cpu.c revision 1.17.2.7 1 /* $NetBSD: cpu.c,v 1.17.2.7 2010/10/09 03:31:59 yamt Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.17.2.7 2010/10/09 03:31:59 yamt Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <machine/cpufunc.h>
92 #include <machine/cpuvar.h>
93 #include <machine/pmap.h>
94 #include <machine/vmparam.h>
95 #include <machine/mpbiosvar.h>
96 #include <machine/pcb.h>
97 #include <machine/specialreg.h>
98 #include <machine/segments.h>
99 #include <machine/gdt.h>
100 #include <machine/mtrr.h>
101 #include <machine/pio.h>
102
103 #include <xen/vcpuvar.h>
104
105 #if NLAPIC > 0
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109 #endif
110
111 #include <dev/ic/mc146818reg.h>
112 #include <dev/isa/isareg.h>
113
114 #if MAXCPUS > 32
115 #error cpu_info contains 32bit bitmasks
116 #endif
117
118 int cpu_match(device_t, cfdata_t, void *);
119 void cpu_attach(device_t, device_t, void *);
120 int vcpu_match(device_t, cfdata_t, void *);
121 void vcpu_attach(device_t, device_t, void *);
122 void cpu_attach_common(device_t, device_t, void *);
123 void cpu_offline_md(void);
124
125 struct cpu_softc {
126 device_t sc_dev; /* device tree glue */
127 struct cpu_info *sc_info; /* pointer to CPU info */
128 bool sc_wasonline;
129 };
130
131 int mp_cpu_start(struct cpu_info *, paddr_t);
132 void mp_cpu_start_cleanup(struct cpu_info *);
133 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
134 mp_cpu_start_cleanup };
135
136 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
137 cpu_match, cpu_attach, NULL, NULL);
138 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
139 vcpu_match, vcpu_attach, NULL, NULL);
140
141 /*
142 * Statically-allocated CPU info for the primary CPU (or the only
143 * CPU, on uniprocessors). The CPU info list is initialized to
144 * point at it.
145 */
146 #ifdef TRAPLOG
147 #include <machine/tlog.h>
148 struct tlog tlog_primary;
149 #endif
150 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 .ci_dev = 0,
152 .ci_self = &cpu_info_primary,
153 .ci_idepth = -1,
154 .ci_curlwp = &lwp0,
155 .ci_curldt = -1,
156 #ifdef TRAPLOG
157 .ci_tlog = &tlog_primary,
158 #endif
159
160 };
161 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
162 .ci_dev = 0,
163 .ci_self = &phycpu_info_primary,
164 };
165
166 struct cpu_info *cpu_info_list = &cpu_info_primary;
167 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
168
169 static void cpu_set_tss_gates(struct cpu_info *ci);
170
171 uint32_t cpus_attached = 0;
172 uint32_t cpus_running = 0;
173
174 uint32_t phycpus_attached = 0;
175 uint32_t phycpus_running = 0;
176
177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 * [0] basic features %edx
179 * [1] basic features %ecx
180 * [2] extended features %edx
181 * [3] extended features %ecx
182 * [4] VIA padlock features
183 */
184
185 bool x86_mp_online;
186 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
187
188 #if defined(MULTIPROCESSOR)
189 void cpu_hatch(void *);
190 static void cpu_boot_secondary(struct cpu_info *ci);
191 static void cpu_start_secondary(struct cpu_info *ci);
192 static void cpu_copy_trampoline(void);
193
194 /*
195 * Runs once per boot once multiprocessor goo has been detected and
196 * the local APIC on the boot processor has been mapped.
197 *
198 * Called from lapic_boot_init() (from mpbios_scan()).
199 */
200 void
201 cpu_init_first(void)
202 {
203
204 cpu_info_primary.ci_cpuid = lapic_cpu_number();
205 cpu_copy_trampoline();
206 }
207 #endif /* MULTIPROCESSOR */
208
209 int
210 cpu_match(device_t parent, cfdata_t match, void *aux)
211 {
212
213 return 1;
214 }
215
216 void
217 cpu_attach(device_t parent, device_t self, void *aux)
218 {
219 struct cpu_softc *sc = device_private(self);
220 struct cpu_attach_args *caa = aux;
221 struct cpu_info *ci;
222 uintptr_t ptr;
223 static bool again = false;
224
225 sc->sc_dev = self;
226
227 if (phycpus_attached == ~0) {
228 aprint_error(": increase MAXCPUS\n");
229 return;
230 }
231
232 /*
233 * If we're an Application Processor, allocate a cpu_info
234 * structure, otherwise use the primary's.
235 */
236 if (caa->cpu_role == CPU_ROLE_AP) {
237 if ((boothowto & RB_MD1) != 0) {
238 aprint_error(": multiprocessor boot disabled\n");
239 if (!pmf_device_register(self, NULL, NULL))
240 aprint_error_dev(self,
241 "couldn't establish power handler\n");
242 return;
243 }
244 aprint_naive(": Application Processor\n");
245 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
246 KM_SLEEP);
247 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
248 ci->ci_curldt = -1;
249 } else {
250 aprint_naive(": %s Processor\n",
251 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
252 ci = &phycpu_info_primary;
253 }
254
255 ci->ci_self = ci;
256 sc->sc_info = ci;
257
258 ci->ci_dev = self;
259 ci->ci_cpuid = caa->cpu_number;
260 ci->ci_vcpu = NULL;
261
262 /*
263 * Boot processor may not be attached first, but the below
264 * must be done to allow booting other processors.
265 */
266 if (!again) {
267 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
268 /* Basic init */
269 again = true;
270 }
271
272 printf(": ");
273 switch (caa->cpu_role) {
274 case CPU_ROLE_SP:
275 printf("(uniprocessor)\n");
276 atomic_or_32(&ci->ci_flags, CPUF_SP);
277 break;
278
279 case CPU_ROLE_BP:
280 printf("(boot processor)\n");
281 atomic_or_32(&ci->ci_flags, CPUF_BSP);
282 break;
283
284 case CPU_ROLE_AP:
285 /*
286 * report on an AP
287 */
288 printf("(application processor)\n");
289 if (ci->ci_flags & CPUF_PRESENT) {
290 struct cpu_info *tmp;
291
292 tmp = phycpu_info_list;
293 while (tmp->ci_next)
294 tmp = tmp->ci_next;
295
296 tmp->ci_next = ci;
297 }
298 break;
299
300 default:
301 panic("unknown processor type??\n");
302 }
303
304 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
305
306 return;
307 }
308
309 int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 struct vcpu_attach_args *vcaa = aux;
313
314 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
315 return 1;
316 return 0;
317 }
318
319 void
320 vcpu_attach(device_t parent, device_t self, void *aux)
321 {
322 struct vcpu_attach_args *vcaa = aux;
323
324 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
325 }
326
327 static void
328 cpu_vm_init(struct cpu_info *ci)
329 {
330 int ncolors = 2, i;
331
332 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
333 struct x86_cache_info *cai;
334 int tcolors;
335
336 cai = &ci->ci_cinfo[i];
337
338 tcolors = atop(cai->cai_totalsize);
339 switch(cai->cai_associativity) {
340 case 0xff:
341 tcolors = 1; /* fully associative */
342 break;
343 case 0:
344 case 1:
345 break;
346 default:
347 tcolors /= cai->cai_associativity;
348 }
349 ncolors = max(ncolors, tcolors);
350 }
351
352 /*
353 * Knowing the size of the largest cache on this CPU, re-color
354 * our pages.
355 */
356 if (ncolors <= uvmexp.ncolors)
357 return;
358 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
359 uvm_page_recolor(ncolors);
360 }
361
362 void
363 cpu_attach_common(device_t parent, device_t self, void *aux)
364 {
365 struct cpu_softc *sc = device_private(self);
366 struct cpu_attach_args *caa = aux;
367 struct cpu_info *ci;
368 uintptr_t ptr;
369 int cpunum = caa->cpu_number;
370 static bool again = false;
371
372 sc->sc_dev = self;
373
374 /*
375 * If we're an Application Processor, allocate a cpu_info
376 * structure, otherwise use the primary's.
377 */
378 if (caa->cpu_role == CPU_ROLE_AP) {
379 aprint_naive(": Application Processor\n");
380 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
381 KM_SLEEP);
382 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
383 memset(ci, 0, sizeof(*ci));
384 #ifdef TRAPLOG
385 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
386 #endif
387 } else {
388 aprint_naive(": %s Processor\n",
389 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
390 ci = &cpu_info_primary;
391 #if NLAPIC > 0
392 if (cpunum != lapic_cpu_number()) {
393 /* XXX should be done earlier */
394 uint32_t reg;
395 aprint_verbose("\n");
396 aprint_verbose_dev(self, "running CPU at apic %d"
397 " instead of at expected %d", lapic_cpu_number(),
398 cpunum);
399 reg = i82489_readreg(LAPIC_ID);
400 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
401 (cpunum << LAPIC_ID_SHIFT));
402 }
403 if (cpunum != lapic_cpu_number()) {
404 aprint_error_dev(self, "unable to reset apic id\n");
405 }
406 #endif
407 }
408
409 ci->ci_self = ci;
410 sc->sc_info = ci;
411 ci->ci_dev = self;
412 ci->ci_cpuid = cpunum;
413
414 KASSERT(HYPERVISOR_shared_info != NULL);
415 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
416
417 ci->ci_func = caa->cpu_func;
418
419 /* Must be called before mi_cpu_attach(). */
420 cpu_vm_init(ci);
421
422 if (caa->cpu_role == CPU_ROLE_AP) {
423 int error;
424
425 error = mi_cpu_attach(ci);
426 if (error != 0) {
427 aprint_normal("\n");
428 aprint_error_dev(self,
429 "mi_cpu_attach failed with %d\n", error);
430 return;
431 }
432 } else {
433 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
434 }
435
436 ci->ci_cpumask = (1 << cpu_index(ci));
437 pmap_reference(pmap_kernel());
438 ci->ci_pmap = pmap_kernel();
439 ci->ci_tlbstate = TLBSTATE_STALE;
440
441 /*
442 * Boot processor may not be attached first, but the below
443 * must be done to allow booting other processors.
444 */
445 if (!again) {
446 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
447 /* Basic init. */
448 cpu_intr_init(ci);
449 cpu_get_tsc_freq(ci);
450 cpu_init(ci);
451 cpu_set_tss_gates(ci);
452 pmap_cpu_init_late(ci);
453 #if NLAPIC > 0
454 if (caa->cpu_role != CPU_ROLE_SP) {
455 /* Enable lapic. */
456 lapic_enable();
457 lapic_set_lvt();
458 lapic_calibrate_timer();
459 }
460 #endif
461 /* Make sure DELAY() is initialized. */
462 DELAY(1);
463 again = true;
464 }
465
466 /* further PCB init done later. */
467
468 switch (caa->cpu_role) {
469 case CPU_ROLE_SP:
470 atomic_or_32(&ci->ci_flags, CPUF_SP);
471 cpu_identify(ci);
472 #if 0
473 x86_errata();
474 #endif
475 x86_cpu_idle_init();
476 break;
477
478 case CPU_ROLE_BP:
479 atomic_or_32(&ci->ci_flags, CPUF_BSP);
480 cpu_identify(ci);
481 cpu_init(ci);
482 #if 0
483 x86_errata();
484 #endif
485 x86_cpu_idle_init();
486 break;
487
488 case CPU_ROLE_AP:
489 /*
490 * report on an AP
491 */
492
493 #if defined(MULTIPROCESSOR)
494 cpu_intr_init(ci);
495 gdt_alloc_cpu(ci);
496 cpu_set_tss_gates(ci);
497 pmap_cpu_init_early(ci);
498 pmap_cpu_init_late(ci);
499 cpu_start_secondary(ci);
500 if (ci->ci_flags & CPUF_PRESENT) {
501 struct cpu_info *tmp;
502
503 identifycpu(ci);
504 tmp = cpu_info_list;
505 while (tmp->ci_next)
506 tmp = tmp->ci_next;
507
508 tmp->ci_next = ci;
509 }
510 #else
511 aprint_error_dev(self, "not started\n");
512 #endif
513 break;
514
515 default:
516 aprint_normal("\n");
517 panic("unknown processor type??\n");
518 }
519
520 pat_init(ci);
521 atomic_or_32(&cpus_attached, ci->ci_cpumask);
522
523 #if 0
524 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
525 aprint_error_dev(self, "couldn't establish power handler\n");
526 #endif
527
528 #if defined(MULTIPROCESSOR)
529 if (mp_verbose) {
530 struct lwp *l = ci->ci_data.cpu_idlelwp;
531 struct pcb *pcb = lwp_getpcb(l);
532
533 aprint_verbose_dev(self,
534 "idle lwp at %p, idle sp at 0x%p\n",
535 l,
536 #ifdef i386
537 (void *)pcb->pcb_esp
538 #else
539 (void *)pcb->pcb_rsp
540 #endif
541 );
542
543 }
544 #endif
545 }
546
547 /*
548 * Initialize the processor appropriately.
549 */
550
551 void
552 cpu_init(struct cpu_info *ci)
553 {
554
555 /*
556 * On a P6 or above, enable global TLB caching if the
557 * hardware supports it.
558 */
559 if (cpu_feature[0] & CPUID_PGE)
560 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
561
562 #ifdef XXXMTRR
563 /*
564 * On a P6 or above, initialize MTRR's if the hardware supports them.
565 */
566 if (cpu_feature[0] & CPUID_MTRR) {
567 if ((ci->ci_flags & CPUF_AP) == 0)
568 i686_mtrr_init_first();
569 mtrr_init_cpu(ci);
570 }
571 #endif
572 /*
573 * If we have FXSAVE/FXRESTOR, use them.
574 */
575 if (cpu_feature[0] & CPUID_FXSR) {
576 lcr4(rcr4() | CR4_OSFXSR);
577
578 /*
579 * If we have SSE/SSE2, enable XMM exceptions.
580 */
581 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
582 lcr4(rcr4() | CR4_OSXMMEXCPT);
583 }
584
585 #ifdef __x86_64__
586 /* No user PGD mapped for this CPU yet */
587 ci->ci_xen_current_user_pgd = 0;
588 #endif
589
590 atomic_or_32(&cpus_running, ci->ci_cpumask);
591 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
592 }
593
594
595 #ifdef MULTIPROCESSOR
596 void
597 cpu_boot_secondary_processors(void)
598 {
599 struct cpu_info *ci;
600 u_long i;
601
602 for (i = 0; i < maxcpus; i++) {
603 ci = cpu_lookup(i);
604 if (ci == NULL)
605 continue;
606 if (ci->ci_data.cpu_idlelwp == NULL)
607 continue;
608 if ((ci->ci_flags & CPUF_PRESENT) == 0)
609 continue;
610 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
611 continue;
612 cpu_boot_secondary(ci);
613 }
614
615 x86_mp_online = true;
616 }
617
618 static void
619 cpu_init_idle_lwp(struct cpu_info *ci)
620 {
621 struct lwp *l = ci->ci_data.cpu_idlelwp;
622 struct pcb *pcb = lwp_getpcb(l);
623
624 pcb->pcb_cr0 = rcr0();
625 }
626
627 void
628 cpu_init_idle_lwps(void)
629 {
630 struct cpu_info *ci;
631 u_long i;
632
633 for (i = 0; i < maxcpus; i++) {
634 ci = cpu_lookup(i);
635 if (ci == NULL)
636 continue;
637 if (ci->ci_data.cpu_idlelwp == NULL)
638 continue;
639 if ((ci->ci_flags & CPUF_PRESENT) == 0)
640 continue;
641 cpu_init_idle_lwp(ci);
642 }
643 }
644
645 void
646 cpu_start_secondary(struct cpu_info *ci)
647 {
648 int i;
649 struct pmap *kpm = pmap_kernel();
650 extern uint32_t mp_pdirpa;
651
652 mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
653
654 atomic_or_32(&ci->ci_flags, CPUF_AP);
655
656 aprint_debug_dev(ci->ci_dev, "starting\n");
657
658 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
659 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
660 return;
661
662 /*
663 * wait for it to become ready
664 */
665 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
666 #ifdef MPDEBUG
667 extern int cpu_trace[3];
668 static int otrace[3];
669 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
670 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
671 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
672 memcpy(otrace, cpu_trace, sizeof(otrace));
673 }
674 #endif
675 delay(10);
676 }
677 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
678 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
679 #if defined(MPDEBUG) && defined(DDB)
680 printf("dropping into debugger; continue from here to resume boot\n");
681 Debugger();
682 #endif
683 }
684
685 CPU_START_CLEANUP(ci);
686 }
687
688 void
689 cpu_boot_secondary(struct cpu_info *ci)
690 {
691 int i;
692
693 atomic_or_32(&ci->ci_flags, CPUF_GO);
694 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
695 delay(10);
696 }
697 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
698 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
699 #if defined(MPDEBUG) && defined(DDB)
700 printf("dropping into debugger; continue from here to resume boot\n");
701 Debugger();
702 #endif
703 }
704 }
705
706 /*
707 * The CPU ends up here when its ready to run
708 * This is called from code in mptramp.s; at this point, we are running
709 * in the idle pcb/idle stack of the new CPU. When this function returns,
710 * this processor will enter the idle loop and start looking for work.
711 *
712 * XXX should share some of this with init386 in machdep.c
713 */
714 void
715 cpu_hatch(void *v)
716 {
717 struct cpu_info *ci = (struct cpu_info *)v;
718 struct pcb *pcb;
719 int s, i;
720
721 cpu_probe(ci);
722
723 cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
724 cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
725
726 cpu_init_msrs(ci, true);
727
728 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
729 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
730 while ((ci->ci_flags & CPUF_GO) == 0) {
731 /* Don't use delay, boot CPU may be patching the text. */
732 for (i = 10000; i != 0; i--)
733 x86_pause();
734 }
735
736 /* Because the text may have been patched in x86_patch(). */
737 wbinvd();
738 x86_flush();
739
740 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
741
742 pcb = lwp_getpcb(curlwp);
743 lcr3(pmap_kernel()->pm_pdirpa);
744 pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
745 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
746 lcr0(pcb->pcb_cr0);
747
748 cpu_init_idt();
749 gdt_init_cpu(ci);
750 lapic_enable();
751 lapic_set_lvt();
752 lapic_initclocks();
753
754 #ifdef i386
755 npxinit(ci);
756 #else
757 fpuinit(ci);
758 #endif
759
760 lldt(GSEL(GLDT_SEL, SEL_KPL));
761 ltr(ci->ci_tss_sel);
762
763 cpu_init(ci);
764 cpu_get_tsc_freq(ci);
765
766 s = splhigh();
767 #ifdef i386
768 lapic_tpr = 0;
769 #else
770 lcr8(0);
771 #endif
772 x86_enable_intr();
773 splx(s);
774 #if 0
775 x86_errata();
776 #endif
777
778 aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
779 (long)ci->ci_cpuid);
780 }
781
782 #if defined(DDB)
783
784 #include <ddb/db_output.h>
785 #include <machine/db_machdep.h>
786
787 /*
788 * Dump CPU information from ddb.
789 */
790 void
791 cpu_debug_dump(void)
792 {
793 struct cpu_info *ci;
794 CPU_INFO_ITERATOR cii;
795
796 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
797 for (CPU_INFO_FOREACH(cii, ci)) {
798 db_printf("%p %s %ld %x %x %10p %10p\n",
799 ci,
800 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
801 (long)ci->ci_cpuid,
802 ci->ci_flags, ci->ci_ipis,
803 ci->ci_curlwp,
804 ci->ci_fpcurlwp);
805 }
806 }
807 #endif /* DDB */
808
809 static void
810 cpu_copy_trampoline(void)
811 {
812 /*
813 * Copy boot code.
814 */
815 extern u_char cpu_spinup_trampoline[];
816 extern u_char cpu_spinup_trampoline_end[];
817
818 vaddr_t mp_trampoline_vaddr;
819
820 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
821 UVM_KMF_VAONLY);
822
823 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
824 VM_PROT_READ | VM_PROT_WRITE, 0);
825 pmap_update(pmap_kernel());
826 memcpy((void *)mp_trampoline_vaddr,
827 cpu_spinup_trampoline,
828 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
829
830 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
831 pmap_update(pmap_kernel());
832 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
833 }
834
835 #endif /* MULTIPROCESSOR */
836
837 #ifdef i386
838 #if 0
839 static void
840 tss_init(struct i386tss *tss, void *stack, void *func)
841 {
842 memset(tss, 0, sizeof *tss);
843 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
844 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
845 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
846 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
847 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
848 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
849 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
850 tss->tss_esp = (int)((char *)stack + USPACE - 16);
851 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
852 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
853 tss->__tss_eip = (int)func;
854 }
855 #endif
856
857 /* XXX */
858 #define IDTVEC(name) __CONCAT(X, name)
859 typedef void (vector)(void);
860 extern vector IDTVEC(tss_trap08);
861 #ifdef DDB
862 extern vector Xintrddbipi;
863 extern int ddb_vec;
864 #endif
865
866 static void
867 cpu_set_tss_gates(struct cpu_info *ci)
868 {
869 #if 0
870 struct segment_descriptor sd;
871
872 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
873 UVM_KMF_WIRED);
874 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
875 IDTVEC(tss_trap08));
876 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
877 SDT_SYS386TSS, SEL_KPL, 0, 0);
878 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
879 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
880 GSEL(GTRAPTSS_SEL, SEL_KPL));
881 #endif
882
883 #if defined(DDB) && defined(MULTIPROCESSOR)
884 /*
885 * Set up separate handler for the DDB IPI, so that it doesn't
886 * stomp on a possibly corrupted stack.
887 *
888 * XXX overwriting the gate set in db_machine_init.
889 * Should rearrange the code so that it's set only once.
890 */
891 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
892 UVM_KMF_WIRED);
893 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
894 Xintrddbipi);
895
896 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
897 SDT_SYS386TSS, SEL_KPL, 0, 0);
898 ci->ci_gdt[GIPITSS_SEL].sd = sd;
899
900 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
901 GSEL(GIPITSS_SEL, SEL_KPL));
902 #endif
903 }
904 #else
905 static void
906 cpu_set_tss_gates(struct cpu_info *ci)
907 {
908
909 }
910 #endif /* i386 */
911
912 int
913 mp_cpu_start(struct cpu_info *ci, paddr_t target)
914 {
915 #if 0
916 #if NLAPIC > 0
917 int error;
918 #endif
919 unsigned short dwordptr[2];
920
921 /*
922 * Bootstrap code must be addressable in real mode
923 * and it must be page aligned.
924 */
925 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
926
927 /*
928 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
929 */
930
931 outb(IO_RTC, NVRAM_RESET);
932 outb(IO_RTC+1, NVRAM_RESET_JUMP);
933
934 /*
935 * "and the warm reset vector (DWORD based at 40:67) to point
936 * to the AP startup code ..."
937 */
938
939 dwordptr[0] = 0;
940 dwordptr[1] = target >> 4;
941
942 pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
943 pmap_update(pmap_kernel());
944
945 memcpy ((uint8_t *) 0x467, dwordptr, 4);
946
947 pmap_kremove (0, PAGE_SIZE);
948 pmap_update(pmap_kernel());
949
950 #if NLAPIC > 0
951 /*
952 * ... prior to executing the following sequence:"
953 */
954
955 if (ci->ci_flags & CPUF_AP) {
956 if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
957 return error;
958
959 delay(10000);
960
961 if (cpu_feature & CPUID_APIC) {
962 error = x86_ipi_init(ci->ci_cpuid);
963 if (error != 0) {
964 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
965 __func__);
966 return error;
967 }
968
969 delay(10000);
970
971 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
972 LAPIC_DLMODE_STARTUP);
973 if (error != 0) {
974 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
975 __func__);
976 return error;
977 }
978 delay(200);
979
980 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
981 LAPIC_DLMODE_STARTUP);
982 if (error != 0) {
983 aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
984 __func__);
985 return error;
986 }
987 delay(200);
988 }
989 }
990 #endif
991 #endif /* 0 */
992 return 0;
993 }
994
995 void
996 mp_cpu_start_cleanup(struct cpu_info *ci)
997 {
998 #if 0
999 /*
1000 * Ensure the NVRAM reset byte contains something vaguely sane.
1001 */
1002
1003 outb(IO_RTC, NVRAM_RESET);
1004 outb(IO_RTC+1, NVRAM_RESET_RST);
1005 #endif
1006 }
1007
1008 void
1009 cpu_init_msrs(struct cpu_info *ci, bool full)
1010 {
1011 #ifdef __x86_64__
1012 if (full) {
1013 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1014 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1015 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1016 }
1017 #endif /* __x86_64__ */
1018
1019 if (cpu_feature[2] & CPUID_NOX)
1020 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1021 }
1022
1023 void
1024 cpu_offline_md(void)
1025 {
1026 int s;
1027
1028 s = splhigh();
1029 #ifdef __i386__
1030 npxsave_cpu(true);
1031 #else
1032 fpusave_cpu(true);
1033 #endif
1034 splx(s);
1035 }
1036
1037 #if 0
1038 /* XXX joerg restructure and restart CPUs individually */
1039 static bool
1040 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1041 {
1042 struct cpu_softc *sc = device_private(dv);
1043 struct cpu_info *ci = sc->sc_info;
1044 int err;
1045
1046 if (ci->ci_flags & CPUF_PRIMARY)
1047 return true;
1048 if (ci->ci_data.cpu_idlelwp == NULL)
1049 return true;
1050 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1051 return true;
1052
1053 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1054
1055 if (sc->sc_wasonline) {
1056 mutex_enter(&cpu_lock);
1057 err = cpu_setstate(ci, false);
1058 mutex_exit(&cpu_lock);
1059
1060 if (err)
1061 return false;
1062 }
1063
1064 return true;
1065 }
1066
1067 static bool
1068 cpu_resume(device_t dv, const pmf_qual_t *qual)
1069 {
1070 struct cpu_softc *sc = device_private(dv);
1071 struct cpu_info *ci = sc->sc_info;
1072 int err = 0;
1073
1074 if (ci->ci_flags & CPUF_PRIMARY)
1075 return true;
1076 if (ci->ci_data.cpu_idlelwp == NULL)
1077 return true;
1078 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1079 return true;
1080
1081 if (sc->sc_wasonline) {
1082 mutex_enter(&cpu_lock);
1083 err = cpu_setstate(ci, true);
1084 mutex_exit(&cpu_lock);
1085 }
1086
1087 return err == 0;
1088 }
1089 #endif
1090
1091 void
1092 cpu_get_tsc_freq(struct cpu_info *ci)
1093 {
1094 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1095 delay(1000000);
1096 uint64_t freq = 1000000000ULL << 32;
1097 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1098 if ( tinfo->tsc_shift < 0 )
1099 freq = freq << -tinfo->tsc_shift;
1100 else
1101 freq = freq >> tinfo->tsc_shift;
1102 ci->ci_data.cpu_cc_freq = freq;
1103 }
1104
1105 void
1106 x86_cpu_idle_xen(void)
1107 {
1108 struct cpu_info *ci = curcpu();
1109
1110 KASSERT(ci->ci_ilevel == IPL_NONE);
1111
1112 x86_disable_intr();
1113 if (!__predict_false(ci->ci_want_resched)) {
1114 idle_block();
1115 } else {
1116 x86_enable_intr();
1117 }
1118 }
1119
1120 /*
1121 * Loads pmap for the current CPU.
1122 */
1123 void
1124 cpu_load_pmap(struct pmap *pmap)
1125 {
1126 #ifdef i386
1127 #ifdef PAE
1128 int i, s;
1129 struct cpu_info *ci;
1130
1131 s = splvm(); /* just to be safe */
1132 ci = curcpu();
1133 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1134 /* don't update the kernel L3 slot */
1135 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1136 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1137 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1138 }
1139 splx(s);
1140 tlbflush();
1141 #else /* PAE */
1142 lcr3(pmap_pdirpa(pmap, 0));
1143 #endif /* PAE */
1144 #endif /* i386 */
1145
1146 #ifdef __x86_64__
1147 int i, s;
1148 pd_entry_t *old_pgd, *new_pgd;
1149 paddr_t addr;
1150 struct cpu_info *ci;
1151
1152 /* kernel pmap always in cr3 and should never go in user cr3 */
1153 if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1154 ci = curcpu();
1155 /*
1156 * Map user space address in kernel space and load
1157 * user cr3
1158 */
1159 s = splvm();
1160 new_pgd = pmap->pm_pdir;
1161 old_pgd = pmap_kernel()->pm_pdir;
1162 addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1163 for (i = 0; i < PDIR_SLOT_PTE;
1164 i++, addr += sizeof(pd_entry_t)) {
1165 if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1166 xpq_queue_pte_update(addr, new_pgd[i]);
1167 }
1168 tlbflush();
1169 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1170 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1171 splx(s);
1172 }
1173 #endif /* __x86_64__ */
1174 }
1175