Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.8.6.3
      1  1.8.6.1     mjf /*	$NetBSD: cpu.c,v 1.8.6.3 2009/01/17 13:28:39 mjf Exp $	*/
      2      1.2  bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3      1.2  bouyer 
      4      1.2  bouyer /*-
      5      1.2  bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  1.8.6.1     mjf  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7      1.2  bouyer  * All rights reserved.
      8      1.2  bouyer  *
      9      1.2  bouyer  * This code is derived from software contributed to The NetBSD Foundation
     10      1.2  bouyer  * by RedBack Networks Inc.
     11      1.2  bouyer  *
     12      1.2  bouyer  * Author: Bill Sommerfeld
     13      1.2  bouyer  *
     14      1.2  bouyer  * Redistribution and use in source and binary forms, with or without
     15      1.2  bouyer  * modification, are permitted provided that the following conditions
     16      1.2  bouyer  * are met:
     17      1.2  bouyer  * 1. Redistributions of source code must retain the above copyright
     18      1.2  bouyer  *    notice, this list of conditions and the following disclaimer.
     19      1.2  bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     20      1.2  bouyer  *    notice, this list of conditions and the following disclaimer in the
     21      1.2  bouyer  *    documentation and/or other materials provided with the distribution.
     22      1.2  bouyer  *
     23      1.2  bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24      1.2  bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25      1.2  bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26      1.2  bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27      1.2  bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28      1.2  bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29      1.2  bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30      1.2  bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31      1.2  bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32      1.2  bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33      1.2  bouyer  * POSSIBILITY OF SUCH DAMAGE.
     34      1.2  bouyer  */
     35      1.2  bouyer 
     36      1.2  bouyer /*
     37      1.2  bouyer  * Copyright (c) 1999 Stefan Grefen
     38      1.2  bouyer  *
     39      1.2  bouyer  * Redistribution and use in source and binary forms, with or without
     40      1.2  bouyer  * modification, are permitted provided that the following conditions
     41      1.2  bouyer  * are met:
     42      1.2  bouyer  * 1. Redistributions of source code must retain the above copyright
     43      1.2  bouyer  *    notice, this list of conditions and the following disclaimer.
     44      1.2  bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     45      1.2  bouyer  *    notice, this list of conditions and the following disclaimer in the
     46      1.2  bouyer  *    documentation and/or other materials provided with the distribution.
     47      1.2  bouyer  * 3. All advertising materials mentioning features or use of this software
     48      1.2  bouyer  *    must display the following acknowledgement:
     49      1.2  bouyer  *      This product includes software developed by the NetBSD
     50      1.2  bouyer  *      Foundation, Inc. and its contributors.
     51      1.2  bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52      1.2  bouyer  *    contributors may be used to endorse or promote products derived
     53      1.2  bouyer  *    from this software without specific prior written permission.
     54      1.2  bouyer  *
     55      1.2  bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56      1.2  bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57      1.2  bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58      1.2  bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59      1.2  bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60      1.2  bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61      1.2  bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62      1.2  bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63      1.2  bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64      1.2  bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65      1.2  bouyer  * SUCH DAMAGE.
     66      1.2  bouyer  */
     67      1.2  bouyer 
     68      1.2  bouyer #include <sys/cdefs.h>
     69  1.8.6.1     mjf __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.8.6.3 2009/01/17 13:28:39 mjf Exp $");
     70      1.2  bouyer 
     71      1.2  bouyer #include "opt_ddb.h"
     72      1.2  bouyer #include "opt_multiprocessor.h"
     73      1.2  bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     74      1.2  bouyer #include "opt_mtrr.h"
     75      1.2  bouyer #include "opt_xen.h"
     76      1.2  bouyer 
     77      1.2  bouyer #include "lapic.h"
     78      1.2  bouyer #include "ioapic.h"
     79      1.2  bouyer 
     80      1.2  bouyer #include <sys/param.h>
     81      1.2  bouyer #include <sys/proc.h>
     82      1.2  bouyer #include <sys/user.h>
     83      1.2  bouyer #include <sys/systm.h>
     84      1.2  bouyer #include <sys/device.h>
     85  1.8.6.3     mjf #include <sys/kmem.h>
     86  1.8.6.1     mjf #include <sys/cpu.h>
     87  1.8.6.1     mjf #include <sys/atomic.h>
     88      1.2  bouyer 
     89      1.2  bouyer #include <uvm/uvm_extern.h>
     90      1.2  bouyer 
     91      1.2  bouyer #include <machine/cpufunc.h>
     92      1.2  bouyer #include <machine/cpuvar.h>
     93      1.2  bouyer #include <machine/pmap.h>
     94      1.2  bouyer #include <machine/vmparam.h>
     95      1.2  bouyer #include <machine/mpbiosvar.h>
     96      1.2  bouyer #include <machine/pcb.h>
     97      1.2  bouyer #include <machine/specialreg.h>
     98      1.2  bouyer #include <machine/segments.h>
     99      1.2  bouyer #include <machine/gdt.h>
    100      1.2  bouyer #include <machine/mtrr.h>
    101      1.2  bouyer #include <machine/pio.h>
    102      1.2  bouyer 
    103      1.2  bouyer #ifdef XEN3
    104      1.2  bouyer #include <xen/vcpuvar.h>
    105      1.2  bouyer #endif
    106      1.2  bouyer 
    107      1.2  bouyer #if NLAPIC > 0
    108      1.2  bouyer #include <machine/apicvar.h>
    109      1.2  bouyer #include <machine/i82489reg.h>
    110      1.2  bouyer #include <machine/i82489var.h>
    111      1.2  bouyer #endif
    112      1.2  bouyer 
    113      1.2  bouyer #include <dev/ic/mc146818reg.h>
    114      1.2  bouyer #include <dev/isa/isareg.h>
    115      1.2  bouyer 
    116  1.8.6.1     mjf #define	X86_MAXPROCS	32
    117  1.8.6.1     mjf 
    118  1.8.6.1     mjf int     cpu_match(device_t, cfdata_t, void *);
    119  1.8.6.1     mjf void    cpu_attach(device_t, device_t, void *);
    120      1.2  bouyer #ifdef XEN3
    121  1.8.6.1     mjf int     vcpu_match(device_t, cfdata_t, void *);
    122  1.8.6.1     mjf void    vcpu_attach(device_t, device_t, void *);
    123      1.2  bouyer #endif
    124  1.8.6.1     mjf void    cpu_attach_common(device_t, device_t, void *);
    125      1.8  dogcow void	cpu_offline_md(void);
    126      1.2  bouyer 
    127      1.2  bouyer struct cpu_softc {
    128  1.8.6.1     mjf 	device_t sc_dev;		/* device tree glue */
    129      1.2  bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    130      1.2  bouyer };
    131      1.2  bouyer 
    132      1.5   joerg int mp_cpu_start(struct cpu_info *, paddr_t);
    133      1.2  bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    134      1.2  bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    135      1.2  bouyer 				      mp_cpu_start_cleanup };
    136      1.2  bouyer 
    137  1.8.6.1     mjf CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    138      1.2  bouyer     cpu_match, cpu_attach, NULL, NULL);
    139      1.2  bouyer #ifdef XEN3
    140  1.8.6.1     mjf CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    141      1.2  bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    142      1.2  bouyer #endif
    143      1.2  bouyer 
    144      1.2  bouyer /*
    145      1.2  bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    146      1.2  bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    147      1.2  bouyer  * point at it.
    148      1.2  bouyer  */
    149      1.2  bouyer #ifdef TRAPLOG
    150      1.2  bouyer #include <machine/tlog.h>
    151      1.2  bouyer struct tlog tlog_primary;
    152      1.2  bouyer #endif
    153      1.2  bouyer struct cpu_info cpu_info_primary = {
    154      1.7  bouyer 	.ci_dev = 0,
    155      1.2  bouyer 	.ci_self = &cpu_info_primary,
    156      1.4  bouyer 	.ci_idepth = -1,
    157      1.2  bouyer 	.ci_curlwp = &lwp0,
    158  1.8.6.1     mjf 	.ci_curldt = -1,
    159      1.2  bouyer #ifdef TRAPLOG
    160      1.2  bouyer 	.ci_tlog = &tlog_primary,
    161      1.2  bouyer #endif
    162      1.2  bouyer 
    163      1.2  bouyer };
    164      1.2  bouyer struct cpu_info phycpu_info_primary = {
    165      1.7  bouyer 	.ci_dev = 0,
    166      1.2  bouyer 	.ci_self = &phycpu_info_primary,
    167      1.2  bouyer };
    168      1.2  bouyer 
    169      1.2  bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    170      1.2  bouyer 
    171      1.2  bouyer static void	cpu_set_tss_gates(struct cpu_info *ci);
    172      1.2  bouyer 
    173  1.8.6.1     mjf uint32_t cpus_attached = 0;
    174  1.8.6.1     mjf uint32_t cpus_running = 0;
    175  1.8.6.1     mjf 
    176  1.8.6.1     mjf bool x86_mp_online;
    177  1.8.6.1     mjf paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    178      1.2  bouyer 
    179      1.2  bouyer struct cpu_info *phycpu_info[X86_MAXPROCS] = { &cpu_info_primary };
    180      1.2  bouyer 
    181      1.2  bouyer #ifdef MULTIPROCESSOR
    182      1.2  bouyer /*
    183      1.2  bouyer  * Array of CPU info structures.  Must be statically-allocated because
    184      1.2  bouyer  * curproc, etc. are used early.
    185      1.2  bouyer  */
    186      1.2  bouyer struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary };
    187      1.2  bouyer 
    188      1.2  bouyer void    	cpu_hatch(void *);
    189      1.2  bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    190      1.2  bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    191      1.2  bouyer static void	cpu_copy_trampoline(void);
    192      1.2  bouyer 
    193      1.2  bouyer /*
    194      1.2  bouyer  * Runs once per boot once multiprocessor goo has been detected and
    195      1.2  bouyer  * the local APIC on the boot processor has been mapped.
    196      1.2  bouyer  *
    197      1.2  bouyer  * Called from lapic_boot_init() (from mpbios_scan()).
    198      1.2  bouyer  */
    199      1.2  bouyer void
    200  1.8.6.1     mjf cpu_init_first(void)
    201      1.2  bouyer {
    202      1.2  bouyer 	int cpunum = lapic_cpu_number();
    203      1.2  bouyer 
    204      1.2  bouyer 	if (cpunum != 0) {
    205      1.2  bouyer 		cpu_info[0] = NULL;
    206      1.2  bouyer 		cpu_info[cpunum] = &cpu_info_primary;
    207      1.2  bouyer 	}
    208      1.2  bouyer 
    209      1.2  bouyer 	cpu_copy_trampoline();
    210      1.2  bouyer }
    211      1.2  bouyer #endif
    212      1.2  bouyer 
    213      1.2  bouyer int
    214  1.8.6.1     mjf cpu_match(device_t parent, cfdata_t match, void *aux)
    215      1.2  bouyer {
    216      1.2  bouyer 
    217      1.2  bouyer 	return 1;
    218      1.2  bouyer }
    219      1.2  bouyer 
    220      1.2  bouyer void
    221  1.8.6.1     mjf cpu_attach(device_t parent, device_t self, void *aux)
    222      1.2  bouyer {
    223      1.2  bouyer #ifdef XEN3
    224  1.8.6.1     mjf 	struct cpu_softc *sc = device_private(self);
    225      1.2  bouyer 	struct cpu_attach_args *caa = aux;
    226      1.2  bouyer 	struct cpu_info *ci;
    227      1.2  bouyer 	int cpunum = caa->cpu_number;
    228      1.2  bouyer 
    229  1.8.6.1     mjf 	sc->sc_dev = self;
    230  1.8.6.1     mjf 
    231      1.2  bouyer 	/*
    232      1.2  bouyer 	 * If we're an Application Processor, allocate a cpu_info
    233      1.2  bouyer 	 * structure, otherwise use the primary's.
    234      1.2  bouyer 	 */
    235      1.2  bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    236  1.8.6.3     mjf 		ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
    237  1.8.6.1     mjf 		ci->ci_curldt = -1;
    238      1.2  bouyer 		if (phycpu_info[cpunum] != NULL)
    239      1.2  bouyer 			panic("cpu at apic id %d already attached?", cpunum);
    240      1.2  bouyer 		phycpu_info[cpunum] = ci;
    241      1.2  bouyer 	} else {
    242      1.2  bouyer 		ci = &phycpu_info_primary;
    243      1.2  bouyer 		if (cpunum != 0) {
    244      1.2  bouyer 			phycpu_info[0] = NULL;
    245      1.2  bouyer 			phycpu_info[cpunum] = ci;
    246      1.2  bouyer 		}
    247      1.2  bouyer 	}
    248      1.2  bouyer 
    249      1.2  bouyer 	ci->ci_self = ci;
    250      1.2  bouyer 	sc->sc_info = ci;
    251      1.2  bouyer 
    252      1.2  bouyer 	ci->ci_dev = self;
    253  1.8.6.1     mjf 	ci->ci_cpuid = caa->cpu_number;
    254  1.8.6.1     mjf 	ci->ci_vcpu = NULL;
    255      1.2  bouyer 
    256      1.2  bouyer 	printf(": ");
    257      1.2  bouyer 	switch (caa->cpu_role) {
    258      1.2  bouyer 	case CPU_ROLE_SP:
    259      1.2  bouyer 		printf("(uniprocessor)\n");
    260      1.2  bouyer 		ci->ci_flags |= CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY;
    261      1.2  bouyer 		break;
    262      1.2  bouyer 
    263      1.2  bouyer 	case CPU_ROLE_BP:
    264      1.2  bouyer 		printf("(boot processor)\n");
    265      1.2  bouyer 		ci->ci_flags |= CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY;
    266      1.2  bouyer 		break;
    267      1.2  bouyer 
    268      1.2  bouyer 	case CPU_ROLE_AP:
    269      1.2  bouyer 		/*
    270      1.2  bouyer 		 * report on an AP
    271      1.2  bouyer 		 */
    272      1.2  bouyer 		printf("(application processor)\n");
    273      1.2  bouyer 		break;
    274      1.2  bouyer 
    275      1.2  bouyer 	default:
    276      1.2  bouyer 		panic("unknown processor type??\n");
    277      1.2  bouyer 	}
    278      1.2  bouyer 	return;
    279      1.2  bouyer #else
    280      1.2  bouyer 	cpu_attach_common(parent, self, aux);
    281      1.2  bouyer #endif
    282      1.2  bouyer }
    283      1.2  bouyer 
    284      1.2  bouyer #ifdef XEN3
    285      1.2  bouyer int
    286  1.8.6.1     mjf vcpu_match(device_t parent, cfdata_t match, void *aux)
    287      1.2  bouyer {
    288      1.2  bouyer 	struct vcpu_attach_args *vcaa = aux;
    289      1.2  bouyer 
    290      1.2  bouyer 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
    291      1.2  bouyer 		return 1;
    292      1.2  bouyer 	return 0;
    293      1.2  bouyer }
    294      1.2  bouyer 
    295      1.2  bouyer void
    296  1.8.6.1     mjf vcpu_attach(device_t parent, device_t self, void *aux)
    297      1.2  bouyer {
    298      1.2  bouyer 	struct vcpu_attach_args *vcaa = aux;
    299      1.2  bouyer 
    300      1.2  bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    301      1.2  bouyer }
    302      1.2  bouyer #endif
    303      1.2  bouyer 
    304      1.2  bouyer static void
    305      1.2  bouyer cpu_vm_init(struct cpu_info *ci)
    306      1.2  bouyer {
    307      1.2  bouyer 	int ncolors = 2, i;
    308      1.2  bouyer 
    309      1.2  bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    310      1.2  bouyer 		struct x86_cache_info *cai;
    311      1.2  bouyer 		int tcolors;
    312      1.2  bouyer 
    313      1.2  bouyer 		cai = &ci->ci_cinfo[i];
    314      1.2  bouyer 
    315      1.2  bouyer 		tcolors = atop(cai->cai_totalsize);
    316      1.2  bouyer 		switch(cai->cai_associativity) {
    317      1.2  bouyer 		case 0xff:
    318      1.2  bouyer 			tcolors = 1; /* fully associative */
    319      1.2  bouyer 			break;
    320      1.2  bouyer 		case 0:
    321      1.2  bouyer 		case 1:
    322      1.2  bouyer 			break;
    323      1.2  bouyer 		default:
    324      1.2  bouyer 			tcolors /= cai->cai_associativity;
    325      1.2  bouyer 		}
    326      1.2  bouyer 		ncolors = max(ncolors, tcolors);
    327      1.2  bouyer 	}
    328      1.2  bouyer 
    329      1.2  bouyer 	/*
    330      1.2  bouyer 	 * Knowing the size of the largest cache on this CPU, re-color
    331      1.2  bouyer 	 * our pages.
    332      1.2  bouyer 	 */
    333      1.2  bouyer 	if (ncolors <= uvmexp.ncolors)
    334      1.2  bouyer 		return;
    335  1.8.6.2     mjf 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    336      1.2  bouyer 	uvm_page_recolor(ncolors);
    337      1.2  bouyer }
    338      1.2  bouyer 
    339      1.2  bouyer void
    340  1.8.6.1     mjf cpu_attach_common(device_t parent, device_t self, void *aux)
    341      1.2  bouyer {
    342  1.8.6.1     mjf 	struct cpu_softc *sc = device_private(self);
    343      1.2  bouyer 	struct cpu_attach_args *caa = aux;
    344      1.2  bouyer 	struct cpu_info *ci;
    345  1.8.6.1     mjf 	uintptr_t ptr;
    346      1.2  bouyer 	int cpunum = caa->cpu_number;
    347  1.8.6.1     mjf 
    348  1.8.6.1     mjf 	sc->sc_dev = self;
    349      1.2  bouyer 
    350      1.2  bouyer 	/*
    351      1.2  bouyer 	 * If we're an Application Processor, allocate a cpu_info
    352      1.2  bouyer 	 * structure, otherwise use the primary's.
    353      1.2  bouyer 	 */
    354      1.2  bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    355  1.8.6.1     mjf 		if (cpunum >= X86_MAXPROCS) {
    356  1.8.6.1     mjf 			aprint_error(": apic id %d ignored, "
    357  1.8.6.1     mjf 				"please increase X86_MAXPROCS\n", cpunum);
    358  1.8.6.1     mjf 		}
    359  1.8.6.1     mjf 
    360  1.8.6.1     mjf 		aprint_naive(": Application Processor\n");
    361  1.8.6.3     mjf 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    362  1.8.6.3     mjf 		    KM_SLEEP);
    363  1.8.6.1     mjf 		ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
    364  1.8.6.1     mjf 		    ~(CACHE_LINE_SIZE - 1));
    365  1.8.6.1     mjf 		memset(ci, 0, sizeof(*ci));
    366      1.2  bouyer #if defined(MULTIPROCESSOR)
    367      1.2  bouyer 		if (cpu_info[cpunum] != NULL)
    368      1.2  bouyer 			panic("cpu at apic id %d already attached?", cpunum);
    369      1.2  bouyer 		cpu_info[cpunum] = ci;
    370      1.2  bouyer #endif
    371      1.2  bouyer #ifdef TRAPLOG
    372  1.8.6.3     mjf 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    373      1.2  bouyer #endif
    374      1.2  bouyer 	} else {
    375  1.8.6.1     mjf 		aprint_naive(": %s Processor\n",
    376  1.8.6.1     mjf 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    377      1.2  bouyer 		ci = &cpu_info_primary;
    378      1.2  bouyer #if defined(MULTIPROCESSOR)
    379      1.2  bouyer 		if (cpunum != lapic_cpu_number()) {
    380      1.2  bouyer 			panic("%s: running CPU is at apic %d"
    381      1.2  bouyer 			    " instead of at expected %d",
    382  1.8.6.1     mjf 			    device_xname(sc->sc_dev), lapic_cpu_number(), cpunum);
    383      1.2  bouyer 		}
    384      1.2  bouyer #endif
    385      1.2  bouyer 	}
    386      1.2  bouyer 
    387      1.2  bouyer 	ci->ci_self = ci;
    388      1.2  bouyer 	sc->sc_info = ci;
    389      1.2  bouyer 
    390      1.2  bouyer 	ci->ci_dev = self;
    391  1.8.6.1     mjf 	ci->ci_cpuid = cpunum;
    392  1.8.6.1     mjf 
    393  1.8.6.1     mjf 	KASSERT(HYPERVISOR_shared_info != NULL);
    394  1.8.6.1     mjf 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    395  1.8.6.1     mjf 
    396      1.2  bouyer 	ci->ci_func = caa->cpu_func;
    397      1.2  bouyer 
    398      1.2  bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    399      1.2  bouyer #if defined(MULTIPROCESSOR)
    400      1.2  bouyer 		int error;
    401      1.2  bouyer 
    402      1.2  bouyer 		error = mi_cpu_attach(ci);
    403      1.2  bouyer 		if (error != 0) {
    404      1.2  bouyer 			aprint_normal("\n");
    405  1.8.6.1     mjf 			aprint_error_dev(sc->sc_dev, "mi_cpu_attach failed with %d\n",
    406  1.8.6.1     mjf 			    error);
    407      1.2  bouyer 			return;
    408      1.2  bouyer 		}
    409      1.2  bouyer #endif
    410      1.2  bouyer 	} else {
    411      1.2  bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    412      1.2  bouyer 	}
    413      1.2  bouyer 
    414  1.8.6.1     mjf 	ci->ci_cpumask = (1 << cpu_index(ci));
    415      1.2  bouyer 	pmap_reference(pmap_kernel());
    416      1.2  bouyer 	ci->ci_pmap = pmap_kernel();
    417      1.2  bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    418      1.2  bouyer 
    419      1.2  bouyer 	/* further PCB init done later. */
    420      1.2  bouyer 
    421      1.2  bouyer 	switch (caa->cpu_role) {
    422      1.2  bouyer 	case CPU_ROLE_SP:
    423  1.8.6.1     mjf 		atomic_or_32(&ci->ci_flags,
    424  1.8.6.1     mjf 		     CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
    425      1.2  bouyer 		cpu_intr_init(ci);
    426  1.8.6.1     mjf 		cpu_get_tsc_freq(ci);
    427  1.8.6.1     mjf 		cpu_identify(ci);
    428      1.2  bouyer 		cpu_init(ci);
    429      1.2  bouyer 		cpu_set_tss_gates(ci);
    430  1.8.6.1     mjf 		pmap_cpu_init_late(ci);
    431  1.8.6.1     mjf 		x86_cpu_idle_init();
    432  1.8.6.1     mjf #if 0
    433  1.8.6.1     mjf 		x86_errata();
    434  1.8.6.1     mjf #endif
    435      1.2  bouyer 		break;
    436      1.2  bouyer 
    437      1.2  bouyer 	case CPU_ROLE_BP:
    438  1.8.6.1     mjf 		atomic_or_32(&ci->ci_flags,
    439  1.8.6.1     mjf 		    CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
    440      1.2  bouyer 		cpu_intr_init(ci);
    441  1.8.6.1     mjf 		cpu_get_tsc_freq(ci);
    442  1.8.6.1     mjf 		cpu_identify(ci);
    443      1.2  bouyer 		cpu_init(ci);
    444      1.2  bouyer 		cpu_set_tss_gates(ci);
    445  1.8.6.1     mjf 		pmap_cpu_init_late(ci);
    446  1.8.6.1     mjf 		x86_cpu_idle_init();
    447  1.8.6.1     mjf #if NLAPIC > 0
    448  1.8.6.1     mjf 		/*
    449  1.8.6.1     mjf 		 * Enable local apic
    450  1.8.6.1     mjf 		 */
    451  1.8.6.1     mjf 		lapic_enable();
    452  1.8.6.1     mjf 		lapic_set_lvt();
    453  1.8.6.1     mjf 		lapic_calibrate_timer(ci);
    454  1.8.6.1     mjf #endif
    455  1.8.6.1     mjf #if 0
    456  1.8.6.1     mjf 		x86_errata();
    457  1.8.6.1     mjf #endif
    458      1.2  bouyer 		break;
    459      1.2  bouyer 
    460      1.2  bouyer 	case CPU_ROLE_AP:
    461      1.2  bouyer 		/*
    462      1.2  bouyer 		 * report on an AP
    463      1.2  bouyer 		 */
    464      1.2  bouyer 
    465      1.2  bouyer #if defined(MULTIPROCESSOR)
    466      1.2  bouyer 		cpu_intr_init(ci);
    467      1.2  bouyer 		gdt_alloc_cpu(ci);
    468      1.2  bouyer 		cpu_set_tss_gates(ci);
    469  1.8.6.1     mjf 		pmap_cpu_init_early(ci);
    470  1.8.6.1     mjf 		pmap_cpu_init_late(ci);
    471      1.2  bouyer 		cpu_start_secondary(ci);
    472      1.2  bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    473  1.8.6.3     mjf 			struct cpu_info *tmp;
    474  1.8.6.3     mjf 
    475      1.2  bouyer 			identifycpu(ci);
    476  1.8.6.3     mjf 			tmp = cpu_info_list;
    477  1.8.6.3     mjf 			while (tmp->ci_next)
    478  1.8.6.3     mjf 				tmp = tmp->ci_next;
    479  1.8.6.3     mjf 
    480  1.8.6.3     mjf 			tmp->ci_next = ci;
    481      1.2  bouyer 		}
    482      1.2  bouyer #else
    483  1.8.6.1     mjf 		aprint_normal_dev(sc->sc_dev, "not started\n");
    484      1.2  bouyer #endif
    485      1.2  bouyer 		break;
    486      1.2  bouyer 
    487      1.2  bouyer 	default:
    488  1.8.6.1     mjf 		aprint_normal("\n");
    489      1.2  bouyer 		panic("unknown processor type??\n");
    490      1.2  bouyer 	}
    491      1.2  bouyer 	cpu_vm_init(ci);
    492      1.2  bouyer 
    493      1.2  bouyer 	cpus_attached |= (1 << ci->ci_cpuid);
    494      1.2  bouyer 
    495  1.8.6.1     mjf #if 0
    496  1.8.6.1     mjf 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    497  1.8.6.1     mjf 		aprint_error_dev(self, "couldn't establish power handler\n");
    498  1.8.6.1     mjf #endif
    499  1.8.6.1     mjf 
    500      1.2  bouyer #if defined(MULTIPROCESSOR)
    501      1.2  bouyer 	if (mp_verbose) {
    502      1.2  bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    503      1.2  bouyer 
    504  1.8.6.1     mjf 		aprint_verbose_dev(sc->sc_dev, "idle lwp at %p, idle sp at 0x%p\n",
    505  1.8.6.1     mjf 		    l,
    506  1.8.6.1     mjf #ifdef i386
    507  1.8.6.1     mjf 		    (void *)l->l_addr->u_pcb.pcb_esp
    508  1.8.6.1     mjf #else
    509  1.8.6.1     mjf 		    (void *)l->l_addr->u_pcb.pcb_rsp
    510  1.8.6.1     mjf #endif
    511  1.8.6.1     mjf 		);
    512  1.8.6.1     mjf 
    513      1.2  bouyer 	}
    514      1.2  bouyer #endif
    515      1.2  bouyer }
    516      1.2  bouyer 
    517      1.2  bouyer /*
    518      1.2  bouyer  * Initialize the processor appropriately.
    519      1.2  bouyer  */
    520      1.2  bouyer 
    521      1.2  bouyer void
    522  1.8.6.1     mjf cpu_init(struct cpu_info *ci)
    523      1.2  bouyer {
    524      1.2  bouyer 
    525      1.2  bouyer 	/*
    526      1.2  bouyer 	 * On a P6 or above, enable global TLB caching if the
    527      1.2  bouyer 	 * hardware supports it.
    528      1.2  bouyer 	 */
    529      1.2  bouyer 	if (cpu_feature & CPUID_PGE)
    530      1.2  bouyer 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    531      1.2  bouyer 
    532      1.2  bouyer #ifdef XXXMTRR
    533      1.2  bouyer 	/*
    534      1.2  bouyer 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    535      1.2  bouyer 	 */
    536      1.2  bouyer 	if (cpu_feature & CPUID_MTRR) {
    537      1.2  bouyer 		if ((ci->ci_flags & CPUF_AP) == 0)
    538      1.2  bouyer 			i686_mtrr_init_first();
    539      1.2  bouyer 		mtrr_init_cpu(ci);
    540      1.2  bouyer 	}
    541      1.2  bouyer #endif
    542      1.2  bouyer 	/*
    543      1.2  bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    544      1.2  bouyer 	 */
    545      1.2  bouyer 	if (cpu_feature & CPUID_FXSR) {
    546      1.2  bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    547      1.2  bouyer 
    548      1.2  bouyer 		/*
    549      1.2  bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    550      1.2  bouyer 		 */
    551      1.2  bouyer 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    552      1.2  bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    553      1.2  bouyer 	}
    554      1.2  bouyer 
    555      1.2  bouyer #ifdef MULTIPROCESSOR
    556  1.8.6.1     mjf 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    557  1.8.6.1     mjf 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    558      1.2  bouyer #endif
    559      1.2  bouyer }
    560      1.2  bouyer 
    561      1.2  bouyer 
    562      1.2  bouyer #ifdef MULTIPROCESSOR
    563      1.2  bouyer void
    564  1.8.6.1     mjf cpu_boot_secondary_processors(void)
    565      1.2  bouyer {
    566      1.2  bouyer 	struct cpu_info *ci;
    567      1.2  bouyer 	u_long i;
    568      1.2  bouyer 
    569  1.8.6.1     mjf 	for (i = 0; i < X86_MAXPROCS; i++) {
    570      1.2  bouyer 		ci = cpu_info[i];
    571      1.2  bouyer 		if (ci == NULL)
    572      1.2  bouyer 			continue;
    573      1.2  bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    574      1.2  bouyer 			continue;
    575      1.2  bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    576      1.2  bouyer 			continue;
    577      1.2  bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    578      1.2  bouyer 			continue;
    579      1.2  bouyer 		cpu_boot_secondary(ci);
    580      1.2  bouyer 	}
    581  1.8.6.1     mjf 
    582  1.8.6.1     mjf 	x86_mp_online = true;
    583      1.2  bouyer }
    584      1.2  bouyer 
    585      1.2  bouyer static void
    586      1.2  bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    587      1.2  bouyer {
    588      1.2  bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    589      1.2  bouyer 	struct pcb *pcb = &l->l_addr->u_pcb;
    590      1.2  bouyer 
    591      1.2  bouyer 	pcb->pcb_cr0 = rcr0();
    592      1.2  bouyer }
    593      1.2  bouyer 
    594      1.2  bouyer void
    595  1.8.6.1     mjf cpu_init_idle_lwps(void)
    596      1.2  bouyer {
    597      1.2  bouyer 	struct cpu_info *ci;
    598      1.2  bouyer 	u_long i;
    599      1.2  bouyer 
    600      1.2  bouyer 	for (i = 0; i < X86_MAXPROCS; i++) {
    601      1.2  bouyer 		ci = cpu_info[i];
    602      1.2  bouyer 		if (ci == NULL)
    603      1.2  bouyer 			continue;
    604      1.2  bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    605      1.2  bouyer 			continue;
    606      1.2  bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    607      1.2  bouyer 			continue;
    608      1.2  bouyer 		cpu_init_idle_lwp(ci);
    609      1.2  bouyer 	}
    610      1.2  bouyer }
    611      1.2  bouyer 
    612      1.2  bouyer void
    613  1.8.6.1     mjf cpu_start_secondary(struct cpu_info *ci)
    614      1.2  bouyer {
    615      1.2  bouyer 	int i;
    616      1.2  bouyer 	struct pmap *kpm = pmap_kernel();
    617  1.8.6.1     mjf 	extern uint32_t mp_pdirpa;
    618      1.2  bouyer 
    619      1.2  bouyer 	mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
    620      1.2  bouyer 
    621  1.8.6.1     mjf 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    622      1.2  bouyer 
    623  1.8.6.1     mjf 	aprint_debug_dev(ci->ci_dev, "starting\n");
    624      1.2  bouyer 
    625      1.2  bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    626  1.8.6.1     mjf 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
    627  1.8.6.1     mjf 		return;
    628      1.2  bouyer 
    629      1.2  bouyer 	/*
    630      1.2  bouyer 	 * wait for it to become ready
    631      1.2  bouyer 	 */
    632  1.8.6.1     mjf 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    633  1.8.6.1     mjf #ifdef MPDEBUG
    634  1.8.6.1     mjf 		extern int cpu_trace[3];
    635  1.8.6.1     mjf 		static int otrace[3];
    636  1.8.6.1     mjf 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    637  1.8.6.1     mjf 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    638  1.8.6.1     mjf 				cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    639  1.8.6.1     mjf 			memcpy(otrace, cpu_trace, sizeof(otrace));
    640  1.8.6.1     mjf 		}
    641  1.8.6.1     mjf #endif
    642      1.2  bouyer 		delay(10);
    643      1.2  bouyer 	}
    644  1.8.6.1     mjf 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    645  1.8.6.1     mjf 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    646      1.2  bouyer #if defined(MPDEBUG) && defined(DDB)
    647      1.2  bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    648      1.2  bouyer 		Debugger();
    649      1.2  bouyer #endif
    650      1.2  bouyer 	}
    651      1.2  bouyer 
    652      1.2  bouyer 	CPU_START_CLEANUP(ci);
    653      1.2  bouyer }
    654      1.2  bouyer 
    655      1.2  bouyer void
    656  1.8.6.1     mjf cpu_boot_secondary(struct cpu_info *ci)
    657      1.2  bouyer {
    658      1.2  bouyer 	int i;
    659      1.2  bouyer 
    660  1.8.6.1     mjf 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    661  1.8.6.1     mjf 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    662      1.2  bouyer 		delay(10);
    663      1.2  bouyer 	}
    664  1.8.6.1     mjf 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    665  1.8.6.1     mjf 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    666      1.2  bouyer #if defined(MPDEBUG) && defined(DDB)
    667      1.2  bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    668      1.2  bouyer 		Debugger();
    669      1.2  bouyer #endif
    670      1.2  bouyer 	}
    671      1.2  bouyer }
    672      1.2  bouyer 
    673      1.2  bouyer /*
    674      1.2  bouyer  * The CPU ends up here when its ready to run
    675      1.2  bouyer  * This is called from code in mptramp.s; at this point, we are running
    676      1.2  bouyer  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    677      1.2  bouyer  * this processor will enter the idle loop and start looking for work.
    678      1.2  bouyer  *
    679      1.2  bouyer  * XXX should share some of this with init386 in machdep.c
    680      1.2  bouyer  */
    681      1.2  bouyer void
    682      1.2  bouyer cpu_hatch(void *v)
    683      1.2  bouyer {
    684      1.2  bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    685  1.8.6.1     mjf 	int s, i;
    686  1.8.6.1     mjf 	uint32_t blacklist_features;
    687  1.8.6.1     mjf 
    688      1.2  bouyer #ifdef __x86_64__
    689  1.8.6.1     mjf         cpu_init_msrs(ci, true);
    690      1.2  bouyer #endif
    691      1.2  bouyer 
    692  1.8.6.1     mjf 	cpu_probe(ci);
    693  1.8.6.1     mjf 
    694      1.2  bouyer 	/* not on Xen... */
    695  1.8.6.1     mjf 	blacklist_features = ~(CPUID_PGE|CPUID_PSE|CPUID_MTRR|CPUID_FXSR|CPUID_NOX); /* XXX add CPUID_SVM */
    696      1.2  bouyer 
    697  1.8.6.1     mjf 	cpu_feature &= blacklist_features;
    698      1.2  bouyer 
    699  1.8.6.1     mjf 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    700  1.8.6.1     mjf 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    701  1.8.6.1     mjf 	while ((ci->ci_flags & CPUF_GO) == 0) {
    702  1.8.6.1     mjf 		/* Don't use delay, boot CPU may be patching the text. */
    703  1.8.6.1     mjf 		for (i = 10000; i != 0; i--)
    704  1.8.6.1     mjf 			x86_pause();
    705  1.8.6.1     mjf 	}
    706      1.2  bouyer 
    707  1.8.6.1     mjf 	/* Because the text may have been patched in x86_patch(). */
    708  1.8.6.1     mjf 	wbinvd();
    709  1.8.6.1     mjf 	x86_flush();
    710      1.2  bouyer 
    711  1.8.6.1     mjf 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    712      1.2  bouyer 
    713  1.8.6.1     mjf 	lcr3(pmap_kernel()->pm_pdirpa);
    714  1.8.6.1     mjf 	curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
    715      1.2  bouyer 	lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
    716      1.2  bouyer 	cpu_init_idt();
    717      1.2  bouyer 	gdt_init_cpu(ci);
    718  1.8.6.1     mjf 	lapic_enable();
    719  1.8.6.1     mjf 	lapic_set_lvt();
    720  1.8.6.1     mjf 	lapic_initclocks();
    721  1.8.6.1     mjf 
    722  1.8.6.1     mjf #ifdef i386
    723      1.2  bouyer 	npxinit(ci);
    724  1.8.6.1     mjf #else
    725  1.8.6.1     mjf 	fpuinit(ci);
    726  1.8.6.1     mjf #endif
    727      1.2  bouyer 
    728      1.2  bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    729  1.8.6.1     mjf 	ltr(ci->ci_tss_sel);
    730      1.2  bouyer 
    731      1.2  bouyer 	cpu_init(ci);
    732  1.8.6.1     mjf 	cpu_get_tsc_freq(ci);
    733      1.2  bouyer 
    734      1.2  bouyer 	s = splhigh();
    735  1.8.6.1     mjf #ifdef i386
    736      1.2  bouyer 	lapic_tpr = 0;
    737  1.8.6.1     mjf #else
    738  1.8.6.1     mjf 	lcr8(0);
    739  1.8.6.1     mjf #endif
    740  1.8.6.1     mjf 	x86_enable_intr();
    741      1.2  bouyer 	splx(s);
    742  1.8.6.1     mjf #if 0
    743  1.8.6.1     mjf 	x86_errata();
    744  1.8.6.1     mjf #endif
    745  1.8.6.1     mjf 
    746  1.8.6.1     mjf 	aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
    747  1.8.6.1     mjf 		(long)ci->ci_cpuid);
    748      1.2  bouyer }
    749      1.2  bouyer 
    750      1.2  bouyer #if defined(DDB)
    751      1.2  bouyer 
    752      1.2  bouyer #include <ddb/db_output.h>
    753      1.2  bouyer #include <machine/db_machdep.h>
    754      1.2  bouyer 
    755      1.2  bouyer /*
    756      1.2  bouyer  * Dump CPU information from ddb.
    757      1.2  bouyer  */
    758      1.2  bouyer void
    759      1.2  bouyer cpu_debug_dump(void)
    760      1.2  bouyer {
    761      1.2  bouyer 	struct cpu_info *ci;
    762      1.2  bouyer 	CPU_INFO_ITERATOR cii;
    763      1.2  bouyer 
    764  1.8.6.1     mjf 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    765      1.2  bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    766      1.2  bouyer 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    767      1.2  bouyer 		    ci,
    768  1.8.6.1     mjf 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    769  1.8.6.1     mjf 		    (long)ci->ci_cpuid,
    770      1.2  bouyer 		    ci->ci_flags, ci->ci_ipis,
    771      1.2  bouyer 		    ci->ci_curlwp,
    772      1.2  bouyer 		    ci->ci_fpcurlwp);
    773      1.2  bouyer 	}
    774      1.2  bouyer }
    775      1.2  bouyer #endif
    776      1.2  bouyer 
    777      1.2  bouyer static void
    778  1.8.6.1     mjf cpu_copy_trampoline(void)
    779      1.2  bouyer {
    780      1.2  bouyer 	/*
    781      1.2  bouyer 	 * Copy boot code.
    782      1.2  bouyer 	 */
    783      1.2  bouyer 	extern u_char cpu_spinup_trampoline[];
    784      1.2  bouyer 	extern u_char cpu_spinup_trampoline_end[];
    785  1.8.6.1     mjf 
    786  1.8.6.1     mjf 	vaddr_t mp_trampoline_vaddr;
    787  1.8.6.1     mjf 
    788  1.8.6.1     mjf 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    789  1.8.6.1     mjf 		UVM_KMF_VAONLY);
    790  1.8.6.1     mjf 
    791  1.8.6.1     mjf 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    792  1.8.6.1     mjf 		VM_PROT_READ | VM_PROT_WRITE);
    793  1.8.6.1     mjf 	pmap_update(pmap_kernel());
    794  1.8.6.1     mjf 	memcpy((void *)mp_trampoline_vaddr,
    795  1.8.6.1     mjf 		cpu_spinup_trampoline,
    796  1.8.6.1     mjf 		cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    797  1.8.6.1     mjf 
    798  1.8.6.1     mjf 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    799  1.8.6.1     mjf 	pmap_update(pmap_kernel());
    800  1.8.6.1     mjf 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    801      1.2  bouyer }
    802      1.2  bouyer 
    803      1.2  bouyer #endif
    804      1.2  bouyer 
    805  1.8.6.1     mjf #ifdef i386
    806  1.8.6.1     mjf #if 0
    807  1.8.6.1     mjf static void
    808  1.8.6.1     mjf tss_init(struct i386tss *tss, void *stack, void *func)
    809  1.8.6.1     mjf {
    810  1.8.6.1     mjf 	memset(tss, 0, sizeof *tss);
    811  1.8.6.1     mjf 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    812  1.8.6.1     mjf 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    813  1.8.6.1     mjf 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    814  1.8.6.1     mjf 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    815  1.8.6.1     mjf 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    816  1.8.6.1     mjf 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    817  1.8.6.1     mjf 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    818  1.8.6.1     mjf 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    819  1.8.6.1     mjf 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    820  1.8.6.1     mjf 	tss->__tss_eflags = PSL_MBO | PSL_NT;   /* XXX not needed? */
    821  1.8.6.1     mjf 	tss->__tss_eip = (int)func;
    822  1.8.6.1     mjf }
    823  1.8.6.1     mjf #endif
    824      1.2  bouyer 
    825      1.2  bouyer /* XXX */
    826      1.2  bouyer #define IDTVEC(name)	__CONCAT(X, name)
    827      1.2  bouyer typedef void (vector)(void);
    828      1.2  bouyer extern vector IDTVEC(tss_trap08);
    829      1.2  bouyer #ifdef DDB
    830      1.2  bouyer extern vector Xintrddbipi;
    831      1.2  bouyer extern int ddb_vec;
    832      1.2  bouyer #endif
    833      1.2  bouyer 
    834      1.2  bouyer static void
    835      1.2  bouyer cpu_set_tss_gates(struct cpu_info *ci)
    836      1.2  bouyer {
    837  1.8.6.1     mjf #if 0
    838  1.8.6.1     mjf 	struct segment_descriptor sd;
    839  1.8.6.1     mjf 
    840  1.8.6.1     mjf 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    841  1.8.6.1     mjf 	    UVM_KMF_WIRED);
    842  1.8.6.1     mjf 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    843  1.8.6.1     mjf 	    IDTVEC(tss_trap08));
    844  1.8.6.1     mjf 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    845  1.8.6.1     mjf 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    846  1.8.6.1     mjf 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    847  1.8.6.1     mjf 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    848  1.8.6.1     mjf 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    849  1.8.6.1     mjf #endif
    850  1.8.6.1     mjf 
    851      1.2  bouyer #if defined(DDB) && defined(MULTIPROCESSOR)
    852      1.2  bouyer 	/*
    853      1.2  bouyer 	 * Set up separate handler for the DDB IPI, so that it doesn't
    854      1.2  bouyer 	 * stomp on a possibly corrupted stack.
    855      1.2  bouyer 	 *
    856      1.2  bouyer 	 * XXX overwriting the gate set in db_machine_init.
    857      1.2  bouyer 	 * Should rearrange the code so that it's set only once.
    858      1.2  bouyer 	 */
    859      1.2  bouyer 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    860      1.2  bouyer 	    UVM_KMF_WIRED);
    861      1.6    yamt 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    862      1.2  bouyer 	    Xintrddbipi);
    863      1.2  bouyer 
    864      1.2  bouyer 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    865      1.2  bouyer 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    866      1.2  bouyer 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    867      1.2  bouyer 
    868      1.2  bouyer 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    869      1.2  bouyer 	    GSEL(GIPITSS_SEL, SEL_KPL));
    870      1.2  bouyer #endif
    871      1.2  bouyer }
    872  1.8.6.1     mjf #else
    873  1.8.6.1     mjf static void
    874  1.8.6.1     mjf cpu_set_tss_gates(struct cpu_info *ci)
    875  1.8.6.1     mjf {
    876  1.8.6.1     mjf 
    877  1.8.6.1     mjf }
    878  1.8.6.1     mjf #endif	/* i386 */
    879      1.2  bouyer 
    880      1.2  bouyer int
    881      1.5   joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
    882      1.2  bouyer {
    883      1.2  bouyer #if 0
    884      1.2  bouyer #if NLAPIC > 0
    885      1.2  bouyer 	int error;
    886      1.2  bouyer #endif
    887      1.2  bouyer 	unsigned short dwordptr[2];
    888      1.2  bouyer 
    889      1.2  bouyer 	/*
    890  1.8.6.1     mjf 	 * Bootstrap code must be addressable in real mode
    891  1.8.6.1     mjf 	 * and it must be page aligned.
    892  1.8.6.1     mjf 	 */
    893  1.8.6.1     mjf 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    894  1.8.6.1     mjf 
    895  1.8.6.1     mjf 	/*
    896      1.2  bouyer 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    897      1.2  bouyer 	 */
    898      1.2  bouyer 
    899      1.2  bouyer 	outb(IO_RTC, NVRAM_RESET);
    900      1.2  bouyer 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    901      1.2  bouyer 
    902      1.2  bouyer 	/*
    903      1.2  bouyer 	 * "and the warm reset vector (DWORD based at 40:67) to point
    904      1.2  bouyer 	 * to the AP startup code ..."
    905      1.2  bouyer 	 */
    906      1.2  bouyer 
    907      1.2  bouyer 	dwordptr[0] = 0;
    908      1.5   joerg 	dwordptr[1] = target >> 4;
    909      1.2  bouyer 
    910      1.2  bouyer 	pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE);
    911  1.8.6.1     mjf 	memcpy ((uint8_t *) 0x467, dwordptr, 4);
    912      1.2  bouyer 	pmap_kremove (0, PAGE_SIZE);
    913      1.2  bouyer 
    914      1.2  bouyer #if NLAPIC > 0
    915      1.2  bouyer 	/*
    916      1.2  bouyer 	 * ... prior to executing the following sequence:"
    917      1.2  bouyer 	 */
    918      1.2  bouyer 
    919      1.2  bouyer 	if (ci->ci_flags & CPUF_AP) {
    920  1.8.6.1     mjf 		if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
    921      1.2  bouyer 			return error;
    922      1.2  bouyer 
    923      1.2  bouyer 		delay(10000);
    924      1.2  bouyer 
    925      1.2  bouyer 		if (cpu_feature & CPUID_APIC) {
    926  1.8.6.1     mjf 			error = x86_ipi_init(ci->ci_cpuid);
    927  1.8.6.1     mjf 			if (error != 0) {
    928  1.8.6.1     mjf 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    929  1.8.6.1     mjf 						__func__);
    930  1.8.6.1     mjf 				return error;
    931  1.8.6.1     mjf 			}
    932  1.8.6.1     mjf 
    933  1.8.6.1     mjf 			delay(10000);
    934      1.2  bouyer 
    935  1.8.6.1     mjf 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    936  1.8.6.1     mjf 					LAPIC_DLMODE_STARTUP);
    937  1.8.6.1     mjf 			if (error != 0) {
    938  1.8.6.1     mjf 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    939  1.8.6.1     mjf 						__func__);
    940      1.2  bouyer 				return error;
    941  1.8.6.1     mjf 			}
    942      1.2  bouyer 			delay(200);
    943      1.2  bouyer 
    944  1.8.6.1     mjf 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    945  1.8.6.1     mjf 					LAPIC_DLMODE_STARTUP);
    946  1.8.6.1     mjf 			if (error != 0) {
    947  1.8.6.1     mjf 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
    948  1.8.6.1     mjf 						__func__);
    949      1.2  bouyer 				return error;
    950  1.8.6.1     mjf 			}
    951      1.2  bouyer 			delay(200);
    952      1.2  bouyer 		}
    953      1.2  bouyer 	}
    954      1.2  bouyer #endif
    955      1.2  bouyer #endif /* 0 */
    956      1.2  bouyer 	return 0;
    957      1.2  bouyer }
    958      1.2  bouyer 
    959      1.2  bouyer void
    960      1.2  bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
    961      1.2  bouyer {
    962      1.2  bouyer #if 0
    963      1.2  bouyer 	/*
    964      1.2  bouyer 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    965      1.2  bouyer 	 */
    966      1.2  bouyer 
    967      1.2  bouyer 	outb(IO_RTC, NVRAM_RESET);
    968      1.2  bouyer 	outb(IO_RTC+1, NVRAM_RESET_RST);
    969      1.2  bouyer #endif
    970      1.2  bouyer }
    971      1.2  bouyer 
    972      1.2  bouyer #ifdef __x86_64__
    973      1.2  bouyer 
    974      1.2  bouyer void
    975      1.3  bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
    976      1.2  bouyer {
    977      1.3  bouyer 	if (full) {
    978      1.3  bouyer 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
    979  1.8.6.1     mjf 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
    980      1.3  bouyer 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
    981      1.3  bouyer 	}
    982      1.2  bouyer }
    983      1.2  bouyer #endif	/* __x86_64__ */
    984      1.2  bouyer 
    985  1.8.6.1     mjf void
    986  1.8.6.1     mjf cpu_offline_md(void)
    987  1.8.6.1     mjf {
    988  1.8.6.1     mjf         int s;
    989  1.8.6.1     mjf 
    990  1.8.6.1     mjf         s = splhigh();
    991  1.8.6.1     mjf #ifdef __i386__
    992  1.8.6.1     mjf         npxsave_cpu(true);
    993  1.8.6.1     mjf #else
    994  1.8.6.1     mjf         fpusave_cpu(true);
    995  1.8.6.1     mjf #endif
    996  1.8.6.1     mjf         splx(s);
    997  1.8.6.1     mjf }
    998  1.8.6.1     mjf 
    999  1.8.6.1     mjf #if 0
   1000  1.8.6.1     mjf /* XXX joerg restructure and restart CPUs individually */
   1001  1.8.6.1     mjf static bool
   1002  1.8.6.1     mjf cpu_suspend(device_t dv PMF_FN_ARGS)
   1003  1.8.6.1     mjf {
   1004  1.8.6.1     mjf 	struct cpu_softc *sc = device_private(dv);
   1005  1.8.6.1     mjf 	struct cpu_info *ci = sc->sc_info;
   1006  1.8.6.1     mjf 	int err;
   1007  1.8.6.1     mjf 
   1008  1.8.6.1     mjf 	if (ci->ci_flags & CPUF_PRIMARY)
   1009  1.8.6.1     mjf 		return true;
   1010  1.8.6.1     mjf 	if (ci->ci_data.cpu_idlelwp == NULL)
   1011  1.8.6.1     mjf 		return true;
   1012  1.8.6.1     mjf 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1013  1.8.6.1     mjf 		return true;
   1014  1.8.6.1     mjf 
   1015  1.8.6.1     mjf 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1016  1.8.6.1     mjf 
   1017  1.8.6.1     mjf 	if (sc->sc_wasonline) {
   1018  1.8.6.1     mjf 		mutex_enter(&cpu_lock);
   1019  1.8.6.3     mjf 		err = cpu_setstate(ci, false);
   1020  1.8.6.1     mjf 		mutex_exit(&cpu_lock);
   1021  1.8.6.1     mjf 
   1022  1.8.6.1     mjf 		if (err)
   1023  1.8.6.1     mjf 			return false;
   1024  1.8.6.1     mjf 	}
   1025  1.8.6.1     mjf 
   1026  1.8.6.1     mjf 	return true;
   1027  1.8.6.1     mjf }
   1028  1.8.6.1     mjf 
   1029  1.8.6.1     mjf static bool
   1030  1.8.6.1     mjf cpu_resume(device_t dv PMF_FN_ARGS)
   1031  1.8.6.1     mjf {
   1032  1.8.6.1     mjf 	struct cpu_softc *sc = device_private(dv);
   1033  1.8.6.1     mjf 	struct cpu_info *ci = sc->sc_info;
   1034  1.8.6.1     mjf 	int err = 0;
   1035  1.8.6.1     mjf 
   1036  1.8.6.1     mjf 	if (ci->ci_flags & CPUF_PRIMARY)
   1037  1.8.6.1     mjf 		return true;
   1038  1.8.6.1     mjf 	if (ci->ci_data.cpu_idlelwp == NULL)
   1039  1.8.6.1     mjf 		return true;
   1040  1.8.6.1     mjf 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1041  1.8.6.1     mjf 		return true;
   1042  1.8.6.1     mjf 
   1043  1.8.6.1     mjf 	if (sc->sc_wasonline) {
   1044  1.8.6.1     mjf 		mutex_enter(&cpu_lock);
   1045  1.8.6.3     mjf 		err = cpu_setstate(ci, true);
   1046  1.8.6.1     mjf 		mutex_exit(&cpu_lock);
   1047  1.8.6.1     mjf 	}
   1048  1.8.6.1     mjf 
   1049  1.8.6.1     mjf 	return err == 0;
   1050  1.8.6.1     mjf }
   1051  1.8.6.1     mjf #endif
   1052  1.8.6.1     mjf 
   1053      1.2  bouyer void
   1054      1.2  bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1055      1.2  bouyer {
   1056      1.2  bouyer #ifdef XEN3
   1057  1.8.6.1     mjf 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1058      1.2  bouyer 	delay(1000000);
   1059      1.2  bouyer 	uint64_t freq = 1000000000ULL << 32;
   1060      1.2  bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1061      1.2  bouyer 	if ( tinfo->tsc_shift < 0 )
   1062      1.2  bouyer 		freq = freq << -tinfo->tsc_shift;
   1063      1.2  bouyer 	else
   1064      1.2  bouyer 		freq = freq >> tinfo->tsc_shift;
   1065  1.8.6.1     mjf 	ci->ci_data.cpu_cc_freq = freq;
   1066      1.2  bouyer #else
   1067  1.8.6.1     mjf 	/* Xen2 */
   1068      1.2  bouyer 	/* XXX this needs to read the shared_info of the CPU being probed.. */
   1069  1.8.6.1     mjf 	ci->ci_data.cpu_cc_freq = HYPERVISOR_shared_info->cpu_freq;
   1070      1.2  bouyer #endif /* XEN3 */
   1071      1.2  bouyer }
   1072      1.8  dogcow 
   1073      1.8  dogcow void
   1074  1.8.6.1     mjf x86_cpu_idle_xen(void)
   1075      1.8  dogcow {
   1076  1.8.6.1     mjf 	struct cpu_info *ci = curcpu();
   1077      1.8  dogcow 
   1078  1.8.6.1     mjf 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1079  1.8.6.1     mjf 
   1080  1.8.6.1     mjf 	x86_disable_intr();
   1081  1.8.6.1     mjf 	if (!__predict_false(ci->ci_want_resched)) {
   1082  1.8.6.1     mjf 		idle_block();
   1083  1.8.6.1     mjf 	} else {
   1084  1.8.6.1     mjf 		x86_enable_intr();
   1085  1.8.6.1     mjf 	}
   1086      1.8  dogcow }
   1087