bouyer {
213 1.10 cegger struct cpu_softc *sc = device_private(self);
214 1.2 bouyer struct cpu_attach_args *caa = aux;
215 1.2 bouyer struct cpu_info *ci;
216 1.34 cegger uintptr_t ptr;
217 1.52 bouyer static int nphycpu = 0;
218 1.2 bouyer
219 1.10 cegger sc->sc_dev = self;
220 1.10 cegger
221 1.38 cegger if (phycpus_attached == ~0) {
222 1.34 cegger aprint_error(": increase MAXCPUS\n");
223 1.34 cegger return;
224 1.34 cegger }
225 1.34 cegger
226 1.2 bouyer /*
227 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
228 1.52 bouyer * If we're the first attached CPU use the primary cpu_info,
229 1.52 bouyer * otherwise allocate a new one
230 1.2 bouyer */
231 1.52 bouyer aprint_naive("\n");
232 1.52 bouyer aprint_normal("\n");
233 1.52 bouyer if (nphycpu > 0) {
234 1.52 bouyer struct cpu_info *tmp;
235 1.34 cegger ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
236 1.34 cegger KM_SLEEP);
237 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
238 1.24 ad ci->ci_curldt = -1;
239 1.52 bouyer
240 1.52 bouyer tmp = phycpu_info_list;
241 1.52 bouyer while (tmp->ci_next)
242 1.52 bouyer tmp = tmp->ci_next;
243 1.52 bouyer
244 1.52 bouyer tmp->ci_next = ci;
245 1.2 bouyer } else {
246 1.2 bouyer ci = &phycpu_info_primary;
247 1.2 bouyer }
248 1.2 bouyer
249 1.2 bouyer ci->ci_self = ci;
250 1.2 bouyer sc->sc_info = ci;
251 1.2 bouyer
252 1.2 bouyer ci->ci_dev = self;
253 1.50 jruoho ci->ci_acpiid = caa->cpu_id;
254 1.23 ad ci->ci_cpuid = caa->cpu_number;
255 1.16 cegger ci->ci_vcpu = NULL;
256 1.52 bouyer ci->ci_index = nphycpu++;
257 1.52 bouyer ci->ci_cpumask = (1 << cpu_index(ci));
258 1.2 bouyer
259 1.52 bouyer atomic_or_32(&phycpus_attached, ci->ci_cpumask);
260 1.38 cegger
261 1.52 bouyer if (!pmf_device_register(self, NULL, NULL))
262 1.52 bouyer aprint_error_dev(self, "couldn't establish power handler\n");
263 1.34 cegger
264 1.56 jruoho (void)config_defer(self, cpu_defer);
265 1.56 jruoho }
266 1.56 jruoho
267 1.56 jruoho static void
268 1.56 jruoho cpu_defer(device_t self)
269 1.56 jruoho {
270 1.56 jruoho cpu_rescan(self, NULL, NULL);
271 1.2 bouyer }
272 1.2 bouyer
273 1.56 jruoho static int
274 1.53 jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
275 1.53 jruoho {
276 1.53 jruoho struct cpu_softc *sc = device_private(self);
277 1.53 jruoho struct cpufeature_attach_args cfaa;
278 1.53 jruoho struct cpu_info *ci = sc->sc_info;
279 1.53 jruoho
280 1.53 jruoho memset(&cfaa, 0, sizeof(cfaa));
281 1.53 jruoho cfaa.ci = ci;
282 1.53 jruoho
283 1.53 jruoho if (ifattr_match(ifattr, "cpufeaturebus")) {
284 1.53 jruoho
285 1.53 jruoho if (ci->ci_frequency == NULL) {
286 1.55 jruoho cfaa.name = "frequency";
287 1.54 jruoho ci->ci_frequency = config_found_ia(self,
288 1.54 jruoho "cpufeaturebus", &cfaa, NULL);
289 1.54 jruoho }
290 1.53 jruoho }
291 1.53 jruoho
292 1.53 jruoho return 0;
293 1.53 jruoho }
294 1.53 jruoho
295 1.56 jruoho static void
296 1.53 jruoho cpu_childdetached(device_t self, device_t child)
297 1.53 jruoho {
298 1.53 jruoho struct cpu_softc *sc = device_private(self);
299 1.53 jruoho struct cpu_info *ci = sc->sc_info;
300 1.53 jruoho
301 1.53 jruoho if (ci->ci_frequency == child)
302 1.53 jruoho ci->ci_frequency = NULL;
303 1.53 jruoho }
304 1.53 jruoho
305 1.56 jruoho static int
306 1.10 cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
307 1.2 bouyer {
308 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
309 1.56.2.1 cherry struct vcpu_runstate_info vcr;
310 1.56.2.1 cherry int error;
311 1.56.2.1 cherry
312 1.56.2.1 cherry if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
313 1.56.2.1 cherry error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
314 1.56.2.1 cherry vcaa->vcaa_caa.cpu_number,
315 1.56.2.1 cherry &vcr);
316 1.56.2.1 cherry switch (error) {
317 1.56.2.1 cherry case 0:
318 1.56.2.1 cherry return 1;
319 1.56.2.1 cherry case -ENOENT:
320 1.56.2.1 cherry return 0;
321 1.56.2.1 cherry default:
322 1.56.2.1 cherry panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
323 1.56.2.1 cherry }
324 1.56.2.1 cherry }
325 1.2 bouyer
326 1.2 bouyer return 0;
327 1.2 bouyer }
328 1.2 bouyer
329 1.56 jruoho static void
330 1.10 cegger vcpu_attach(device_t parent, device_t self, void *aux)
331 1.2 bouyer {
332 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
333 1.2 bouyer
334 1.56.2.1 cherry KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
335 1.56.2.1 cherry vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
336 1.2 bouyer cpu_attach_common(parent, self, &vcaa->vcaa_caa);
337 1.2 bouyer }
338 1.2 bouyer
339 1.56.2.1 cherry static int
340 1.56.2.1 cherry vcpu_is_up(struct cpu_info *ci)
341 1.56.2.1 cherry {
342 1.56.2.1 cherry KASSERT(ci != NULL);
343 1.56.2.1 cherry return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
344 1.56.2.1 cherry }
345 1.56.2.1 cherry
346 1.2 bouyer static void
347 1.2 bouyer cpu_vm_init(struct cpu_info *ci)
348 1.2 bouyer {
349 1.2 bouyer int ncolors = 2, i;
350 1.2 bouyer
351 1.2 bouyer for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
352 1.2 bouyer struct x86_cache_info *cai;
353 1.2 bouyer int tcolors;
354 1.2 bouyer
355 1.2 bouyer cai = &ci->ci_cinfo[i];
356 1.2 bouyer
357 1.2 bouyer tcolors = atop(cai->cai_totalsize);
358 1.2 bouyer switch(cai->cai_associativity) {
359 1.2 bouyer case 0xff:
360 1.2 bouyer tcolors = 1; /* fully associative */
361 1.2 bouyer break;
362 1.2 bouyer case 0:
363 1.2 bouyer case 1:
364 1.2 bouyer break;
365 1.2 bouyer default:
366 1.2 bouyer tcolors /= cai->cai_associativity;
367 1.2 bouyer }
368 1.2 bouyer ncolors = max(ncolors, tcolors);
369 1.2 bouyer }
370 1.2 bouyer
371 1.2 bouyer /*
372 1.2 bouyer * Knowing the size of the largest cache on this CPU, re-color
373 1.2 bouyer * our pages.
374 1.2 bouyer */
375 1.2 bouyer if (ncolors <= uvmexp.ncolors)
376 1.2 bouyer return;
377 1.28 bouyer aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
378 1.2 bouyer uvm_page_recolor(ncolors);
379 1.2 bouyer }
380 1.2 bouyer
381 1.56 jruoho static void
382 1.11 cegger cpu_attach_common(device_t parent, device_t self, void *aux)
383 1.2 bouyer {
384 1.10 cegger struct cpu_softc *sc = device_private(self);
385 1.2 bouyer struct cpu_attach_args *caa = aux;
386 1.2 bouyer struct cpu_info *ci;
387 1.12 cegger uintptr_t ptr;
388 1.2 bouyer int cpunum = caa->cpu_number;
389 1.38 cegger static bool again = false;
390 1.2 bouyer
391 1.10 cegger sc->sc_dev = self;
392 1.10 cegger
393 1.2 bouyer /*
394 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
395 1.2 bouyer * structure, otherwise use the primary's.
396 1.2 bouyer */
397 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
398 1.12 cegger aprint_naive(": Application Processor\n");
399 1.31 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
400 1.31 cegger KM_SLEEP);
401 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
402 1.12 cegger memset(ci, 0, sizeof(*ci));
403 1.2 bouyer #ifdef TRAPLOG
404 1.31 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
405 1.2 bouyer #endif
406 1.2 bouyer } else {
407 1.12 cegger aprint_naive(": %s Processor\n",
408 1.12 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
409 1.2 bouyer ci = &cpu_info_primary;
410 1.2 bouyer }
411 1.2 bouyer
412 1.2 bouyer ci->ci_self = ci;
413 1.2 bouyer sc->sc_info = ci;
414 1.2 bouyer ci->ci_dev = self;
415 1.23 ad ci->ci_cpuid = cpunum;
416 1.16 cegger
417 1.16 cegger KASSERT(HYPERVISOR_shared_info != NULL);
418 1.16 cegger ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
419 1.16 cegger
420 1.56.2.1 cherry KASSERT(ci->ci_func == 0);
421 1.2 bouyer ci->ci_func = caa->cpu_func;
422 1.2 bouyer
423 1.38 cegger /* Must be called before mi_cpu_attach(). */
424 1.38 cegger cpu_vm_init(ci);
425 1.38 cegger
426 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
427 1.2 bouyer int error;
428 1.2 bouyer
429 1.2 bouyer error = mi_cpu_attach(ci);
430 1.56.2.1 cherry
431 1.56.2.1 cherry KASSERT(ci->ci_data.cpu_idlelwp != NULL);
432 1.2 bouyer if (error != 0) {
433 1.2 bouyer aprint_normal("\n");
434 1.38 cegger aprint_error_dev(self,
435 1.38 cegger "mi_cpu_attach failed with %d\n", error);
436 1.2 bouyer return;
437 1.2 bouyer }
438 1.56.2.1 cherry
439 1.2 bouyer } else {
440 1.2 bouyer KASSERT(ci->ci_data.cpu_idlelwp != NULL);
441 1.2 bouyer }
442 1.2 bouyer
443 1.23 ad ci->ci_cpumask = (1 << cpu_index(ci));
444 1.2 bouyer pmap_reference(pmap_kernel());
445 1.2 bouyer ci->ci_pmap = pmap_kernel();
446 1.2 bouyer ci->ci_tlbstate = TLBSTATE_STALE;
447 1.2 bouyer
448 1.38 cegger /*
449 1.38 cegger * Boot processor may not be attached first, but the below
450 1.38 cegger * must be done to allow booting other processors.
451 1.38 cegger */
452 1.38 cegger if (!again) {
453 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
454 1.38 cegger /* Basic init. */
455 1.38 cegger cpu_intr_init(ci);
456 1.38 cegger cpu_get_tsc_freq(ci);
457 1.38 cegger cpu_init(ci);
458 1.38 cegger cpu_set_tss_gates(ci);
459 1.38 cegger pmap_cpu_init_late(ci);
460 1.56.2.1 cherry
461 1.56.2.1 cherry /* Every processor needs to init it's own ipi h/w (similar to lapic) */
462 1.56.2.1 cherry xen_ipi_init();
463 1.56.2.1 cherry /* XXX: clock_init() */
464 1.56.2.1 cherry
465 1.38 cegger /* Make sure DELAY() is initialized. */
466 1.38 cegger DELAY(1);
467 1.38 cegger again = true;
468 1.38 cegger }
469 1.38 cegger
470 1.2 bouyer /* further PCB init done later. */
471 1.2 bouyer
472 1.2 bouyer switch (caa->cpu_role) {
473 1.2 bouyer case CPU_ROLE_SP:
474 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
475 1.21 ad cpu_identify(ci);
476 1.12 cegger #if 0
477 1.12 cegger x86_errata();
478 1.12 cegger #endif
479 1.38 cegger x86_cpu_idle_init();
480 1.56.2.1 cherry
481 1.2 bouyer break;
482 1.2 bouyer
483 1.2 bouyer case CPU_ROLE_BP:
484 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
485 1.21 ad cpu_identify(ci);
486 1.2 bouyer cpu_init(ci);
487 1.14 bouyer #if 0
488 1.12 cegger x86_errata();
489 1.12 cegger #endif
490 1.38 cegger x86_cpu_idle_init();
491 1.56.2.1 cherry
492 1.2 bouyer break;
493 1.2 bouyer
494 1.2 bouyer case CPU_ROLE_AP:
495 1.56.2.1 cherry atomic_or_32(&ci->ci_flags, CPUF_AP);
496 1.56.2.1 cherry
497 1.2 bouyer /*
498 1.2 bouyer * report on an AP
499 1.2 bouyer */
500 1.2 bouyer
501 1.2 bouyer #if defined(MULTIPROCESSOR)
502 1.56.2.1 cherry /* interrupt handler stack */
503 1.2 bouyer cpu_intr_init(ci);
504 1.56.2.1 cherry
505 1.56.2.1 cherry /* Setup gdt */
506 1.2 bouyer gdt_alloc_cpu(ci);
507 1.56.2.1 cherry //gdt_init_cpu(ci);
508 1.56.2.1 cherry
509 1.2 bouyer cpu_set_tss_gates(ci);
510 1.2 bouyer cpu_start_secondary(ci);
511 1.56.2.1 cherry
512 1.2 bouyer if (ci->ci_flags & CPUF_PRESENT) {
513 1.30 cegger struct cpu_info *tmp;
514 1.30 cegger
515 1.56.2.1 cherry cpu_identify(ci);
516 1.30 cegger tmp = cpu_info_list;
517 1.30 cegger while (tmp->ci_next)
518 1.30 cegger tmp = tmp->ci_next;
519 1.30 cegger
520 1.30 cegger tmp->ci_next = ci;
521 1.2 bouyer }
522 1.2 bouyer #else
523 1.56.2.1 cherry aprint_error(": not started\n");
524 1.2 bouyer #endif
525 1.2 bouyer break;
526 1.2 bouyer
527 1.2 bouyer default:
528 1.12 cegger aprint_normal("\n");
529 1.2 bouyer panic("unknown processor type??\n");
530 1.2 bouyer }
531 1.2 bouyer
532 1.46 cegger pat_init(ci);
533 1.34 cegger atomic_or_32(&cpus_attached, ci->ci_cpumask);
534 1.2 bouyer
535 1.12 cegger #if 0
536 1.12 cegger if (!pmf_device_register(self, cpu_suspend, cpu_resume))
537 1.12 cegger aprint_error_dev(self, "couldn't establish power handler\n");
538 1.12 cegger #endif
539 1.12 cegger
540 1.56.2.1 cherry #ifdef MPVERBOSE
541 1.2 bouyer if (mp_verbose) {
542 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
543 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
544 1.2 bouyer
545 1.38 cegger aprint_verbose_dev(self,
546 1.38 cegger "idle lwp at %p, idle sp at 0x%p\n",
547 1.12 cegger l,
548 1.12 cegger #ifdef i386
549 1.37 rmind (void *)pcb->pcb_esp
550 1.56.2.1 cherry #else /* i386 */
551 1.37 rmind (void *)pcb->pcb_rsp
552 1.56.2.1 cherry #endif /* i386 */
553 1.12 cegger );
554 1.12 cegger
555 1.2 bouyer }
556 1.56.2.1 cherry #endif /* MPVERBOSE */
557 1.2 bouyer }
558 1.2 bouyer
559 1.2 bouyer /*
560 1.2 bouyer * Initialize the processor appropriately.
561 1.2 bouyer */
562 1.2 bouyer
563 1.2 bouyer void
564 1.10 cegger cpu_init(struct cpu_info *ci)
565 1.2 bouyer {
566 1.2 bouyer
567 1.2 bouyer /*
568 1.2 bouyer * On a P6 or above, enable global TLB caching if the
569 1.2 bouyer * hardware supports it.
570 1.2 bouyer */
571 1.43 jym if (cpu_feature[0] & CPUID_PGE)
572 1.2 bouyer lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
573 1.2 bouyer
574 1.2 bouyer #ifdef XXXMTRR
575 1.2 bouyer /*
576 1.2 bouyer * On a P6 or above, initialize MTRR's if the hardware supports them.
577 1.2 bouyer */
578 1.43 jym if (cpu_feature[0] & CPUID_MTRR) {
579 1.2 bouyer if ((ci->ci_flags & CPUF_AP) == 0)
580 1.2 bouyer i686_mtrr_init_first();
581 1.2 bouyer mtrr_init_cpu(ci);
582 1.2 bouyer }
583 1.2 bouyer #endif
584 1.2 bouyer /*
585 1.2 bouyer * If we have FXSAVE/FXRESTOR, use them.
586 1.2 bouyer */
587 1.43 jym if (cpu_feature[0] & CPUID_FXSR) {
588 1.2 bouyer lcr4(rcr4() | CR4_OSFXSR);
589 1.2 bouyer
590 1.2 bouyer /*
591 1.2 bouyer * If we have SSE/SSE2, enable XMM exceptions.
592 1.2 bouyer */
593 1.43 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
594 1.2 bouyer lcr4(rcr4() | CR4_OSXMMEXCPT);
595 1.2 bouyer }
596 1.2 bouyer
597 1.47 jym #ifdef __x86_64__
598 1.47 jym /* No user PGD mapped for this CPU yet */
599 1.47 jym ci->ci_xen_current_user_pgd = 0;
600 1.47 jym #endif
601 1.47 jym
602 1.34 cegger atomic_or_32(&cpus_running, ci->ci_cpumask);
603 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
604 1.56.2.1 cherry
605 1.56.2.1 cherry /* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
606 1.2 bouyer }
607 1.2 bouyer
608 1.2 bouyer
609 1.2 bouyer #ifdef MULTIPROCESSOR
610 1.56.2.1 cherry
611 1.2 bouyer void
612 1.10 cegger cpu_boot_secondary_processors(void)
613 1.2 bouyer {
614 1.2 bouyer struct cpu_info *ci;
615 1.2 bouyer u_long i;
616 1.38 cegger for (i = 0; i < maxcpus; i++) {
617 1.38 cegger ci = cpu_lookup(i);
618 1.2 bouyer if (ci == NULL)
619 1.2 bouyer continue;
620 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
621 1.2 bouyer continue;
622 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
623 1.2 bouyer continue;
624 1.2 bouyer if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
625 1.2 bouyer continue;
626 1.2 bouyer cpu_boot_secondary(ci);
627 1.2 bouyer }
628 1.11 cegger
629 1.11 cegger x86_mp_online = true;
630 1.2 bouyer }
631 1.2 bouyer
632 1.2 bouyer static void
633 1.2 bouyer cpu_init_idle_lwp(struct cpu_info *ci)
634 1.2 bouyer {
635 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
636 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
637 1.2 bouyer
638 1.2 bouyer pcb->pcb_cr0 = rcr0();
639 1.2 bouyer }
640 1.2 bouyer
641 1.2 bouyer void
642 1.10 cegger cpu_init_idle_lwps(void)
643 1.2 bouyer {
644 1.2 bouyer struct cpu_info *ci;
645 1.2 bouyer u_long i;
646 1.2 bouyer
647 1.38 cegger for (i = 0; i < maxcpus; i++) {
648 1.38 cegger ci = cpu_lookup(i);
649 1.2 bouyer if (ci == NULL)
650 1.2 bouyer continue;
651 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
652 1.2 bouyer continue;
653 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
654 1.2 bouyer continue;
655 1.2 bouyer cpu_init_idle_lwp(ci);
656 1.2 bouyer }
657 1.2 bouyer }
658 1.2 bouyer
659 1.56.2.1 cherry static void
660 1.10 cegger cpu_start_secondary(struct cpu_info *ci)
661 1.2 bouyer {
662 1.2 bouyer int i;
663 1.2 bouyer
664 1.11 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
665 1.2 bouyer
666 1.2 bouyer ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
667 1.56.2.1 cherry
668 1.56.2.1 cherry if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
669 1.11 cegger return;
670 1.56.2.1 cherry }
671 1.2 bouyer
672 1.2 bouyer /*
673 1.2 bouyer * wait for it to become ready
674 1.2 bouyer */
675 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
676 1.11 cegger #ifdef MPDEBUG
677 1.11 cegger extern int cpu_trace[3];
678 1.11 cegger static int otrace[3];
679 1.11 cegger if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
680 1.11 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
681 1.11 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
682 1.11 cegger memcpy(otrace, cpu_trace, sizeof(otrace));
683 1.11 cegger }
684 1.11 cegger #endif
685 1.2 bouyer delay(10);
686 1.2 bouyer }
687 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0) {
688 1.9 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
689 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
690 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
691 1.2 bouyer Debugger();
692 1.2 bouyer #endif
693 1.2 bouyer }
694 1.2 bouyer
695 1.2 bouyer CPU_START_CLEANUP(ci);
696 1.2 bouyer }
697 1.2 bouyer
698 1.2 bouyer void
699 1.10 cegger cpu_boot_secondary(struct cpu_info *ci)
700 1.2 bouyer {
701 1.2 bouyer int i;
702 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_GO);
703 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
704 1.2 bouyer delay(10);
705 1.2 bouyer }
706 1.11 cegger if ((ci->ci_flags & CPUF_RUNNING) == 0) {
707 1.11 cegger aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
708 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
709 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
710 1.2 bouyer Debugger();
711 1.2 bouyer #endif
712 1.2 bouyer }
713 1.2 bouyer }
714 1.2 bouyer
715 1.2 bouyer /*
716 1.56.2.1 cherry * APs end up here immediately after initialisation and VCPUOP_up in
717 1.56.2.1 cherry * mp_cpu_start().
718 1.56.2.1 cherry * At this point, we are running in the idle pcb/idle stack of the new
719 1.56.2.1 cherry * CPU. This function jumps to the idle loop and starts looking for
720 1.56.2.1 cherry * work.
721 1.2 bouyer */
722 1.56.2.1 cherry extern void x86_64_tls_switch(struct lwp *);
723 1.2 bouyer void
724 1.2 bouyer cpu_hatch(void *v)
725 1.2 bouyer {
726 1.2 bouyer struct cpu_info *ci = (struct cpu_info *)v;
727 1.37 rmind struct pcb *pcb;
728 1.11 cegger int s, i;
729 1.11 cegger
730 1.56.2.1 cherry /* Setup TLS and kernel GS */
731 1.56.2.1 cherry cpu_init_msrs(ci, true);
732 1.21 ad cpu_probe(ci);
733 1.11 cegger
734 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
735 1.56.2.1 cherry
736 1.11 cegger while ((ci->ci_flags & CPUF_GO) == 0) {
737 1.11 cegger /* Don't use delay, boot CPU may be patching the text. */
738 1.11 cegger for (i = 10000; i != 0; i--)
739 1.11 cegger x86_pause();
740 1.11 cegger }
741 1.2 bouyer
742 1.11 cegger /* Because the text may have been patched in x86_patch(). */
743 1.11 cegger x86_flush();
744 1.56.2.2 cherry tlbflushg();
745 1.2 bouyer
746 1.11 cegger KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
747 1.2 bouyer
748 1.37 rmind pcb = lwp_getpcb(curlwp);
749 1.56.2.1 cherry pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
750 1.37 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
751 1.37 rmind lcr0(pcb->pcb_cr0);
752 1.37 rmind
753 1.2 bouyer cpu_init_idt();
754 1.11 cegger gdt_init_cpu(ci);
755 1.56.2.1 cherry xen_ipi_init();
756 1.56.2.1 cherry
757 1.56.2.1 cherry xen_initclocks();
758 1.56.2.1 cherry
759 1.56.2.1 cherry /* XXX: lapic_initclocks(); */
760 1.11 cegger
761 1.12 cegger #ifdef i386
762 1.56.2.1 cherry #if NNPX > 0
763 1.2 bouyer npxinit(ci);
764 1.56.2.1 cherry #endif
765 1.12 cegger #else
766 1.12 cegger fpuinit(ci);
767 1.56.2.1 cherry /* XXX: fixme compile fpuinit(ci); */
768 1.12 cegger #endif
769 1.2 bouyer
770 1.2 bouyer lldt(GSEL(GLDT_SEL, SEL_KPL));
771 1.12 cegger ltr(ci->ci_tss_sel);
772 1.2 bouyer
773 1.2 bouyer cpu_init(ci);
774 1.11 cegger cpu_get_tsc_freq(ci);
775 1.2 bouyer
776 1.2 bouyer s = splhigh();
777 1.11 cegger x86_enable_intr();
778 1.11 cegger splx(s);
779 1.12 cegger #if 0
780 1.11 cegger x86_errata();
781 1.11 cegger #endif
782 1.2 bouyer
783 1.56.2.1 cherry aprint_debug_dev(ci->ci_dev, "running\n");
784 1.56.2.1 cherry
785 1.56.2.1 cherry printf("\n\nAbout to switch to idle_loop()\n\n");
786 1.56.2.1 cherry
787 1.56.2.1 cherry cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
788 1.56.2.1 cherry
789 1.56.2.1 cherry panic("switch to idle_loop context returned!\n");
790 1.56.2.1 cherry /* NOTREACHED */
791 1.2 bouyer }
792 1.2 bouyer
793 1.2 bouyer #if defined(DDB)
794 1.2 bouyer
795 1.2 bouyer #include <ddb/db_output.h>
796 1.2 bouyer #include <machine/db_machdep.h>
797 1.2 bouyer
798 1.2 bouyer /*
799 1.2 bouyer * Dump CPU information from ddb.
800 1.2 bouyer */
801 1.2 bouyer void
802 1.2 bouyer cpu_debug_dump(void)
803 1.2 bouyer {
804 1.2 bouyer struct cpu_info *ci;
805 1.2 bouyer CPU_INFO_ITERATOR cii;
806 1.2 bouyer
807 1.13 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
808 1.2 bouyer for (CPU_INFO_FOREACH(cii, ci)) {
809 1.2 bouyer db_printf("%p %s %ld %x %x %10p %10p\n",
810 1.2 bouyer ci,
811 1.9 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
812 1.12 cegger (long)ci->ci_cpuid,
813 1.2 bouyer ci->ci_flags, ci->ci_ipis,
814 1.2 bouyer ci->ci_curlwp,
815 1.2 bouyer ci->ci_fpcurlwp);
816 1.2 bouyer }
817 1.2 bouyer }
818 1.38 cegger #endif /* DDB */
819 1.2 bouyer
820 1.38 cegger #endif /* MULTIPROCESSOR */
821 1.2 bouyer
822 1.11 cegger #ifdef i386
823 1.11 cegger #if 0
824 1.11 cegger static void
825 1.11 cegger tss_init(struct i386tss *tss, void *stack, void *func)
826 1.11 cegger {
827 1.11 cegger memset(tss, 0, sizeof *tss);
828 1.11 cegger tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
829 1.11 cegger tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
830 1.11 cegger tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
831 1.11 cegger tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
832 1.11 cegger tss->tss_gs = tss->__tss_es = tss->__tss_ds =
833 1.11 cegger tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
834 1.11 cegger tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
835 1.11 cegger tss->tss_esp = (int)((char *)stack + USPACE - 16);
836 1.11 cegger tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
837 1.11 cegger tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
838 1.11 cegger tss->__tss_eip = (int)func;
839 1.11 cegger }
840 1.11 cegger #endif
841 1.2 bouyer
842 1.2 bouyer /* XXX */
843 1.2 bouyer #define IDTVEC(name) __CONCAT(X, name)
844 1.2 bouyer typedef void (vector)(void);
845 1.2 bouyer extern vector IDTVEC(tss_trap08);
846 1.2 bouyer #ifdef DDB
847 1.2 bouyer extern vector Xintrddbipi;
848 1.2 bouyer extern int ddb_vec;
849 1.2 bouyer #endif
850 1.2 bouyer
851 1.2 bouyer static void
852 1.2 bouyer cpu_set_tss_gates(struct cpu_info *ci)
853 1.2 bouyer {
854 1.11 cegger #if 0
855 1.11 cegger struct segment_descriptor sd;
856 1.11 cegger
857 1.11 cegger ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
858 1.11 cegger UVM_KMF_WIRED);
859 1.11 cegger tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
860 1.11 cegger IDTVEC(tss_trap08));
861 1.11 cegger setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
862 1.11 cegger SDT_SYS386TSS, SEL_KPL, 0, 0);
863 1.11 cegger ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
864 1.11 cegger setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
865 1.11 cegger GSEL(GTRAPTSS_SEL, SEL_KPL));
866 1.11 cegger #endif
867 1.11 cegger
868 1.2 bouyer #if defined(DDB) && defined(MULTIPROCESSOR)
869 1.2 bouyer /*
870 1.2 bouyer * Set up separate handler for the DDB IPI, so that it doesn't
871 1.2 bouyer * stomp on a possibly corrupted stack.
872 1.2 bouyer *
873 1.2 bouyer * XXX overwriting the gate set in db_machine_init.
874 1.2 bouyer * Should rearrange the code so that it's set only once.
875 1.2 bouyer */
876 1.2 bouyer ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
877 1.2 bouyer UVM_KMF_WIRED);
878 1.6 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
879 1.2 bouyer Xintrddbipi);
880 1.2 bouyer
881 1.2 bouyer setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
882 1.2 bouyer SDT_SYS386TSS, SEL_KPL, 0, 0);
883 1.2 bouyer ci->ci_gdt[GIPITSS_SEL].sd = sd;
884 1.2 bouyer
885 1.2 bouyer setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
886 1.2 bouyer GSEL(GIPITSS_SEL, SEL_KPL));
887 1.2 bouyer #endif
888 1.2 bouyer }
889 1.11 cegger #else
890 1.11 cegger static void
891 1.11 cegger cpu_set_tss_gates(struct cpu_info *ci)
892 1.11 cegger {
893 1.11 cegger
894 1.11 cegger }
895 1.11 cegger #endif /* i386 */
896 1.2 bouyer
897 1.56.2.1 cherry extern void hypervisor_callback(void);
898 1.56.2.1 cherry extern void failsafe_callback(void);
899 1.56.2.1 cherry #ifdef __x86_64__
900 1.56.2.1 cherry typedef void (vector)(void);
901 1.56.2.1 cherry extern vector Xsyscall, Xsyscall32;
902 1.2 bouyer #endif
903 1.2 bouyer
904 1.56.2.1 cherry /*
905 1.56.2.1 cherry * Setup the "trampoline". On Xen, we setup nearly all cpu context
906 1.56.2.1 cherry * outside a trampoline, so we prototype and call targetrip like so:
907 1.56.2.1 cherry * void targetrip(struct cpu_info *);
908 1.56.2.1 cherry */
909 1.11 cegger
910 1.56.2.1 cherry static void
911 1.56.2.1 cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
912 1.56.2.1 cherry {
913 1.56.2.1 cherry int i;
914 1.56.2.1 cherry for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
915 1.2 bouyer
916 1.56.2.1 cherry frames[i] = ((paddr_t) xpmap_ptetomach(
917 1.56.2.1 cherry (pt_entry_t *) (base + (i << PAGE_SHIFT))))
918 1.56.2.1 cherry >> PAGE_SHIFT;
919 1.2 bouyer
920 1.56.2.1 cherry /* Mark Read-only */
921 1.56.2.1 cherry pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
922 1.56.2.1 cherry PG_RW);
923 1.56.2.1 cherry }
924 1.56.2.1 cherry }
925 1.2 bouyer
926 1.56.2.1 cherry extern char *ldtstore; /* XXX: Xen MP todo */
927 1.2 bouyer
928 1.56.2.1 cherry static void
929 1.56.2.1 cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
930 1.56.2.1 cherry struct vcpu_guest_context *initctx,
931 1.56.2.1 cherry void targetrip(struct cpu_info *))
932 1.56.2.1 cherry {
933 1.56.2.1 cherry /* page frames to point at GDT */
934 1.56.2.1 cherry extern int gdt_size;
935 1.56.2.1 cherry paddr_t frames[16];
936 1.56.2.1 cherry psize_t gdt_ents;
937 1.45 rmind
938 1.56.2.1 cherry struct lwp *l;
939 1.56.2.1 cherry struct pcb *pcb;
940 1.45 rmind
941 1.56.2.1 cherry volatile struct vcpu_info *vci;
942 1.2 bouyer
943 1.56.2.1 cherry KASSERT(ci != NULL);
944 1.56.2.1 cherry KASSERT(ci != &cpu_info_primary);
945 1.56.2.1 cherry KASSERT(initctx != NULL);
946 1.56.2.1 cherry KASSERT(targetrip != NULL);
947 1.2 bouyer
948 1.56.2.1 cherry memset(initctx, 0, sizeof *initctx);
949 1.56.2.1 cherry
950 1.56.2.1 cherry gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
951 1.56.2.1 cherry KASSERT(gdt_ents <= 16);
952 1.56.2.1 cherry
953 1.56.2.1 cherry gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
954 1.56.2.1 cherry
955 1.56.2.1 cherry /* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
956 1.56.2.1 cherry
957 1.56.2.1 cherry /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
958 1.56.2.1 cherry
959 1.56.2.1 cherry l = ci->ci_data.cpu_idlelwp;
960 1.56.2.1 cherry
961 1.56.2.1 cherry KASSERT(l != NULL);
962 1.56.2.1 cherry pcb = lwp_getpcb(l);
963 1.56.2.1 cherry KASSERT(pcb != NULL);
964 1.56.2.1 cherry
965 1.56.2.1 cherry /* resume with interrupts off */
966 1.56.2.1 cherry vci = ci->ci_vcpu;
967 1.56.2.1 cherry vci->evtchn_upcall_mask = 1;
968 1.56.2.1 cherry xen_mb();
969 1.56.2.1 cherry
970 1.56.2.1 cherry /* resume in kernel-mode */
971 1.56.2.1 cherry initctx->flags = VGCF_in_kernel | VGCF_online;
972 1.56.2.1 cherry
973 1.56.2.1 cherry /* Stack and entry points */
974 1.56.2.1 cherry initctx->user_regs.rbp = pcb->pcb_rbp;
975 1.56.2.1 cherry initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
976 1.56.2.1 cherry initctx->user_regs.rip = (vaddr_t) targetrip;
977 1.56.2.1 cherry
978 1.56.2.1 cherry initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
979 1.56.2.1 cherry
980 1.56.2.1 cherry initctx->user_regs.rflags = pcb->pcb_flags;
981 1.56.2.1 cherry initctx->user_regs.rsp = pcb->pcb_rsp;
982 1.56.2.1 cherry
983 1.56.2.1 cherry /* Data segments */
984 1.56.2.1 cherry initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
985 1.56.2.1 cherry initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
986 1.56.2.1 cherry initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
987 1.56.2.1 cherry
988 1.56.2.1 cherry /* GDT */
989 1.56.2.1 cherry memcpy(initctx->gdt_frames, frames, sizeof frames);
990 1.56.2.1 cherry initctx->gdt_ents = gdt_ents;
991 1.56.2.1 cherry
992 1.56.2.1 cherry /* LDT */
993 1.56.2.1 cherry initctx->ldt_base = (unsigned long) ldtstore;
994 1.56.2.1 cherry initctx->ldt_ents = LDT_SIZE >> 3;
995 1.56.2.1 cherry
996 1.56.2.1 cherry /* Kernel context state */
997 1.56.2.1 cherry initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
998 1.56.2.1 cherry initctx->kernel_sp = pcb->pcb_rsp0;
999 1.56.2.1 cherry initctx->ctrlreg[0] = pcb->pcb_cr0;
1000 1.56.2.1 cherry initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
1001 1.56.2.1 cherry initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
1002 1.56.2.1 cherry initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
1003 1.56.2.1 cherry initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
1004 1.56.2.1 cherry
1005 1.56.2.1 cherry
1006 1.56.2.1 cherry /* Xen callbacks */
1007 1.56.2.1 cherry initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1008 1.56.2.1 cherry initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1009 1.56.2.1 cherry initctx->syscall_callback_eip = (unsigned long) Xsyscall;
1010 1.56.2.1 cherry
1011 1.56.2.1 cherry return;
1012 1.56.2.1 cherry }
1013 1.56.2.1 cherry
1014 1.56.2.1 cherry int
1015 1.56.2.1 cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1016 1.56.2.1 cherry {
1017 1.56.2.1 cherry
1018 1.56.2.1 cherry int hyperror;
1019 1.56.2.1 cherry struct vcpu_guest_context vcpuctx;
1020 1.56.2.1 cherry
1021 1.56.2.1 cherry KASSERT(ci != NULL);
1022 1.56.2.1 cherry KASSERT(ci != &cpu_info_primary);
1023 1.56.2.1 cherry KASSERT(ci->ci_flags & CPUF_AP);
1024 1.56.2.1 cherry
1025 1.56.2.1 cherry xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1026 1.56.2.1 cherry
1027 1.56.2.1 cherry /* Initialise the given vcpu to execute cpu_hatch(ci); */
1028 1.56.2.1 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1029 1.56.2.1 cherry aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1030 1.56.2.1 cherry return hyperror;
1031 1.2 bouyer }
1032 1.56.2.1 cherry
1033 1.56.2.1 cherry /* Start it up */
1034 1.56.2.1 cherry
1035 1.56.2.1 cherry /* First bring it down - yay, thanks Xen documentation for omitting this slight detail - lost only about 1 week reading through crap */
1036 1.56.2.1 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1037 1.56.2.1 cherry aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1038 1.56.2.1 cherry return hyperror;
1039 1.56.2.1 cherry }
1040 1.56.2.1 cherry
1041 1.56.2.1 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1042 1.56.2.1 cherry aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1043 1.56.2.1 cherry return hyperror;
1044 1.56.2.1 cherry }
1045 1.56.2.1 cherry
1046 1.56.2.1 cherry if (!vcpu_is_up(ci)) {
1047 1.56.2.1 cherry aprint_error(": did not come up\n");
1048 1.56.2.1 cherry return -1;
1049 1.56.2.1 cherry }
1050 1.56.2.1 cherry
1051 1.2 bouyer return 0;
1052 1.2 bouyer }
1053 1.2 bouyer
1054 1.2 bouyer void
1055 1.2 bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
1056 1.2 bouyer {
1057 1.2 bouyer #if 0
1058 1.2 bouyer /*
1059 1.2 bouyer * Ensure the NVRAM reset byte contains something vaguely sane.
1060 1.2 bouyer */
1061 1.2 bouyer
1062 1.2 bouyer outb(IO_RTC, NVRAM_RESET);
1063 1.2 bouyer outb(IO_RTC+1, NVRAM_RESET_RST);
1064 1.2 bouyer #endif
1065 1.56.2.1 cherry if (vcpu_is_up(ci)) {
1066 1.56.2.1 cherry aprint_debug_dev(ci->ci_dev, "is started.\n");
1067 1.56.2.1 cherry }
1068 1.56.2.1 cherry else {
1069 1.56.2.1 cherry aprint_error_dev(ci->ci_dev, "did not start up.\n");
1070 1.56.2.1 cherry }
1071 1.56.2.1 cherry
1072 1.2 bouyer }
1073 1.2 bouyer
1074 1.2 bouyer void
1075 1.3 bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
1076 1.2 bouyer {
1077 1.43 jym #ifdef __x86_64__
1078 1.3 bouyer if (full) {
1079 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1080 1.11 cegger HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1081 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1082 1.3 bouyer }
1083 1.43 jym #endif /* __x86_64__ */
1084 1.44 jym
1085 1.44 jym if (cpu_feature[2] & CPUID_NOX)
1086 1.44 jym wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1087 1.56.2.1 cherry
1088 1.2 bouyer }
1089 1.2 bouyer
1090 1.11 cegger void
1091 1.11 cegger cpu_offline_md(void)
1092 1.11 cegger {
1093 1.11 cegger int s;
1094 1.11 cegger
1095 1.11 cegger s = splhigh();
1096 1.11 cegger #ifdef __i386__
1097 1.11 cegger npxsave_cpu(true);
1098 1.11 cegger #else
1099 1.11 cegger fpusave_cpu(true);
1100 1.11 cegger #endif
1101 1.11 cegger splx(s);
1102 1.11 cegger }
1103 1.11 cegger
1104 1.11 cegger #if 0
1105 1.11 cegger /* XXX joerg restructure and restart CPUs individually */
1106 1.11 cegger static bool
1107 1.41 dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
1108 1.11 cegger {
1109 1.11 cegger struct cpu_softc *sc = device_private(dv);
1110 1.11 cegger struct cpu_info *ci = sc->sc_info;
1111 1.11 cegger int err;
1112 1.11 cegger
1113 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1114 1.11 cegger return true;
1115 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1116 1.11 cegger return true;
1117 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1118 1.11 cegger return true;
1119 1.11 cegger
1120 1.11 cegger sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1121 1.11 cegger
1122 1.11 cegger if (sc->sc_wasonline) {
1123 1.11 cegger mutex_enter(&cpu_lock);
1124 1.29 rmind err = cpu_setstate(ci, false);
1125 1.11 cegger mutex_exit(&cpu_lock);
1126 1.11 cegger
1127 1.11 cegger if (err)
1128 1.11 cegger return false;
1129 1.11 cegger }
1130 1.11 cegger
1131 1.11 cegger return true;
1132 1.11 cegger }
1133 1.11 cegger
1134 1.11 cegger static bool
1135 1.41 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1136 1.11 cegger {
1137 1.11 cegger struct cpu_softc *sc = device_private(dv);
1138 1.11 cegger struct cpu_info *ci = sc->sc_info;
1139 1.11 cegger int err = 0;
1140 1.11 cegger
1141 1.11 cegger if (ci->ci_flags & CPUF_PRIMARY)
1142 1.11 cegger return true;
1143 1.11 cegger if (ci->ci_data.cpu_idlelwp == NULL)
1144 1.11 cegger return true;
1145 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0)
1146 1.11 cegger return true;
1147 1.11 cegger
1148 1.11 cegger if (sc->sc_wasonline) {
1149 1.11 cegger mutex_enter(&cpu_lock);
1150 1.29 rmind err = cpu_setstate(ci, true);
1151 1.11 cegger mutex_exit(&cpu_lock);
1152 1.11 cegger }
1153 1.11 cegger
1154 1.11 cegger return err == 0;
1155 1.11 cegger }
1156 1.11 cegger #endif
1157 1.11 cegger
1158 1.2 bouyer void
1159 1.2 bouyer cpu_get_tsc_freq(struct cpu_info *ci)
1160 1.2 bouyer {
1161 1.56.2.1 cherry uint32_t vcpu_tversion;
1162 1.16 cegger const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1163 1.56.2.1 cherry
1164 1.56.2.1 cherry vcpu_tversion = tinfo->version;
1165 1.56.2.1 cherry while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1166 1.56.2.1 cherry
1167 1.2 bouyer uint64_t freq = 1000000000ULL << 32;
1168 1.2 bouyer freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1169 1.2 bouyer if ( tinfo->tsc_shift < 0 )
1170 1.2 bouyer freq = freq << -tinfo->tsc_shift;
1171 1.2 bouyer else
1172 1.2 bouyer freq = freq >> tinfo->tsc_shift;
1173 1.20 ad ci->ci_data.cpu_cc_freq = freq;
1174 1.2 bouyer }
1175 1.19 joerg
1176 1.19 joerg void
1177 1.19 joerg x86_cpu_idle_xen(void)
1178 1.19 joerg {
1179 1.19 joerg struct cpu_info *ci = curcpu();
1180 1.56.2.1 cherry
1181 1.19 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1182 1.19 joerg
1183 1.19 joerg x86_disable_intr();
1184 1.19 joerg if (!__predict_false(ci->ci_want_resched)) {
1185 1.19 joerg idle_block();
1186 1.56.2.1 cherry
1187 1.19 joerg } else {
1188 1.19 joerg x86_enable_intr();
1189 1.19 joerg }
1190 1.19 joerg }
1191 1.47 jym
1192 1.47 jym /*
1193 1.47 jym * Loads pmap for the current CPU.
1194 1.47 jym */
1195 1.47 jym void
1196 1.47 jym cpu_load_pmap(struct pmap *pmap)
1197 1.47 jym {
1198 1.47 jym #ifdef i386
1199 1.47 jym #ifdef PAE
1200 1.47 jym int i, s;
1201 1.47 jym struct cpu_info *ci;
1202 1.47 jym
1203 1.47 jym s = splvm(); /* just to be safe */
1204 1.56.2.1 cherry xpq_queue_lock();
1205 1.47 jym ci = curcpu();
1206 1.47 jym paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1207 1.47 jym /* don't update the kernel L3 slot */
1208 1.47 jym for (i = 0 ; i < PDP_SIZE - 1; i++) {
1209 1.47 jym xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1210 1.47 jym xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1211 1.47 jym }
1212 1.56.2.1 cherry xpq_queue_unlock();
1213 1.47 jym splx(s);
1214 1.47 jym tlbflush();
1215 1.47 jym #else /* PAE */
1216 1.47 jym lcr3(pmap_pdirpa(pmap, 0));
1217 1.47 jym #endif /* PAE */
1218 1.47 jym #endif /* i386 */
1219 1.47 jym
1220 1.47 jym #ifdef __x86_64__
1221 1.47 jym int i, s;
1222 1.47 jym pd_entry_t *old_pgd, *new_pgd;
1223 1.47 jym paddr_t addr;
1224 1.47 jym struct cpu_info *ci;
1225 1.47 jym
1226 1.47 jym /* kernel pmap always in cr3 and should never go in user cr3 */
1227 1.47 jym if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1228 1.47 jym ci = curcpu();
1229 1.47 jym /*
1230 1.47 jym * Map user space address in kernel space and load
1231 1.47 jym * user cr3
1232 1.47 jym */
1233 1.47 jym s = splvm();
1234 1.47 jym new_pgd = pmap->pm_pdir;
1235 1.47 jym old_pgd = pmap_kernel()->pm_pdir;
1236 1.47 jym addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1237 1.56.2.1 cherry xpq_queue_lock();
1238 1.47 jym for (i = 0; i < PDIR_SLOT_PTE;
1239 1.47 jym i++, addr += sizeof(pd_entry_t)) {
1240 1.47 jym if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1241 1.47 jym xpq_queue_pte_update(addr, new_pgd[i]);
1242 1.47 jym }
1243 1.56.2.1 cherry xpq_queue_unlock();
1244 1.47 jym tlbflush();
1245 1.56.2.1 cherry xpq_queue_lock();
1246 1.47 jym xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1247 1.47 jym ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1248 1.56.2.1 cherry xpq_queue_unlock();
1249 1.47 jym splx(s);
1250 1.47 jym }
1251 1.47 jym #endif /* __x86_64__ */
1252 1.47 jym }
1253