Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.40.2.2
      1 /*	$NetBSD: cpu.c,v 1.40.2.2 2010/08/17 06:45:35 uebayasi Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.40.2.2 2010/08/17 06:45:35 uebayasi Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 
     89 #include <uvm/uvm_extern.h>
     90 
     91 #include <machine/cpufunc.h>
     92 #include <machine/cpuvar.h>
     93 #include <machine/pmap.h>
     94 #include <machine/vmparam.h>
     95 #include <machine/mpbiosvar.h>
     96 #include <machine/pcb.h>
     97 #include <machine/specialreg.h>
     98 #include <machine/segments.h>
     99 #include <machine/gdt.h>
    100 #include <machine/mtrr.h>
    101 #include <machine/pio.h>
    102 
    103 #include <xen/vcpuvar.h>
    104 
    105 #if NLAPIC > 0
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 #endif
    110 
    111 #include <dev/ic/mc146818reg.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #if MAXCPUS > 32
    115 #error cpu_info contains 32bit bitmasks
    116 #endif
    117 
    118 int     cpu_match(device_t, cfdata_t, void *);
    119 void    cpu_attach(device_t, device_t, void *);
    120 int     vcpu_match(device_t, cfdata_t, void *);
    121 void    vcpu_attach(device_t, device_t, void *);
    122 void    cpu_attach_common(device_t, device_t, void *);
    123 void	cpu_offline_md(void);
    124 
    125 struct cpu_softc {
    126 	device_t sc_dev;		/* device tree glue */
    127 	struct cpu_info *sc_info;	/* pointer to CPU info */
    128 	bool sc_wasonline;
    129 };
    130 
    131 int mp_cpu_start(struct cpu_info *, paddr_t);
    132 void mp_cpu_start_cleanup(struct cpu_info *);
    133 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    134 				      mp_cpu_start_cleanup };
    135 
    136 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    137     cpu_match, cpu_attach, NULL, NULL);
    138 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    139     vcpu_match, vcpu_attach, NULL, NULL);
    140 
    141 /*
    142  * Statically-allocated CPU info for the primary CPU (or the only
    143  * CPU, on uniprocessors).  The CPU info list is initialized to
    144  * point at it.
    145  */
    146 #ifdef TRAPLOG
    147 #include <machine/tlog.h>
    148 struct tlog tlog_primary;
    149 #endif
    150 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    151 	.ci_dev = 0,
    152 	.ci_self = &cpu_info_primary,
    153 	.ci_idepth = -1,
    154 	.ci_curlwp = &lwp0,
    155 	.ci_curldt = -1,
    156 #ifdef TRAPLOG
    157 	.ci_tlog = &tlog_primary,
    158 #endif
    159 
    160 };
    161 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    162 	.ci_dev = 0,
    163 	.ci_self = &phycpu_info_primary,
    164 };
    165 
    166 struct cpu_info *cpu_info_list = &cpu_info_primary;
    167 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    168 
    169 static void	cpu_set_tss_gates(struct cpu_info *ci);
    170 
    171 uint32_t cpus_attached = 0;
    172 uint32_t cpus_running = 0;
    173 
    174 uint32_t phycpus_attached = 0;
    175 uint32_t phycpus_running = 0;
    176 
    177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    178 			  *	[0] basic features %edx
    179 			  *	[1] basic features %ecx
    180 			  *	[2] extended features %edx
    181 			  *	[3] extended features %ecx
    182 			  *	[4] VIA padlock features
    183 			  */
    184 
    185 bool x86_mp_online;
    186 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    187 
    188 void (*cpu_freq_init)(int) = NULL;
    189 struct sysctllog *cpu_freq_sysctllog = NULL;
    190 
    191 #if defined(MULTIPROCESSOR)
    192 void    	cpu_hatch(void *);
    193 static void    	cpu_boot_secondary(struct cpu_info *ci);
    194 static void    	cpu_start_secondary(struct cpu_info *ci);
    195 static void	cpu_copy_trampoline(void);
    196 
    197 /*
    198  * Runs once per boot once multiprocessor goo has been detected and
    199  * the local APIC on the boot processor has been mapped.
    200  *
    201  * Called from lapic_boot_init() (from mpbios_scan()).
    202  */
    203 void
    204 cpu_init_first(void)
    205 {
    206 
    207 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    208 	cpu_copy_trampoline();
    209 }
    210 #endif	/* MULTIPROCESSOR */
    211 
    212 int
    213 cpu_match(device_t parent, cfdata_t match, void *aux)
    214 {
    215 
    216 	return 1;
    217 }
    218 
    219 void
    220 cpu_attach(device_t parent, device_t self, void *aux)
    221 {
    222 	struct cpu_softc *sc = device_private(self);
    223 	struct cpu_attach_args *caa = aux;
    224 	struct cpu_info *ci;
    225 	uintptr_t ptr;
    226 	static bool again = false;
    227 
    228 	sc->sc_dev = self;
    229 
    230 	if (phycpus_attached == ~0) {
    231 		aprint_error(": increase MAXCPUS\n");
    232 		return;
    233 	}
    234 
    235 	/*
    236 	 * If we're an Application Processor, allocate a cpu_info
    237 	 * structure, otherwise use the primary's.
    238 	 */
    239 	if (caa->cpu_role == CPU_ROLE_AP) {
    240 		if ((boothowto & RB_MD1) != 0) {
    241 			aprint_error(": multiprocessor boot disabled\n");
    242 			if (!pmf_device_register(self, NULL, NULL))
    243 				aprint_error_dev(self,
    244 				   "couldn't establish power handler\n");
    245 			return;
    246 		}
    247 		aprint_naive(": Application Processor\n");
    248 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    249 		    KM_SLEEP);
    250 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    251 		ci->ci_curldt = -1;
    252 	} else {
    253 		aprint_naive(": %s Processor\n",
    254 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    255 		ci = &phycpu_info_primary;
    256 	}
    257 
    258 	ci->ci_self = ci;
    259 	sc->sc_info = ci;
    260 
    261 	ci->ci_dev = self;
    262 	ci->ci_cpuid = caa->cpu_number;
    263 	ci->ci_vcpu = NULL;
    264 
    265 	/*
    266 	 * Boot processor may not be attached first, but the below
    267 	 * must be done to allow booting other processors.
    268 	 */
    269 	if (!again) {
    270 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    271 		/* Basic init */
    272 		again = true;
    273 	}
    274 
    275 	printf(": ");
    276 	switch (caa->cpu_role) {
    277 	case CPU_ROLE_SP:
    278 		printf("(uniprocessor)\n");
    279 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    280 		break;
    281 
    282 	case CPU_ROLE_BP:
    283 		printf("(boot processor)\n");
    284 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    285 		break;
    286 
    287 	case CPU_ROLE_AP:
    288 		/*
    289 		 * report on an AP
    290 		 */
    291 		printf("(application processor)\n");
    292 		if (ci->ci_flags & CPUF_PRESENT) {
    293 			struct cpu_info *tmp;
    294 
    295 			tmp = phycpu_info_list;
    296 			while (tmp->ci_next)
    297 				tmp = tmp->ci_next;
    298 
    299 			tmp->ci_next = ci;
    300 		}
    301 		break;
    302 
    303 	default:
    304 		panic("unknown processor type??\n");
    305 	}
    306 
    307 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    308 
    309 	return;
    310 }
    311 
    312 int
    313 vcpu_match(device_t parent, cfdata_t match, void *aux)
    314 {
    315 	struct vcpu_attach_args *vcaa = aux;
    316 
    317 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
    318 		return 1;
    319 	return 0;
    320 }
    321 
    322 void
    323 vcpu_attach(device_t parent, device_t self, void *aux)
    324 {
    325 	struct vcpu_attach_args *vcaa = aux;
    326 
    327 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    328 }
    329 
    330 static void
    331 cpu_vm_init(struct cpu_info *ci)
    332 {
    333 	int ncolors = 2, i;
    334 
    335 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    336 		struct x86_cache_info *cai;
    337 		int tcolors;
    338 
    339 		cai = &ci->ci_cinfo[i];
    340 
    341 		tcolors = atop(cai->cai_totalsize);
    342 		switch(cai->cai_associativity) {
    343 		case 0xff:
    344 			tcolors = 1; /* fully associative */
    345 			break;
    346 		case 0:
    347 		case 1:
    348 			break;
    349 		default:
    350 			tcolors /= cai->cai_associativity;
    351 		}
    352 		ncolors = max(ncolors, tcolors);
    353 	}
    354 
    355 	/*
    356 	 * Knowing the size of the largest cache on this CPU, re-color
    357 	 * our pages.
    358 	 */
    359 	if (ncolors <= uvmexp.ncolors)
    360 		return;
    361 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    362 	uvm_page_recolor(ncolors);
    363 }
    364 
    365 void
    366 cpu_attach_common(device_t parent, device_t self, void *aux)
    367 {
    368 	struct cpu_softc *sc = device_private(self);
    369 	struct cpu_attach_args *caa = aux;
    370 	struct cpu_info *ci;
    371 	uintptr_t ptr;
    372 	int cpunum = caa->cpu_number;
    373 	static bool again = false;
    374 
    375 	sc->sc_dev = self;
    376 
    377 	/*
    378 	 * If we're an Application Processor, allocate a cpu_info
    379 	 * structure, otherwise use the primary's.
    380 	 */
    381 	if (caa->cpu_role == CPU_ROLE_AP) {
    382 		aprint_naive(": Application Processor\n");
    383 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    384 		    KM_SLEEP);
    385 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    386 		memset(ci, 0, sizeof(*ci));
    387 #ifdef TRAPLOG
    388 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    389 #endif
    390 	} else {
    391 		aprint_naive(": %s Processor\n",
    392 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    393 		ci = &cpu_info_primary;
    394 #if NLAPIC > 0
    395 		if (cpunum != lapic_cpu_number()) {
    396 			/* XXX should be done earlier */
    397 			uint32_t reg;
    398 			aprint_verbose("\n");
    399 			aprint_verbose_dev(self, "running CPU at apic %d"
    400 			    " instead of at expected %d", lapic_cpu_number(),
    401 			    cpunum);
    402 			reg = i82489_readreg(LAPIC_ID);
    403 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    404 			    (cpunum << LAPIC_ID_SHIFT));
    405 		}
    406 		if (cpunum != lapic_cpu_number()) {
    407 			aprint_error_dev(self, "unable to reset apic id\n");
    408 		}
    409 #endif
    410 	}
    411 
    412 	ci->ci_self = ci;
    413 	sc->sc_info = ci;
    414 	ci->ci_dev = self;
    415 	ci->ci_cpuid = cpunum;
    416 
    417 	KASSERT(HYPERVISOR_shared_info != NULL);
    418 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    419 
    420 	ci->ci_func = caa->cpu_func;
    421 
    422 	/* Must be called before mi_cpu_attach(). */
    423 	cpu_vm_init(ci);
    424 
    425 	if (caa->cpu_role == CPU_ROLE_AP) {
    426 		int error;
    427 
    428 		error = mi_cpu_attach(ci);
    429 		if (error != 0) {
    430 			aprint_normal("\n");
    431 			aprint_error_dev(self,
    432 			    "mi_cpu_attach failed with %d\n", error);
    433 			return;
    434 		}
    435 	} else {
    436 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    437 	}
    438 
    439 	ci->ci_cpumask = (1 << cpu_index(ci));
    440 	pmap_reference(pmap_kernel());
    441 	ci->ci_pmap = pmap_kernel();
    442 	ci->ci_tlbstate = TLBSTATE_STALE;
    443 
    444 	/*
    445 	 * Boot processor may not be attached first, but the below
    446 	 * must be done to allow booting other processors.
    447 	 */
    448 	if (!again) {
    449 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    450 		/* Basic init. */
    451 		cpu_intr_init(ci);
    452 		cpu_get_tsc_freq(ci);
    453 		cpu_init(ci);
    454 		cpu_set_tss_gates(ci);
    455 		pmap_cpu_init_late(ci);
    456 #if NLAPIC > 0
    457 		if (caa->cpu_role != CPU_ROLE_SP) {
    458 			/* Enable lapic. */
    459 			lapic_enable();
    460 			lapic_set_lvt();
    461 			lapic_calibrate_timer();
    462 		}
    463 #endif
    464 		/* Make sure DELAY() is initialized. */
    465 		DELAY(1);
    466 		again = true;
    467 	}
    468 
    469 	/* further PCB init done later. */
    470 
    471 	switch (caa->cpu_role) {
    472 	case CPU_ROLE_SP:
    473 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    474 		cpu_identify(ci);
    475 #if 0
    476 		x86_errata();
    477 #endif
    478 		x86_cpu_idle_init();
    479 		break;
    480 
    481 	case CPU_ROLE_BP:
    482 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    483 		cpu_identify(ci);
    484 		cpu_init(ci);
    485 #if 0
    486 		x86_errata();
    487 #endif
    488 		x86_cpu_idle_init();
    489 		break;
    490 
    491 	case CPU_ROLE_AP:
    492 		/*
    493 		 * report on an AP
    494 		 */
    495 
    496 #if defined(MULTIPROCESSOR)
    497 		cpu_intr_init(ci);
    498 		gdt_alloc_cpu(ci);
    499 		cpu_set_tss_gates(ci);
    500 		pmap_cpu_init_early(ci);
    501 		pmap_cpu_init_late(ci);
    502 		cpu_start_secondary(ci);
    503 		if (ci->ci_flags & CPUF_PRESENT) {
    504 			struct cpu_info *tmp;
    505 
    506 			identifycpu(ci);
    507 			tmp = cpu_info_list;
    508 			while (tmp->ci_next)
    509 				tmp = tmp->ci_next;
    510 
    511 			tmp->ci_next = ci;
    512 		}
    513 #else
    514 		aprint_error_dev(self, "not started\n");
    515 #endif
    516 		break;
    517 
    518 	default:
    519 		aprint_normal("\n");
    520 		panic("unknown processor type??\n");
    521 	}
    522 
    523 	pat_init(ci);
    524 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    525 
    526 #if 0
    527 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    528 		aprint_error_dev(self, "couldn't establish power handler\n");
    529 #endif
    530 
    531 #if defined(MULTIPROCESSOR)
    532 	if (mp_verbose) {
    533 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    534 		struct pcb *pcb = lwp_getpcb(l);
    535 
    536 		aprint_verbose_dev(self,
    537 		    "idle lwp at %p, idle sp at 0x%p\n",
    538 		    l,
    539 #ifdef i386
    540 		    (void *)pcb->pcb_esp
    541 #else
    542 		    (void *)pcb->pcb_rsp
    543 #endif
    544 		);
    545 
    546 	}
    547 #endif
    548 }
    549 
    550 /*
    551  * Initialize the processor appropriately.
    552  */
    553 
    554 void
    555 cpu_init(struct cpu_info *ci)
    556 {
    557 
    558 	/*
    559 	 * On a P6 or above, enable global TLB caching if the
    560 	 * hardware supports it.
    561 	 */
    562 	if (cpu_feature[0] & CPUID_PGE)
    563 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    564 
    565 #ifdef XXXMTRR
    566 	/*
    567 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    568 	 */
    569 	if (cpu_feature[0] & CPUID_MTRR) {
    570 		if ((ci->ci_flags & CPUF_AP) == 0)
    571 			i686_mtrr_init_first();
    572 		mtrr_init_cpu(ci);
    573 	}
    574 #endif
    575 	/*
    576 	 * If we have FXSAVE/FXRESTOR, use them.
    577 	 */
    578 	if (cpu_feature[0] & CPUID_FXSR) {
    579 		lcr4(rcr4() | CR4_OSFXSR);
    580 
    581 		/*
    582 		 * If we have SSE/SSE2, enable XMM exceptions.
    583 		 */
    584 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    585 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    586 	}
    587 
    588 #ifdef __x86_64__
    589 	/* No user PGD mapped for this CPU yet */
    590 	ci->ci_xen_current_user_pgd = 0;
    591 #endif
    592 
    593 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    594 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    595 }
    596 
    597 
    598 #ifdef MULTIPROCESSOR
    599 void
    600 cpu_boot_secondary_processors(void)
    601 {
    602 	struct cpu_info *ci;
    603 	u_long i;
    604 
    605 	for (i = 0; i < maxcpus; i++) {
    606 		ci = cpu_lookup(i);
    607 		if (ci == NULL)
    608 			continue;
    609 		if (ci->ci_data.cpu_idlelwp == NULL)
    610 			continue;
    611 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    612 			continue;
    613 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    614 			continue;
    615 		cpu_boot_secondary(ci);
    616 	}
    617 
    618 	x86_mp_online = true;
    619 }
    620 
    621 static void
    622 cpu_init_idle_lwp(struct cpu_info *ci)
    623 {
    624 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    625 	struct pcb *pcb = lwp_getpcb(l);
    626 
    627 	pcb->pcb_cr0 = rcr0();
    628 }
    629 
    630 void
    631 cpu_init_idle_lwps(void)
    632 {
    633 	struct cpu_info *ci;
    634 	u_long i;
    635 
    636 	for (i = 0; i < maxcpus; i++) {
    637 		ci = cpu_lookup(i);
    638 		if (ci == NULL)
    639 			continue;
    640 		if (ci->ci_data.cpu_idlelwp == NULL)
    641 			continue;
    642 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    643 			continue;
    644 		cpu_init_idle_lwp(ci);
    645 	}
    646 }
    647 
    648 void
    649 cpu_start_secondary(struct cpu_info *ci)
    650 {
    651 	int i;
    652 	struct pmap *kpm = pmap_kernel();
    653 	extern uint32_t mp_pdirpa;
    654 
    655 	mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
    656 
    657 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    658 
    659 	aprint_debug_dev(ci->ci_dev, "starting\n");
    660 
    661 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    662 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
    663 		return;
    664 
    665 	/*
    666 	 * wait for it to become ready
    667 	 */
    668 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    669 #ifdef MPDEBUG
    670 		extern int cpu_trace[3];
    671 		static int otrace[3];
    672 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    673 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    674 				cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    675 			memcpy(otrace, cpu_trace, sizeof(otrace));
    676 		}
    677 #endif
    678 		delay(10);
    679 	}
    680 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    681 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    682 #if defined(MPDEBUG) && defined(DDB)
    683 		printf("dropping into debugger; continue from here to resume boot\n");
    684 		Debugger();
    685 #endif
    686 	}
    687 
    688 	CPU_START_CLEANUP(ci);
    689 }
    690 
    691 void
    692 cpu_boot_secondary(struct cpu_info *ci)
    693 {
    694 	int i;
    695 
    696 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    697 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    698 		delay(10);
    699 	}
    700 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    701 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    702 #if defined(MPDEBUG) && defined(DDB)
    703 		printf("dropping into debugger; continue from here to resume boot\n");
    704 		Debugger();
    705 #endif
    706 	}
    707 }
    708 
    709 /*
    710  * The CPU ends up here when its ready to run
    711  * This is called from code in mptramp.s; at this point, we are running
    712  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    713  * this processor will enter the idle loop and start looking for work.
    714  *
    715  * XXX should share some of this with init386 in machdep.c
    716  */
    717 void
    718 cpu_hatch(void *v)
    719 {
    720 	struct cpu_info *ci = (struct cpu_info *)v;
    721 	struct pcb *pcb;
    722 	int s, i;
    723 
    724 	cpu_probe(ci);
    725 
    726 	cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
    727 	cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
    728 
    729         cpu_init_msrs(ci, true);
    730 
    731 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    732 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    733 	while ((ci->ci_flags & CPUF_GO) == 0) {
    734 		/* Don't use delay, boot CPU may be patching the text. */
    735 		for (i = 10000; i != 0; i--)
    736 			x86_pause();
    737 	}
    738 
    739 	/* Because the text may have been patched in x86_patch(). */
    740 	wbinvd();
    741 	x86_flush();
    742 
    743 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    744 
    745 	pcb = lwp_getpcb(curlwp);
    746 	lcr3(pmap_kernel()->pm_pdirpa);
    747 	pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
    748 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    749 	lcr0(pcb->pcb_cr0);
    750 
    751 	cpu_init_idt();
    752 	gdt_init_cpu(ci);
    753 	lapic_enable();
    754 	lapic_set_lvt();
    755 	lapic_initclocks();
    756 
    757 #ifdef i386
    758 	npxinit(ci);
    759 #else
    760 	fpuinit(ci);
    761 #endif
    762 
    763 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    764 	ltr(ci->ci_tss_sel);
    765 
    766 	cpu_init(ci);
    767 	cpu_get_tsc_freq(ci);
    768 
    769 	s = splhigh();
    770 #ifdef i386
    771 	lapic_tpr = 0;
    772 #else
    773 	lcr8(0);
    774 #endif
    775 	x86_enable_intr();
    776 	splx(s);
    777 #if 0
    778 	x86_errata();
    779 #endif
    780 
    781 	aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
    782 		(long)ci->ci_cpuid);
    783 }
    784 
    785 #if defined(DDB)
    786 
    787 #include <ddb/db_output.h>
    788 #include <machine/db_machdep.h>
    789 
    790 /*
    791  * Dump CPU information from ddb.
    792  */
    793 void
    794 cpu_debug_dump(void)
    795 {
    796 	struct cpu_info *ci;
    797 	CPU_INFO_ITERATOR cii;
    798 
    799 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    800 	for (CPU_INFO_FOREACH(cii, ci)) {
    801 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    802 		    ci,
    803 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    804 		    (long)ci->ci_cpuid,
    805 		    ci->ci_flags, ci->ci_ipis,
    806 		    ci->ci_curlwp,
    807 		    ci->ci_fpcurlwp);
    808 	}
    809 }
    810 #endif /* DDB */
    811 
    812 static void
    813 cpu_copy_trampoline(void)
    814 {
    815 	/*
    816 	 * Copy boot code.
    817 	 */
    818 	extern u_char cpu_spinup_trampoline[];
    819 	extern u_char cpu_spinup_trampoline_end[];
    820 
    821 	vaddr_t mp_trampoline_vaddr;
    822 
    823 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    824 		UVM_KMF_VAONLY);
    825 
    826 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    827 		VM_PROT_READ | VM_PROT_WRITE, 0);
    828 	pmap_update(pmap_kernel());
    829 	memcpy((void *)mp_trampoline_vaddr,
    830 		cpu_spinup_trampoline,
    831 		cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    832 
    833 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    834 	pmap_update(pmap_kernel());
    835 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    836 }
    837 
    838 #endif /* MULTIPROCESSOR */
    839 
    840 #ifdef i386
    841 #if 0
    842 static void
    843 tss_init(struct i386tss *tss, void *stack, void *func)
    844 {
    845 	memset(tss, 0, sizeof *tss);
    846 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    847 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    848 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    849 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    850 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    851 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    852 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    853 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    854 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    855 	tss->__tss_eflags = PSL_MBO | PSL_NT;   /* XXX not needed? */
    856 	tss->__tss_eip = (int)func;
    857 }
    858 #endif
    859 
    860 /* XXX */
    861 #define IDTVEC(name)	__CONCAT(X, name)
    862 typedef void (vector)(void);
    863 extern vector IDTVEC(tss_trap08);
    864 #ifdef DDB
    865 extern vector Xintrddbipi;
    866 extern int ddb_vec;
    867 #endif
    868 
    869 static void
    870 cpu_set_tss_gates(struct cpu_info *ci)
    871 {
    872 #if 0
    873 	struct segment_descriptor sd;
    874 
    875 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    876 	    UVM_KMF_WIRED);
    877 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    878 	    IDTVEC(tss_trap08));
    879 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    880 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    881 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    882 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    883 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    884 #endif
    885 
    886 #if defined(DDB) && defined(MULTIPROCESSOR)
    887 	/*
    888 	 * Set up separate handler for the DDB IPI, so that it doesn't
    889 	 * stomp on a possibly corrupted stack.
    890 	 *
    891 	 * XXX overwriting the gate set in db_machine_init.
    892 	 * Should rearrange the code so that it's set only once.
    893 	 */
    894 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    895 	    UVM_KMF_WIRED);
    896 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    897 	    Xintrddbipi);
    898 
    899 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    900 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    901 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    902 
    903 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    904 	    GSEL(GIPITSS_SEL, SEL_KPL));
    905 #endif
    906 }
    907 #else
    908 static void
    909 cpu_set_tss_gates(struct cpu_info *ci)
    910 {
    911 
    912 }
    913 #endif	/* i386 */
    914 
    915 int
    916 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    917 {
    918 #if 0
    919 #if NLAPIC > 0
    920 	int error;
    921 #endif
    922 	unsigned short dwordptr[2];
    923 
    924 	/*
    925 	 * Bootstrap code must be addressable in real mode
    926 	 * and it must be page aligned.
    927 	 */
    928 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    929 
    930 	/*
    931 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    932 	 */
    933 
    934 	outb(IO_RTC, NVRAM_RESET);
    935 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    936 
    937 	/*
    938 	 * "and the warm reset vector (DWORD based at 40:67) to point
    939 	 * to the AP startup code ..."
    940 	 */
    941 
    942 	dwordptr[0] = 0;
    943 	dwordptr[1] = target >> 4;
    944 
    945 	pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    946 	pmap_update(pmap_kernel());
    947 
    948 	memcpy ((uint8_t *) 0x467, dwordptr, 4);
    949 
    950 	pmap_kremove (0, PAGE_SIZE);
    951 	pmap_update(pmap_kernel());
    952 
    953 #if NLAPIC > 0
    954 	/*
    955 	 * ... prior to executing the following sequence:"
    956 	 */
    957 
    958 	if (ci->ci_flags & CPUF_AP) {
    959 		if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
    960 			return error;
    961 
    962 		delay(10000);
    963 
    964 		if (cpu_feature & CPUID_APIC) {
    965 			error = x86_ipi_init(ci->ci_cpuid);
    966 			if (error != 0) {
    967 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    968 						__func__);
    969 				return error;
    970 			}
    971 
    972 			delay(10000);
    973 
    974 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    975 					LAPIC_DLMODE_STARTUP);
    976 			if (error != 0) {
    977 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    978 						__func__);
    979 				return error;
    980 			}
    981 			delay(200);
    982 
    983 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    984 					LAPIC_DLMODE_STARTUP);
    985 			if (error != 0) {
    986 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
    987 						__func__);
    988 				return error;
    989 			}
    990 			delay(200);
    991 		}
    992 	}
    993 #endif
    994 #endif /* 0 */
    995 	return 0;
    996 }
    997 
    998 void
    999 mp_cpu_start_cleanup(struct cpu_info *ci)
   1000 {
   1001 #if 0
   1002 	/*
   1003 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1004 	 */
   1005 
   1006 	outb(IO_RTC, NVRAM_RESET);
   1007 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1008 #endif
   1009 }
   1010 
   1011 void
   1012 cpu_init_msrs(struct cpu_info *ci, bool full)
   1013 {
   1014 #ifdef __x86_64__
   1015 	if (full) {
   1016 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1017 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1018 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1019 	}
   1020 #endif	/* __x86_64__ */
   1021 
   1022 	if (cpu_feature[2] & CPUID_NOX)
   1023 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1024 }
   1025 
   1026 void
   1027 cpu_offline_md(void)
   1028 {
   1029         int s;
   1030 
   1031         s = splhigh();
   1032 #ifdef __i386__
   1033         npxsave_cpu(true);
   1034 #else
   1035         fpusave_cpu(true);
   1036 #endif
   1037         splx(s);
   1038 }
   1039 
   1040 #if 0
   1041 /* XXX joerg restructure and restart CPUs individually */
   1042 static bool
   1043 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1044 {
   1045 	struct cpu_softc *sc = device_private(dv);
   1046 	struct cpu_info *ci = sc->sc_info;
   1047 	int err;
   1048 
   1049 	if (ci->ci_flags & CPUF_PRIMARY)
   1050 		return true;
   1051 	if (ci->ci_data.cpu_idlelwp == NULL)
   1052 		return true;
   1053 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1054 		return true;
   1055 
   1056 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1057 
   1058 	if (sc->sc_wasonline) {
   1059 		mutex_enter(&cpu_lock);
   1060 		err = cpu_setstate(ci, false);
   1061 		mutex_exit(&cpu_lock);
   1062 
   1063 		if (err)
   1064 			return false;
   1065 	}
   1066 
   1067 	return true;
   1068 }
   1069 
   1070 static bool
   1071 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1072 {
   1073 	struct cpu_softc *sc = device_private(dv);
   1074 	struct cpu_info *ci = sc->sc_info;
   1075 	int err = 0;
   1076 
   1077 	if (ci->ci_flags & CPUF_PRIMARY)
   1078 		return true;
   1079 	if (ci->ci_data.cpu_idlelwp == NULL)
   1080 		return true;
   1081 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1082 		return true;
   1083 
   1084 	if (sc->sc_wasonline) {
   1085 		mutex_enter(&cpu_lock);
   1086 		err = cpu_setstate(ci, true);
   1087 		mutex_exit(&cpu_lock);
   1088 	}
   1089 
   1090 	return err == 0;
   1091 }
   1092 #endif
   1093 
   1094 void
   1095 cpu_get_tsc_freq(struct cpu_info *ci)
   1096 {
   1097 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1098 	delay(1000000);
   1099 	uint64_t freq = 1000000000ULL << 32;
   1100 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1101 	if ( tinfo->tsc_shift < 0 )
   1102 		freq = freq << -tinfo->tsc_shift;
   1103 	else
   1104 		freq = freq >> tinfo->tsc_shift;
   1105 	ci->ci_data.cpu_cc_freq = freq;
   1106 }
   1107 
   1108 void
   1109 x86_cpu_idle_xen(void)
   1110 {
   1111 	struct cpu_info *ci = curcpu();
   1112 
   1113 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1114 
   1115 	x86_disable_intr();
   1116 	if (!__predict_false(ci->ci_want_resched)) {
   1117 		idle_block();
   1118 	} else {
   1119 		x86_enable_intr();
   1120 	}
   1121 }
   1122 
   1123 /*
   1124  * Loads pmap for the current CPU.
   1125  */
   1126 void
   1127 cpu_load_pmap(struct pmap *pmap)
   1128 {
   1129 #ifdef i386
   1130 #ifdef PAE
   1131 	int i, s;
   1132 	struct cpu_info *ci;
   1133 
   1134 	s = splvm(); /* just to be safe */
   1135 	ci = curcpu();
   1136 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1137 	/* don't update the kernel L3 slot */
   1138 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1139 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1140 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1141 	}
   1142 	splx(s);
   1143 	tlbflush();
   1144 #else /* PAE */
   1145 	lcr3(pmap_pdirpa(pmap, 0));
   1146 #endif /* PAE */
   1147 #endif /* i386 */
   1148 
   1149 #ifdef __x86_64__
   1150 	int i, s;
   1151 	pd_entry_t *old_pgd, *new_pgd;
   1152 	paddr_t addr;
   1153 	struct cpu_info *ci;
   1154 
   1155 	/* kernel pmap always in cr3 and should never go in user cr3 */
   1156 	if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
   1157 		ci = curcpu();
   1158 		/*
   1159 		 * Map user space address in kernel space and load
   1160 		 * user cr3
   1161 		 */
   1162 		s = splvm();
   1163 		new_pgd = pmap->pm_pdir;
   1164 		old_pgd = pmap_kernel()->pm_pdir;
   1165 		addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
   1166 		for (i = 0; i < PDIR_SLOT_PTE;
   1167 		    i++, addr += sizeof(pd_entry_t)) {
   1168 			if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
   1169 				xpq_queue_pte_update(addr, new_pgd[i]);
   1170 		}
   1171 		tlbflush();
   1172 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1173 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1174 		splx(s);
   1175 	}
   1176 #endif /* __x86_64__ */
   1177 }
   1178