cpu.c revision 1.22 1 /* $NetBSD: cpu.c,v 1.22 2008/05/11 15:32:20 ad Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.22 2008/05/11 15:32:20 ad Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/user.h>
83 #include <sys/systm.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/cpu.h>
87 #include <sys/atomic.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <machine/cpufunc.h>
92 #include <machine/cpuvar.h>
93 #include <machine/pmap.h>
94 #include <machine/vmparam.h>
95 #include <machine/mpbiosvar.h>
96 #include <machine/pcb.h>
97 #include <machine/specialreg.h>
98 #include <machine/segments.h>
99 #include <machine/gdt.h>
100 #include <machine/mtrr.h>
101 #include <machine/pio.h>
102
103 #ifdef XEN3
104 #include <xen/vcpuvar.h>
105 #endif
106
107 #if NLAPIC > 0
108 #include <machine/apicvar.h>
109 #include <machine/i82489reg.h>
110 #include <machine/i82489var.h>
111 #endif
112
113 #include <dev/ic/mc146818reg.h>
114 #include <dev/isa/isareg.h>
115
116 int cpu_match(device_t, cfdata_t, void *);
117 void cpu_attach(device_t, device_t, void *);
118 #ifdef XEN3
119 int vcpu_match(device_t, cfdata_t, void *);
120 void vcpu_attach(device_t, device_t, void *);
121 #endif
122 void cpu_attach_common(device_t, device_t, void *);
123 void cpu_offline_md(void);
124
125 struct cpu_softc {
126 device_t sc_dev; /* device tree glue */
127 struct cpu_info *sc_info; /* pointer to CPU info */
128 };
129
130 int mp_cpu_start(struct cpu_info *, paddr_t);
131 void mp_cpu_start_cleanup(struct cpu_info *);
132 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
133 mp_cpu_start_cleanup };
134
135 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
136 cpu_match, cpu_attach, NULL, NULL);
137 #ifdef XEN3
138 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
139 vcpu_match, vcpu_attach, NULL, NULL);
140 #endif
141
142 /*
143 * Statically-allocated CPU info for the primary CPU (or the only
144 * CPU, on uniprocessors). The CPU info list is initialized to
145 * point at it.
146 */
147 #ifdef TRAPLOG
148 #include <machine/tlog.h>
149 struct tlog tlog_primary;
150 #endif
151 struct cpu_info cpu_info_primary = {
152 .ci_dev = 0,
153 .ci_self = &cpu_info_primary,
154 .ci_idepth = -1,
155 .ci_curlwp = &lwp0,
156 #ifdef TRAPLOG
157 .ci_tlog = &tlog_primary,
158 #endif
159
160 };
161 struct cpu_info phycpu_info_primary = {
162 .ci_dev = 0,
163 .ci_self = &phycpu_info_primary,
164 };
165
166 struct cpu_info *cpu_info_list = &cpu_info_primary;
167
168 static void cpu_set_tss_gates(struct cpu_info *ci);
169
170 uint32_t cpus_attached = 0;
171 uint32_t cpus_running = 0;
172
173 bool x86_mp_online;
174 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
175
176 struct cpu_info *phycpu_info[X86_MAXPROCS] = { &cpu_info_primary };
177
178 #ifdef MULTIPROCESSOR
179 /*
180 * Array of CPU info structures. Must be statically-allocated because
181 * curproc, etc. are used early.
182 */
183 struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary };
184
185 void cpu_hatch(void *);
186 static void cpu_boot_secondary(struct cpu_info *ci);
187 static void cpu_start_secondary(struct cpu_info *ci);
188 static void cpu_copy_trampoline(void);
189
190 /*
191 * Runs once per boot once multiprocessor goo has been detected and
192 * the local APIC on the boot processor has been mapped.
193 *
194 * Called from lapic_boot_init() (from mpbios_scan()).
195 */
196 void
197 cpu_init_first(void)
198 {
199 int cpunum = lapic_cpu_number();
200
201 if (cpunum != 0) {
202 cpu_info[0] = NULL;
203 cpu_info[cpunum] = &cpu_info_primary;
204 }
205
206 cpu_copy_trampoline();
207 }
208 #endif
209
210 int
211 cpu_match(device_t parent, cfdata_t match, void *aux)
212 {
213
214 return 1;
215 }
216
217 void
218 cpu_attach(device_t parent, device_t self, void *aux)
219 {
220 #ifdef XEN3
221 struct cpu_softc *sc = device_private(self);
222 struct cpu_attach_args *caa = aux;
223 struct cpu_info *ci;
224 int cpunum = caa->cpu_number;
225
226 sc->sc_dev = self;
227
228 /*
229 * If we're an Application Processor, allocate a cpu_info
230 * structure, otherwise use the primary's.
231 */
232 if (caa->cpu_role == CPU_ROLE_AP) {
233 ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK | M_ZERO);
234 if (phycpu_info[cpunum] != NULL)
235 panic("cpu at apic id %d already attached?", cpunum);
236 phycpu_info[cpunum] = ci;
237 } else {
238 ci = &phycpu_info_primary;
239 if (cpunum != 0) {
240 phycpu_info[0] = NULL;
241 phycpu_info[cpunum] = ci;
242 }
243 }
244
245 ci->ci_self = ci;
246 sc->sc_info = ci;
247
248 ci->ci_dev = self;
249 ci->ci_apicid = caa->cpu_number;
250 ci->ci_cpuid = ci->ci_apicid;
251 ci->ci_vcpu = NULL;
252
253 printf(": ");
254 switch (caa->cpu_role) {
255 case CPU_ROLE_SP:
256 printf("(uniprocessor)\n");
257 ci->ci_flags |= CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY;
258 break;
259
260 case CPU_ROLE_BP:
261 printf("(boot processor)\n");
262 ci->ci_flags |= CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY;
263 break;
264
265 case CPU_ROLE_AP:
266 /*
267 * report on an AP
268 */
269 printf("(application processor)\n");
270 break;
271
272 default:
273 panic("unknown processor type??\n");
274 }
275 return;
276 #else
277 cpu_attach_common(parent, self, aux);
278 #endif
279 }
280
281 #ifdef XEN3
282 int
283 vcpu_match(device_t parent, cfdata_t match, void *aux)
284 {
285 struct vcpu_attach_args *vcaa = aux;
286
287 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
288 return 1;
289 return 0;
290 }
291
292 void
293 vcpu_attach(device_t parent, device_t self, void *aux)
294 {
295 struct vcpu_attach_args *vcaa = aux;
296
297 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
298 }
299 #endif
300
301 static void
302 cpu_vm_init(struct cpu_info *ci)
303 {
304 int ncolors = 2, i;
305
306 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
307 struct x86_cache_info *cai;
308 int tcolors;
309
310 cai = &ci->ci_cinfo[i];
311
312 tcolors = atop(cai->cai_totalsize);
313 switch(cai->cai_associativity) {
314 case 0xff:
315 tcolors = 1; /* fully associative */
316 break;
317 case 0:
318 case 1:
319 break;
320 default:
321 tcolors /= cai->cai_associativity;
322 }
323 ncolors = max(ncolors, tcolors);
324 }
325
326 /*
327 * Knowing the size of the largest cache on this CPU, re-color
328 * our pages.
329 */
330 if (ncolors <= uvmexp.ncolors)
331 return;
332 printf("%s: %d page colors\n", device_xname(ci->ci_dev), ncolors);
333 uvm_page_recolor(ncolors);
334 }
335
336 void
337 cpu_attach_common(device_t parent, device_t self, void *aux)
338 {
339 struct cpu_softc *sc = device_private(self);
340 struct cpu_attach_args *caa = aux;
341 struct cpu_info *ci;
342 uintptr_t ptr;
343 int cpunum = caa->cpu_number;
344
345 sc->sc_dev = self;
346
347 /*
348 * If we're an Application Processor, allocate a cpu_info
349 * structure, otherwise use the primary's.
350 */
351 if (caa->cpu_role == CPU_ROLE_AP) {
352 if (cpunum >= X86_MAXPROCS) {
353 aprint_error(": apic id %d ignored, "
354 "please increase X86_MAXPROCS\n", cpunum);
355 }
356
357 aprint_naive(": Application Processor\n");
358 ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
359 M_DEVBUF, M_WAITOK);
360 ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
361 ~(CACHE_LINE_SIZE - 1));
362 memset(ci, 0, sizeof(*ci));
363 #if defined(MULTIPROCESSOR)
364 if (cpu_info[cpunum] != NULL)
365 panic("cpu at apic id %d already attached?", cpunum);
366 cpu_info[cpunum] = ci;
367 #endif
368 #ifdef TRAPLOG
369 ci->ci_tlog_base = malloc(sizeof(struct tlog),
370 M_DEVBUF, M_WAITOK);
371 #endif
372 } else {
373 aprint_naive(": %s Processor\n",
374 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
375 ci = &cpu_info_primary;
376 #if defined(MULTIPROCESSOR)
377 if (cpunum != lapic_cpu_number()) {
378 panic("%s: running CPU is at apic %d"
379 " instead of at expected %d",
380 device_xname(sc->sc_dev), lapic_cpu_number(), cpunum);
381 }
382 #endif
383 }
384
385 ci->ci_self = ci;
386 sc->sc_info = ci;
387
388 ci->ci_dev = self;
389 ci->ci_apicid = cpunum;
390
391 KASSERT(HYPERVISOR_shared_info != NULL);
392 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
393
394 #ifdef MULTIPROCESSOR
395 ci->ci_cpuid = ci->ci_apicid;
396 #else
397 ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
398 #endif
399 ci->ci_cpumask = (1 << ci->ci_cpuid);
400 ci->ci_func = caa->cpu_func;
401
402 if (caa->cpu_role == CPU_ROLE_AP) {
403 #if defined(MULTIPROCESSOR)
404 int error;
405
406 error = mi_cpu_attach(ci);
407 if (error != 0) {
408 aprint_normal("\n");
409 aprint_error_dev(sc->sc_dev, "mi_cpu_attach failed with %d\n",
410 error);
411 return;
412 }
413 #endif
414 } else {
415 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
416 }
417
418 pmap_reference(pmap_kernel());
419 ci->ci_pmap = pmap_kernel();
420 ci->ci_tlbstate = TLBSTATE_STALE;
421
422 /* further PCB init done later. */
423
424 switch (caa->cpu_role) {
425 case CPU_ROLE_SP:
426 aprint_normal(": (uniprocessor)\n");
427 atomic_or_32(&ci->ci_flags,
428 CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
429 cpu_intr_init(ci);
430 cpu_get_tsc_freq(ci);
431 cpu_identify(ci);
432 cpu_init(ci);
433 cpu_set_tss_gates(ci);
434 pmap_cpu_init_late(ci);
435 #if 0
436 x86_errata();
437 #endif
438 break;
439
440 case CPU_ROLE_BP:
441 aprint_normal("apid %d (boot processor)\n", caa->cpu_number);
442 atomic_or_32(&ci->ci_flags,
443 CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
444 cpu_intr_init(ci);
445 cpu_get_tsc_freq(ci);
446 cpu_identify(ci);
447 cpu_init(ci);
448 cpu_set_tss_gates(ci);
449 pmap_cpu_init_late(ci);
450 #if NLAPIC > 0
451 /*
452 * Enable local apic
453 */
454 lapic_enable();
455 lapic_set_lvt();
456 lapic_calibrate_timer(ci);
457 #endif
458 #if 0
459 x86_errata();
460 #endif
461 break;
462
463 case CPU_ROLE_AP:
464 /*
465 * report on an AP
466 */
467 aprint_normal("apid %d (application processor)\n", caa->cpu_number);
468
469 #if defined(MULTIPROCESSOR)
470 cpu_intr_init(ci);
471 gdt_alloc_cpu(ci);
472 cpu_set_tss_gates(ci);
473 pmap_cpu_init_early(ci);
474 pmap_cpu_init_late(ci);
475 cpu_start_secondary(ci);
476 if (ci->ci_flags & CPUF_PRESENT) {
477 identifycpu(ci);
478 ci->ci_next = cpu_info_list->ci_next;
479 cpu_info_list->ci_next = ci;
480 }
481 #else
482 aprint_normal_dev(sc->sc_dev, "not started\n");
483 #endif
484 break;
485
486 default:
487 aprint_normal("\n");
488 panic("unknown processor type??\n");
489 }
490 cpu_vm_init(ci);
491
492 cpus_attached |= (1 << ci->ci_cpuid);
493
494 #if 0
495 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
496 aprint_error_dev(self, "couldn't establish power handler\n");
497 #endif
498
499 #if defined(MULTIPROCESSOR)
500 if (mp_verbose) {
501 struct lwp *l = ci->ci_data.cpu_idlelwp;
502
503 aprint_verbose_dev(sc->sc_dev, "idle lwp at %p, idle sp at 0x%p\n",
504 l,
505 #ifdef i386
506 (void *)l->l_addr->u_pcb.pcb_esp
507 #else
508 (void *)l->l_addr->u_pcb.pcb_rsp
509 #endif
510 );
511
512 }
513 #endif
514 }
515
516 /*
517 * Initialize the processor appropriately.
518 */
519
520 void
521 cpu_init(struct cpu_info *ci)
522 {
523
524 /*
525 * On a P6 or above, enable global TLB caching if the
526 * hardware supports it.
527 */
528 if (cpu_feature & CPUID_PGE)
529 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
530
531 #ifdef XXXMTRR
532 /*
533 * On a P6 or above, initialize MTRR's if the hardware supports them.
534 */
535 if (cpu_feature & CPUID_MTRR) {
536 if ((ci->ci_flags & CPUF_AP) == 0)
537 i686_mtrr_init_first();
538 mtrr_init_cpu(ci);
539 }
540 #endif
541 /*
542 * If we have FXSAVE/FXRESTOR, use them.
543 */
544 if (cpu_feature & CPUID_FXSR) {
545 lcr4(rcr4() | CR4_OSFXSR);
546
547 /*
548 * If we have SSE/SSE2, enable XMM exceptions.
549 */
550 if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
551 lcr4(rcr4() | CR4_OSXMMEXCPT);
552 }
553
554 #ifdef MULTIPROCESSOR
555 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
556 atomic_or_32(&cpus_running, ci->ci_cpumask);
557 #endif
558 }
559
560
561 #ifdef MULTIPROCESSOR
562 void
563 cpu_boot_secondary_processors(void)
564 {
565 struct cpu_info *ci;
566 u_long i;
567
568 for (i = 0; i < X86_MAXPROCS; i++) {
569 ci = cpu_info[i];
570 if (ci == NULL)
571 continue;
572 if (ci->ci_data.cpu_idlelwp == NULL)
573 continue;
574 if ((ci->ci_flags & CPUF_PRESENT) == 0)
575 continue;
576 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
577 continue;
578 cpu_boot_secondary(ci);
579 }
580
581 x86_mp_online = true;
582 }
583
584 static void
585 cpu_init_idle_lwp(struct cpu_info *ci)
586 {
587 struct lwp *l = ci->ci_data.cpu_idlelwp;
588 struct pcb *pcb = &l->l_addr->u_pcb;
589
590 pcb->pcb_cr0 = rcr0();
591 }
592
593 void
594 cpu_init_idle_lwps(void)
595 {
596 struct cpu_info *ci;
597 u_long i;
598
599 for (i = 0; i < X86_MAXPROCS; i++) {
600 ci = cpu_info[i];
601 if (ci == NULL)
602 continue;
603 if (ci->ci_data.cpu_idlelwp == NULL)
604 continue;
605 if ((ci->ci_flags & CPUF_PRESENT) == 0)
606 continue;
607 cpu_init_idle_lwp(ci);
608 }
609 }
610
611 void
612 cpu_start_secondary(struct cpu_info *ci)
613 {
614 int i;
615 struct pmap *kpm = pmap_kernel();
616 extern uint32_t mp_pdirpa;
617
618 mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
619
620 atomic_or_32(&ci->ci_flags, CPUF_AP);
621
622 aprint_debug_dev(ci->ci_dev, "starting\n");
623
624 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
625 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
626 return;
627
628 /*
629 * wait for it to become ready
630 */
631 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
632 #ifdef MPDEBUG
633 extern int cpu_trace[3];
634 static int otrace[3];
635 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
636 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
637 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
638 memcpy(otrace, cpu_trace, sizeof(otrace));
639 }
640 #endif
641 delay(10);
642 }
643 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
644 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
645 #if defined(MPDEBUG) && defined(DDB)
646 printf("dropping into debugger; continue from here to resume boot\n");
647 Debugger();
648 #endif
649 }
650
651 CPU_START_CLEANUP(ci);
652 }
653
654 void
655 cpu_boot_secondary(struct cpu_info *ci)
656 {
657 int i;
658
659 atomic_or_32(&ci->ci_flags, CPUF_GO);
660 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
661 delay(10);
662 }
663 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
664 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
665 #if defined(MPDEBUG) && defined(DDB)
666 printf("dropping into debugger; continue from here to resume boot\n");
667 Debugger();
668 #endif
669 }
670 }
671
672 /*
673 * The CPU ends up here when its ready to run
674 * This is called from code in mptramp.s; at this point, we are running
675 * in the idle pcb/idle stack of the new CPU. When this function returns,
676 * this processor will enter the idle loop and start looking for work.
677 *
678 * XXX should share some of this with init386 in machdep.c
679 */
680 void
681 cpu_hatch(void *v)
682 {
683 struct cpu_info *ci = (struct cpu_info *)v;
684 int s, i;
685 uint32_t blacklist_features;
686
687 #ifdef __x86_64__
688 cpu_init_msrs(ci, true);
689 #endif
690
691 cpu_probe(ci);
692
693 /* not on Xen... */
694 blacklist_features = ~(CPUID_PGE|CPUID_PSE|CPUID_MTRR|CPUID_FXSR|CPUID_NOX); /* XXX add CPUID_SVM */
695
696 cpu_feature &= blacklist_features;
697
698 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
699 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
700 while ((ci->ci_flags & CPUF_GO) == 0) {
701 /* Don't use delay, boot CPU may be patching the text. */
702 for (i = 10000; i != 0; i--)
703 x86_pause();
704 }
705
706 /* Because the text may have been patched in x86_patch(). */
707 wbinvd();
708 x86_flush();
709
710 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
711
712 lcr3(pmap_kernel()->pm_pdirpa);
713 curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
714 lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
715 cpu_init_idt();
716 gdt_init_cpu(ci);
717 lapic_enable();
718 lapic_set_lvt();
719 lapic_initclocks();
720
721 #ifdef i386
722 npxinit(ci);
723 #else
724 fpuinit(ci);
725 #endif
726
727 lldt(GSEL(GLDT_SEL, SEL_KPL));
728 ltr(ci->ci_tss_sel);
729
730 cpu_init(ci);
731 cpu_get_tsc_freq(ci);
732
733 s = splhigh();
734 #ifdef i386
735 lapic_tpr = 0;
736 #else
737 lcr8(0);
738 #endif
739 x86_enable_intr();
740 splx(s);
741 #if 0
742 x86_errata();
743 #endif
744
745 aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
746 (long)ci->ci_cpuid);
747 }
748
749 #if defined(DDB)
750
751 #include <ddb/db_output.h>
752 #include <machine/db_machdep.h>
753
754 /*
755 * Dump CPU information from ddb.
756 */
757 void
758 cpu_debug_dump(void)
759 {
760 struct cpu_info *ci;
761 CPU_INFO_ITERATOR cii;
762
763 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
764 for (CPU_INFO_FOREACH(cii, ci)) {
765 db_printf("%p %s %ld %x %x %10p %10p\n",
766 ci,
767 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
768 (long)ci->ci_cpuid,
769 ci->ci_flags, ci->ci_ipis,
770 ci->ci_curlwp,
771 ci->ci_fpcurlwp);
772 }
773 }
774 #endif
775
776 static void
777 cpu_copy_trampoline(void)
778 {
779 /*
780 * Copy boot code.
781 */
782 extern u_char cpu_spinup_trampoline[];
783 extern u_char cpu_spinup_trampoline_end[];
784
785 vaddr_t mp_trampoline_vaddr;
786
787 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
788 UVM_KMF_VAONLY);
789
790 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
791 VM_PROT_READ | VM_PROT_WRITE);
792 pmap_update(pmap_kernel());
793 memcpy((void *)mp_trampoline_vaddr,
794 cpu_spinup_trampoline,
795 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
796
797 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
798 pmap_update(pmap_kernel());
799 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
800 }
801
802 #endif
803
804 #ifdef i386
805 #if 0
806 static void
807 tss_init(struct i386tss *tss, void *stack, void *func)
808 {
809 memset(tss, 0, sizeof *tss);
810 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
811 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
812 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
813 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
814 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
815 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
816 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
817 tss->tss_esp = (int)((char *)stack + USPACE - 16);
818 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
819 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
820 tss->__tss_eip = (int)func;
821 }
822 #endif
823
824 /* XXX */
825 #define IDTVEC(name) __CONCAT(X, name)
826 typedef void (vector)(void);
827 extern vector IDTVEC(tss_trap08);
828 #ifdef DDB
829 extern vector Xintrddbipi;
830 extern int ddb_vec;
831 #endif
832
833 static void
834 cpu_set_tss_gates(struct cpu_info *ci)
835 {
836 #if 0
837 struct segment_descriptor sd;
838
839 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
840 UVM_KMF_WIRED);
841 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
842 IDTVEC(tss_trap08));
843 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
844 SDT_SYS386TSS, SEL_KPL, 0, 0);
845 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
846 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
847 GSEL(GTRAPTSS_SEL, SEL_KPL));
848 #endif
849
850 #if defined(DDB) && defined(MULTIPROCESSOR)
851 /*
852 * Set up separate handler for the DDB IPI, so that it doesn't
853 * stomp on a possibly corrupted stack.
854 *
855 * XXX overwriting the gate set in db_machine_init.
856 * Should rearrange the code so that it's set only once.
857 */
858 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
859 UVM_KMF_WIRED);
860 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
861 Xintrddbipi);
862
863 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
864 SDT_SYS386TSS, SEL_KPL, 0, 0);
865 ci->ci_gdt[GIPITSS_SEL].sd = sd;
866
867 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
868 GSEL(GIPITSS_SEL, SEL_KPL));
869 #endif
870 }
871 #else
872 static void
873 cpu_set_tss_gates(struct cpu_info *ci)
874 {
875
876 }
877 #endif /* i386 */
878
879 int
880 mp_cpu_start(struct cpu_info *ci, paddr_t target)
881 {
882 #if 0
883 #if NLAPIC > 0
884 int error;
885 #endif
886 unsigned short dwordptr[2];
887
888 /*
889 * Bootstrap code must be addressable in real mode
890 * and it must be page aligned.
891 */
892 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
893
894 /*
895 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
896 */
897
898 outb(IO_RTC, NVRAM_RESET);
899 outb(IO_RTC+1, NVRAM_RESET_JUMP);
900
901 /*
902 * "and the warm reset vector (DWORD based at 40:67) to point
903 * to the AP startup code ..."
904 */
905
906 dwordptr[0] = 0;
907 dwordptr[1] = target >> 4;
908
909 pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE);
910 memcpy ((uint8_t *) 0x467, dwordptr, 4);
911 pmap_kremove (0, PAGE_SIZE);
912
913 #if NLAPIC > 0
914 /*
915 * ... prior to executing the following sequence:"
916 */
917
918 if (ci->ci_flags & CPUF_AP) {
919 if ((error = x86_ipi_init(ci->ci_apicid)) != 0)
920 return error;
921
922 delay(10000);
923
924 if (cpu_feature & CPUID_APIC) {
925 error = x86_ipi_init(ci->ci_apicid);
926 if (error != 0) {
927 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
928 __func__);
929 return error;
930 }
931
932 delay(10000);
933
934 error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
935 LAPIC_DLMODE_STARTUP);
936 if (error != 0) {
937 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
938 __func__);
939 return error;
940 }
941 delay(200);
942
943 error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
944 LAPIC_DLMODE_STARTUP);
945 if (error != 0) {
946 aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
947 __func__);
948 return error;
949 }
950 delay(200);
951 }
952 }
953 #endif
954 #endif /* 0 */
955 return 0;
956 }
957
958 void
959 mp_cpu_start_cleanup(struct cpu_info *ci)
960 {
961 #if 0
962 /*
963 * Ensure the NVRAM reset byte contains something vaguely sane.
964 */
965
966 outb(IO_RTC, NVRAM_RESET);
967 outb(IO_RTC+1, NVRAM_RESET_RST);
968 #endif
969 }
970
971 #ifdef __x86_64__
972
973 void
974 cpu_init_msrs(struct cpu_info *ci, bool full)
975 {
976 if (full) {
977 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
978 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
979 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
980 }
981 }
982 #endif /* __x86_64__ */
983
984 void
985 cpu_offline_md(void)
986 {
987 int s;
988
989 s = splhigh();
990 #ifdef __i386__
991 npxsave_cpu(true);
992 #else
993 fpusave_cpu(true);
994 #endif
995 splx(s);
996 }
997
998 #if 0
999 /* XXX joerg restructure and restart CPUs individually */
1000 static bool
1001 cpu_suspend(device_t dv PMF_FN_ARGS)
1002 {
1003 struct cpu_softc *sc = device_private(dv);
1004 struct cpu_info *ci = sc->sc_info;
1005 int err;
1006
1007 if (ci->ci_flags & CPUF_PRIMARY)
1008 return true;
1009 if (ci->ci_data.cpu_idlelwp == NULL)
1010 return true;
1011 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1012 return true;
1013
1014 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1015
1016 if (sc->sc_wasonline) {
1017 mutex_enter(&cpu_lock);
1018 err = cpu_setonline(ci, false);
1019 mutex_exit(&cpu_lock);
1020
1021 if (err)
1022 return false;
1023 }
1024
1025 return true;
1026 }
1027
1028 static bool
1029 cpu_resume(device_t dv PMF_FN_ARGS)
1030 {
1031 struct cpu_softc *sc = device_private(dv);
1032 struct cpu_info *ci = sc->sc_info;
1033 int err = 0;
1034
1035 if (ci->ci_flags & CPUF_PRIMARY)
1036 return true;
1037 if (ci->ci_data.cpu_idlelwp == NULL)
1038 return true;
1039 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1040 return true;
1041
1042 if (sc->sc_wasonline) {
1043 mutex_enter(&cpu_lock);
1044 err = cpu_setonline(ci, true);
1045 mutex_exit(&cpu_lock);
1046 }
1047
1048 return err == 0;
1049 }
1050 #endif
1051
1052 void
1053 cpu_get_tsc_freq(struct cpu_info *ci)
1054 {
1055 #ifdef XEN3
1056 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1057 delay(1000000);
1058 uint64_t freq = 1000000000ULL << 32;
1059 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1060 if ( tinfo->tsc_shift < 0 )
1061 freq = freq << -tinfo->tsc_shift;
1062 else
1063 freq = freq >> tinfo->tsc_shift;
1064 ci->ci_data.cpu_cc_freq = freq;
1065 #else
1066 /* Xen2 */
1067 /* XXX this needs to read the shared_info of the CPU being probed.. */
1068 ci->ci_data.cpu_cc_freq = HYPERVISOR_shared_info->cpu_freq;
1069 #endif /* XEN3 */
1070 }
1071
1072 void
1073 x86_cpu_idle_xen(void)
1074 {
1075 struct cpu_info *ci = curcpu();
1076
1077 KASSERT(ci->ci_ilevel == IPL_NONE);
1078
1079 x86_disable_intr();
1080 if (!__predict_false(ci->ci_want_resched)) {
1081 idle_block();
1082 } else {
1083 x86_enable_intr();
1084 }
1085 }
1086