cpu.c revision 1.31.2.7 1 /* $NetBSD: cpu.c,v 1.31.2.7 2011/01/10 00:37:38 jym Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.31.2.7 2011/01/10 00:37:38 jym Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88
89 #include <uvm/uvm.h>
90
91 #include <machine/cpufunc.h>
92 #include <machine/cpuvar.h>
93 #include <machine/pmap.h>
94 #include <machine/vmparam.h>
95 #include <machine/mpbiosvar.h>
96 #include <machine/pcb.h>
97 #include <machine/specialreg.h>
98 #include <machine/segments.h>
99 #include <machine/gdt.h>
100 #include <machine/mtrr.h>
101 #include <machine/pio.h>
102
103 #include <xen/vcpuvar.h>
104
105 #if NLAPIC > 0
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109 #endif
110
111 #include <dev/ic/mc146818reg.h>
112 #include <dev/isa/isareg.h>
113
114 #if MAXCPUS > 32
115 #error cpu_info contains 32bit bitmasks
116 #endif
117
118 int cpu_match(device_t, cfdata_t, void *);
119 void cpu_attach(device_t, device_t, void *);
120 int vcpu_match(device_t, cfdata_t, void *);
121 void vcpu_attach(device_t, device_t, void *);
122 void cpu_attach_common(device_t, device_t, void *);
123 void cpu_offline_md(void);
124
125 struct cpu_softc {
126 device_t sc_dev; /* device tree glue */
127 struct cpu_info *sc_info; /* pointer to CPU info */
128 bool sc_wasonline;
129 };
130
131 int mp_cpu_start(struct cpu_info *, paddr_t);
132 void mp_cpu_start_cleanup(struct cpu_info *);
133 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
134 mp_cpu_start_cleanup };
135
136 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
137 cpu_match, cpu_attach, NULL, NULL);
138 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
139 vcpu_match, vcpu_attach, NULL, NULL);
140
141 /*
142 * Statically-allocated CPU info for the primary CPU (or the only
143 * CPU, on uniprocessors). The CPU info list is initialized to
144 * point at it.
145 */
146 #ifdef TRAPLOG
147 #include <machine/tlog.h>
148 struct tlog tlog_primary;
149 #endif
150 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 .ci_dev = 0,
152 .ci_self = &cpu_info_primary,
153 .ci_idepth = -1,
154 .ci_curlwp = &lwp0,
155 .ci_curldt = -1,
156 #ifdef TRAPLOG
157 .ci_tlog = &tlog_primary,
158 #endif
159
160 };
161 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
162 .ci_dev = 0,
163 .ci_self = &phycpu_info_primary,
164 };
165
166 struct cpu_info *cpu_info_list = &cpu_info_primary;
167 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
168
169 static void cpu_set_tss_gates(struct cpu_info *ci);
170
171 uint32_t cpus_attached = 0;
172 uint32_t cpus_running = 0;
173
174 uint32_t phycpus_attached = 0;
175 uint32_t phycpus_running = 0;
176
177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 * [0] basic features %edx
179 * [1] basic features %ecx
180 * [2] extended features %edx
181 * [3] extended features %ecx
182 * [4] VIA padlock features
183 */
184
185 bool x86_mp_online;
186 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
187
188 #if defined(MULTIPROCESSOR)
189 void cpu_hatch(void *);
190 static void cpu_boot_secondary(struct cpu_info *ci);
191 static void cpu_start_secondary(struct cpu_info *ci);
192 static void cpu_copy_trampoline(void);
193
194 /*
195 * Runs once per boot once multiprocessor goo has been detected and
196 * the local APIC on the boot processor has been mapped.
197 *
198 * Called from lapic_boot_init() (from mpbios_scan()).
199 */
200 void
201 cpu_init_first(void)
202 {
203
204 cpu_info_primary.ci_cpuid = lapic_cpu_number();
205 cpu_copy_trampoline();
206 }
207 #endif /* MULTIPROCESSOR */
208
209 int
210 cpu_match(device_t parent, cfdata_t match, void *aux)
211 {
212
213 return 1;
214 }
215
216 void
217 cpu_attach(device_t parent, device_t self, void *aux)
218 {
219 struct cpu_softc *sc = device_private(self);
220 struct cpu_attach_args *caa = aux;
221 struct cpu_info *ci;
222 uintptr_t ptr;
223 static int nphycpu = 0;
224
225 sc->sc_dev = self;
226
227 if (phycpus_attached == ~0) {
228 aprint_error(": increase MAXCPUS\n");
229 return;
230 }
231
232 /*
233 * If we're an Application Processor, allocate a cpu_info
234 * If we're the first attached CPU use the primary cpu_info,
235 * otherwise allocate a new one
236 */
237 aprint_naive("\n");
238 aprint_normal("\n");
239 if (nphycpu > 0) {
240 struct cpu_info *tmp;
241 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
242 KM_SLEEP);
243 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
244 ci->ci_curldt = -1;
245
246 tmp = phycpu_info_list;
247 while (tmp->ci_next)
248 tmp = tmp->ci_next;
249
250 tmp->ci_next = ci;
251 } else {
252 ci = &phycpu_info_primary;
253 }
254
255 ci->ci_self = ci;
256 sc->sc_info = ci;
257
258 ci->ci_dev = self;
259 ci->ci_acpiid = caa->cpu_id;
260 ci->ci_cpuid = caa->cpu_number;
261 ci->ci_vcpu = NULL;
262 ci->ci_index = nphycpu++;
263 ci->ci_cpumask = (1 << cpu_index(ci));
264
265 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
266
267 if (!pmf_device_register(self, NULL, NULL))
268 aprint_error_dev(self, "couldn't establish power handler\n");
269
270 return;
271 }
272
273 int
274 vcpu_match(device_t parent, cfdata_t match, void *aux)
275 {
276 struct vcpu_attach_args *vcaa = aux;
277
278 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
279 return 1;
280 return 0;
281 }
282
283 void
284 vcpu_attach(device_t parent, device_t self, void *aux)
285 {
286 struct vcpu_attach_args *vcaa = aux;
287
288 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
289
290 if (!pmf_device_register(self, NULL, NULL))
291 aprint_error_dev(self, "couldn't establish power handler\n");
292 }
293
294 static void
295 cpu_vm_init(struct cpu_info *ci)
296 {
297 int ncolors = 2, i;
298
299 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
300 struct x86_cache_info *cai;
301 int tcolors;
302
303 cai = &ci->ci_cinfo[i];
304
305 tcolors = atop(cai->cai_totalsize);
306 switch(cai->cai_associativity) {
307 case 0xff:
308 tcolors = 1; /* fully associative */
309 break;
310 case 0:
311 case 1:
312 break;
313 default:
314 tcolors /= cai->cai_associativity;
315 }
316 ncolors = max(ncolors, tcolors);
317 }
318
319 /*
320 * Knowing the size of the largest cache on this CPU, re-color
321 * our pages.
322 */
323 if (ncolors <= uvmexp.ncolors)
324 return;
325 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
326 uvm_page_recolor(ncolors);
327 }
328
329 void
330 cpu_attach_common(device_t parent, device_t self, void *aux)
331 {
332 struct cpu_softc *sc = device_private(self);
333 struct cpu_attach_args *caa = aux;
334 struct cpu_info *ci;
335 uintptr_t ptr;
336 int cpunum = caa->cpu_number;
337 static bool again = false;
338
339 sc->sc_dev = self;
340
341 /*
342 * If we're an Application Processor, allocate a cpu_info
343 * structure, otherwise use the primary's.
344 */
345 if (caa->cpu_role == CPU_ROLE_AP) {
346 aprint_naive(": Application Processor\n");
347 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
348 KM_SLEEP);
349 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
350 memset(ci, 0, sizeof(*ci));
351 #ifdef TRAPLOG
352 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
353 #endif
354 } else {
355 aprint_naive(": %s Processor\n",
356 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
357 ci = &cpu_info_primary;
358 #if NLAPIC > 0
359 if (cpunum != lapic_cpu_number()) {
360 /* XXX should be done earlier */
361 uint32_t reg;
362 aprint_verbose("\n");
363 aprint_verbose_dev(self, "running CPU at apic %d"
364 " instead of at expected %d", lapic_cpu_number(),
365 cpunum);
366 reg = i82489_readreg(LAPIC_ID);
367 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
368 (cpunum << LAPIC_ID_SHIFT));
369 }
370 if (cpunum != lapic_cpu_number()) {
371 aprint_error_dev(self, "unable to reset apic id\n");
372 }
373 #endif
374 }
375
376 ci->ci_self = ci;
377 sc->sc_info = ci;
378 ci->ci_dev = self;
379 ci->ci_cpuid = cpunum;
380
381 KASSERT(HYPERVISOR_shared_info != NULL);
382 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
383
384 ci->ci_func = caa->cpu_func;
385
386 /* Must be called before mi_cpu_attach(). */
387 cpu_vm_init(ci);
388
389 if (caa->cpu_role == CPU_ROLE_AP) {
390 int error;
391
392 error = mi_cpu_attach(ci);
393 if (error != 0) {
394 aprint_normal("\n");
395 aprint_error_dev(self,
396 "mi_cpu_attach failed with %d\n", error);
397 return;
398 }
399 } else {
400 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
401 }
402
403 ci->ci_cpumask = (1 << cpu_index(ci));
404 pmap_reference(pmap_kernel());
405 ci->ci_pmap = pmap_kernel();
406 ci->ci_tlbstate = TLBSTATE_STALE;
407
408 /*
409 * Boot processor may not be attached first, but the below
410 * must be done to allow booting other processors.
411 */
412 if (!again) {
413 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
414 /* Basic init. */
415 cpu_intr_init(ci);
416 cpu_get_tsc_freq(ci);
417 cpu_init(ci);
418 cpu_set_tss_gates(ci);
419 pmap_cpu_init_late(ci);
420 #if NLAPIC > 0
421 if (caa->cpu_role != CPU_ROLE_SP) {
422 /* Enable lapic. */
423 lapic_enable();
424 lapic_set_lvt();
425 lapic_calibrate_timer();
426 }
427 #endif
428 /* Make sure DELAY() is initialized. */
429 DELAY(1);
430 again = true;
431 }
432
433 /* further PCB init done later. */
434
435 switch (caa->cpu_role) {
436 case CPU_ROLE_SP:
437 atomic_or_32(&ci->ci_flags, CPUF_SP);
438 cpu_identify(ci);
439 #if 0
440 x86_errata();
441 #endif
442 x86_cpu_idle_init();
443 break;
444
445 case CPU_ROLE_BP:
446 atomic_or_32(&ci->ci_flags, CPUF_BSP);
447 cpu_identify(ci);
448 cpu_init(ci);
449 #if 0
450 x86_errata();
451 #endif
452 x86_cpu_idle_init();
453 break;
454
455 case CPU_ROLE_AP:
456 /*
457 * report on an AP
458 */
459
460 #if defined(MULTIPROCESSOR)
461 cpu_intr_init(ci);
462 gdt_alloc_cpu(ci);
463 cpu_set_tss_gates(ci);
464 pmap_cpu_init_early(ci);
465 pmap_cpu_init_late(ci);
466 cpu_start_secondary(ci);
467 if (ci->ci_flags & CPUF_PRESENT) {
468 struct cpu_info *tmp;
469
470 identifycpu(ci);
471 tmp = cpu_info_list;
472 while (tmp->ci_next)
473 tmp = tmp->ci_next;
474
475 tmp->ci_next = ci;
476 }
477 #else
478 aprint_error_dev(self, "not started\n");
479 #endif
480 break;
481
482 default:
483 aprint_normal("\n");
484 panic("unknown processor type??\n");
485 }
486
487 pat_init(ci);
488 atomic_or_32(&cpus_attached, ci->ci_cpumask);
489
490 #if 0
491 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
492 aprint_error_dev(self, "couldn't establish power handler\n");
493 #endif
494
495 #if defined(MULTIPROCESSOR)
496 if (mp_verbose) {
497 struct lwp *l = ci->ci_data.cpu_idlelwp;
498 struct pcb *pcb = lwp_getpcb(l);
499
500 aprint_verbose_dev(self,
501 "idle lwp at %p, idle sp at 0x%p\n",
502 l,
503 #ifdef i386
504 (void *)pcb->pcb_esp
505 #else
506 (void *)pcb->pcb_rsp
507 #endif
508 );
509
510 }
511 #endif
512 }
513
514 /*
515 * Initialize the processor appropriately.
516 */
517
518 void
519 cpu_init(struct cpu_info *ci)
520 {
521
522 /*
523 * On a P6 or above, enable global TLB caching if the
524 * hardware supports it.
525 */
526 if (cpu_feature[0] & CPUID_PGE)
527 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
528
529 #ifdef XXXMTRR
530 /*
531 * On a P6 or above, initialize MTRR's if the hardware supports them.
532 */
533 if (cpu_feature[0] & CPUID_MTRR) {
534 if ((ci->ci_flags & CPUF_AP) == 0)
535 i686_mtrr_init_first();
536 mtrr_init_cpu(ci);
537 }
538 #endif
539 /*
540 * If we have FXSAVE/FXRESTOR, use them.
541 */
542 if (cpu_feature[0] & CPUID_FXSR) {
543 lcr4(rcr4() | CR4_OSFXSR);
544
545 /*
546 * If we have SSE/SSE2, enable XMM exceptions.
547 */
548 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
549 lcr4(rcr4() | CR4_OSXMMEXCPT);
550 }
551
552 #ifdef __x86_64__
553 /* No user PGD mapped for this CPU yet */
554 ci->ci_xen_current_user_pgd = 0;
555 #endif
556
557 atomic_or_32(&cpus_running, ci->ci_cpumask);
558 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
559 }
560
561
562 #ifdef MULTIPROCESSOR
563 void
564 cpu_boot_secondary_processors(void)
565 {
566 struct cpu_info *ci;
567 u_long i;
568
569 for (i = 0; i < maxcpus; i++) {
570 ci = cpu_lookup(i);
571 if (ci == NULL)
572 continue;
573 if (ci->ci_data.cpu_idlelwp == NULL)
574 continue;
575 if ((ci->ci_flags & CPUF_PRESENT) == 0)
576 continue;
577 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
578 continue;
579 cpu_boot_secondary(ci);
580 }
581
582 x86_mp_online = true;
583 }
584
585 static void
586 cpu_init_idle_lwp(struct cpu_info *ci)
587 {
588 struct lwp *l = ci->ci_data.cpu_idlelwp;
589 struct pcb *pcb = lwp_getpcb(l);
590
591 pcb->pcb_cr0 = rcr0();
592 }
593
594 void
595 cpu_init_idle_lwps(void)
596 {
597 struct cpu_info *ci;
598 u_long i;
599
600 for (i = 0; i < maxcpus; i++) {
601 ci = cpu_lookup(i);
602 if (ci == NULL)
603 continue;
604 if (ci->ci_data.cpu_idlelwp == NULL)
605 continue;
606 if ((ci->ci_flags & CPUF_PRESENT) == 0)
607 continue;
608 cpu_init_idle_lwp(ci);
609 }
610 }
611
612 void
613 cpu_start_secondary(struct cpu_info *ci)
614 {
615 int i;
616 struct pmap *kpm = pmap_kernel();
617 extern uint32_t mp_pdirpa;
618
619 mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
620
621 atomic_or_32(&ci->ci_flags, CPUF_AP);
622
623 aprint_debug_dev(ci->ci_dev, "starting\n");
624
625 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
626 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
627 return;
628
629 /*
630 * wait for it to become ready
631 */
632 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
633 #ifdef MPDEBUG
634 extern int cpu_trace[3];
635 static int otrace[3];
636 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
637 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
638 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
639 memcpy(otrace, cpu_trace, sizeof(otrace));
640 }
641 #endif
642 delay(10);
643 }
644 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
645 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
646 #if defined(MPDEBUG) && defined(DDB)
647 printf("dropping into debugger; continue from here to resume boot\n");
648 Debugger();
649 #endif
650 }
651
652 CPU_START_CLEANUP(ci);
653 }
654
655 void
656 cpu_boot_secondary(struct cpu_info *ci)
657 {
658 int i;
659
660 atomic_or_32(&ci->ci_flags, CPUF_GO);
661 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
662 delay(10);
663 }
664 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
665 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
666 #if defined(MPDEBUG) && defined(DDB)
667 printf("dropping into debugger; continue from here to resume boot\n");
668 Debugger();
669 #endif
670 }
671 }
672
673 /*
674 * The CPU ends up here when its ready to run
675 * This is called from code in mptramp.s; at this point, we are running
676 * in the idle pcb/idle stack of the new CPU. When this function returns,
677 * this processor will enter the idle loop and start looking for work.
678 *
679 * XXX should share some of this with init386 in machdep.c
680 */
681 void
682 cpu_hatch(void *v)
683 {
684 struct cpu_info *ci = (struct cpu_info *)v;
685 struct pcb *pcb;
686 int s, i;
687
688 cpu_probe(ci);
689
690 cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
691 cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
692
693 cpu_init_msrs(ci, true);
694
695 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
696 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
697 while ((ci->ci_flags & CPUF_GO) == 0) {
698 /* Don't use delay, boot CPU may be patching the text. */
699 for (i = 10000; i != 0; i--)
700 x86_pause();
701 }
702
703 /* Because the text may have been patched in x86_patch(). */
704 wbinvd();
705 x86_flush();
706
707 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
708
709 pcb = lwp_getpcb(curlwp);
710 lcr3(pmap_kernel()->pm_pdirpa);
711 pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
712 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
713 lcr0(pcb->pcb_cr0);
714
715 cpu_init_idt();
716 gdt_init_cpu(ci);
717 lapic_enable();
718 lapic_set_lvt();
719 lapic_initclocks();
720
721 #ifdef i386
722 npxinit(ci);
723 #else
724 fpuinit(ci);
725 #endif
726
727 lldt(GSEL(GLDT_SEL, SEL_KPL));
728 ltr(ci->ci_tss_sel);
729
730 cpu_init(ci);
731 cpu_get_tsc_freq(ci);
732
733 s = splhigh();
734 #ifdef i386
735 lapic_tpr = 0;
736 #else
737 lcr8(0);
738 #endif
739 x86_enable_intr();
740 splx(s);
741 #if 0
742 x86_errata();
743 #endif
744
745 aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
746 (long)ci->ci_cpuid);
747 }
748
749 #if defined(DDB)
750
751 #include <ddb/db_output.h>
752 #include <machine/db_machdep.h>
753
754 /*
755 * Dump CPU information from ddb.
756 */
757 void
758 cpu_debug_dump(void)
759 {
760 struct cpu_info *ci;
761 CPU_INFO_ITERATOR cii;
762
763 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
764 for (CPU_INFO_FOREACH(cii, ci)) {
765 db_printf("%p %s %ld %x %x %10p %10p\n",
766 ci,
767 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
768 (long)ci->ci_cpuid,
769 ci->ci_flags, ci->ci_ipis,
770 ci->ci_curlwp,
771 ci->ci_fpcurlwp);
772 }
773 }
774 #endif /* DDB */
775
776 static void
777 cpu_copy_trampoline(void)
778 {
779 /*
780 * Copy boot code.
781 */
782 extern u_char cpu_spinup_trampoline[];
783 extern u_char cpu_spinup_trampoline_end[];
784
785 vaddr_t mp_trampoline_vaddr;
786
787 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
788 UVM_KMF_VAONLY);
789
790 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
791 VM_PROT_READ | VM_PROT_WRITE, 0);
792 pmap_update(pmap_kernel());
793 memcpy((void *)mp_trampoline_vaddr,
794 cpu_spinup_trampoline,
795 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
796
797 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
798 pmap_update(pmap_kernel());
799 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
800 }
801
802 #endif /* MULTIPROCESSOR */
803
804 #ifdef i386
805 #if 0
806 static void
807 tss_init(struct i386tss *tss, void *stack, void *func)
808 {
809 memset(tss, 0, sizeof *tss);
810 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
811 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
812 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
813 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
814 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
815 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
816 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
817 tss->tss_esp = (int)((char *)stack + USPACE - 16);
818 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
819 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
820 tss->__tss_eip = (int)func;
821 }
822 #endif
823
824 /* XXX */
825 #define IDTVEC(name) __CONCAT(X, name)
826 typedef void (vector)(void);
827 extern vector IDTVEC(tss_trap08);
828 #ifdef DDB
829 extern vector Xintrddbipi;
830 extern int ddb_vec;
831 #endif
832
833 static void
834 cpu_set_tss_gates(struct cpu_info *ci)
835 {
836 #if 0
837 struct segment_descriptor sd;
838
839 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
840 UVM_KMF_WIRED);
841 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
842 IDTVEC(tss_trap08));
843 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
844 SDT_SYS386TSS, SEL_KPL, 0, 0);
845 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
846 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
847 GSEL(GTRAPTSS_SEL, SEL_KPL));
848 #endif
849
850 #if defined(DDB) && defined(MULTIPROCESSOR)
851 /*
852 * Set up separate handler for the DDB IPI, so that it doesn't
853 * stomp on a possibly corrupted stack.
854 *
855 * XXX overwriting the gate set in db_machine_init.
856 * Should rearrange the code so that it's set only once.
857 */
858 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
859 UVM_KMF_WIRED);
860 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
861 Xintrddbipi);
862
863 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
864 SDT_SYS386TSS, SEL_KPL, 0, 0);
865 ci->ci_gdt[GIPITSS_SEL].sd = sd;
866
867 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
868 GSEL(GIPITSS_SEL, SEL_KPL));
869 #endif
870 }
871 #else
872 static void
873 cpu_set_tss_gates(struct cpu_info *ci)
874 {
875
876 }
877 #endif /* i386 */
878
879 int
880 mp_cpu_start(struct cpu_info *ci, paddr_t target)
881 {
882 #if 0
883 #if NLAPIC > 0
884 int error;
885 #endif
886 unsigned short dwordptr[2];
887
888 /*
889 * Bootstrap code must be addressable in real mode
890 * and it must be page aligned.
891 */
892 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
893
894 /*
895 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
896 */
897
898 outb(IO_RTC, NVRAM_RESET);
899 outb(IO_RTC+1, NVRAM_RESET_JUMP);
900
901 /*
902 * "and the warm reset vector (DWORD based at 40:67) to point
903 * to the AP startup code ..."
904 */
905
906 dwordptr[0] = 0;
907 dwordptr[1] = target >> 4;
908
909 pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
910 pmap_update(pmap_kernel());
911
912 memcpy ((uint8_t *) 0x467, dwordptr, 4);
913
914 pmap_kremove (0, PAGE_SIZE);
915 pmap_update(pmap_kernel());
916
917 #if NLAPIC > 0
918 /*
919 * ... prior to executing the following sequence:"
920 */
921
922 if (ci->ci_flags & CPUF_AP) {
923 if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
924 return error;
925
926 delay(10000);
927
928 if (cpu_feature & CPUID_APIC) {
929 error = x86_ipi_init(ci->ci_cpuid);
930 if (error != 0) {
931 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
932 __func__);
933 return error;
934 }
935
936 delay(10000);
937
938 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
939 LAPIC_DLMODE_STARTUP);
940 if (error != 0) {
941 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
942 __func__);
943 return error;
944 }
945 delay(200);
946
947 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
948 LAPIC_DLMODE_STARTUP);
949 if (error != 0) {
950 aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
951 __func__);
952 return error;
953 }
954 delay(200);
955 }
956 }
957 #endif
958 #endif /* 0 */
959 return 0;
960 }
961
962 void
963 mp_cpu_start_cleanup(struct cpu_info *ci)
964 {
965 #if 0
966 /*
967 * Ensure the NVRAM reset byte contains something vaguely sane.
968 */
969
970 outb(IO_RTC, NVRAM_RESET);
971 outb(IO_RTC+1, NVRAM_RESET_RST);
972 #endif
973 }
974
975 void
976 cpu_init_msrs(struct cpu_info *ci, bool full)
977 {
978 #ifdef __x86_64__
979 if (full) {
980 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
981 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
982 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
983 }
984 #endif /* __x86_64__ */
985
986 if (cpu_feature[2] & CPUID_NOX)
987 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
988 }
989
990 void
991 cpu_offline_md(void)
992 {
993 int s;
994
995 s = splhigh();
996 #ifdef __i386__
997 npxsave_cpu(true);
998 #else
999 fpusave_cpu(true);
1000 #endif
1001 splx(s);
1002 }
1003
1004 #if 0
1005 /* XXX joerg restructure and restart CPUs individually */
1006 static bool
1007 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1008 {
1009 struct cpu_softc *sc = device_private(dv);
1010 struct cpu_info *ci = sc->sc_info;
1011 int err;
1012
1013 if (ci->ci_flags & CPUF_PRIMARY)
1014 return true;
1015 if (ci->ci_data.cpu_idlelwp == NULL)
1016 return true;
1017 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1018 return true;
1019
1020 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1021
1022 if (sc->sc_wasonline) {
1023 mutex_enter(&cpu_lock);
1024 err = cpu_setstate(ci, false);
1025 mutex_exit(&cpu_lock);
1026
1027 if (err)
1028 return false;
1029 }
1030
1031 return true;
1032 }
1033
1034 static bool
1035 cpu_resume(device_t dv, const pmf_qual_t *qual)
1036 {
1037 struct cpu_softc *sc = device_private(dv);
1038 struct cpu_info *ci = sc->sc_info;
1039 int err = 0;
1040
1041 if (ci->ci_flags & CPUF_PRIMARY)
1042 return true;
1043 if (ci->ci_data.cpu_idlelwp == NULL)
1044 return true;
1045 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1046 return true;
1047
1048 if (sc->sc_wasonline) {
1049 mutex_enter(&cpu_lock);
1050 err = cpu_setstate(ci, true);
1051 mutex_exit(&cpu_lock);
1052 }
1053
1054 return err == 0;
1055 }
1056 #endif
1057
1058 void
1059 cpu_get_tsc_freq(struct cpu_info *ci)
1060 {
1061 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1062 delay(1000000);
1063 uint64_t freq = 1000000000ULL << 32;
1064 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1065 if ( tinfo->tsc_shift < 0 )
1066 freq = freq << -tinfo->tsc_shift;
1067 else
1068 freq = freq >> tinfo->tsc_shift;
1069 ci->ci_data.cpu_cc_freq = freq;
1070 }
1071
1072 void
1073 x86_cpu_idle_xen(void)
1074 {
1075 struct cpu_info *ci = curcpu();
1076
1077 KASSERT(ci->ci_ilevel == IPL_NONE);
1078
1079 x86_disable_intr();
1080 if (!__predict_false(ci->ci_want_resched)) {
1081 idle_block();
1082 } else {
1083 x86_enable_intr();
1084 }
1085 }
1086
1087 /*
1088 * Loads pmap for the current CPU.
1089 */
1090 void
1091 cpu_load_pmap(struct pmap *pmap)
1092 {
1093 #ifdef i386
1094 #ifdef PAE
1095 int i, s;
1096 struct cpu_info *ci;
1097
1098 s = splvm(); /* just to be safe */
1099 ci = curcpu();
1100 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1101 /* don't update the kernel L3 slot */
1102 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1103 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1104 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1105 }
1106 splx(s);
1107 tlbflush();
1108 #else /* PAE */
1109 lcr3(pmap_pdirpa(pmap, 0));
1110 #endif /* PAE */
1111 #endif /* i386 */
1112
1113 #ifdef __x86_64__
1114 int i, s;
1115 pd_entry_t *old_pgd, *new_pgd;
1116 paddr_t addr;
1117 struct cpu_info *ci;
1118
1119 /* kernel pmap always in cr3 and should never go in user cr3 */
1120 if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1121 ci = curcpu();
1122 /*
1123 * Map user space address in kernel space and load
1124 * user cr3
1125 */
1126 s = splvm();
1127 new_pgd = pmap->pm_pdir;
1128 old_pgd = pmap_kernel()->pm_pdir;
1129 addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1130 for (i = 0; i < PDIR_SLOT_PTE;
1131 i++, addr += sizeof(pd_entry_t)) {
1132 if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1133 xpq_queue_pte_update(addr, new_pgd[i]);
1134 }
1135 tlbflush();
1136 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1137 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1138 splx(s);
1139 }
1140 #endif /* __x86_64__ */
1141 }
1142