Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.40.2.5
      1 /*	$NetBSD: cpu.c,v 1.40.2.5 2010/11/06 08:08:23 uebayasi Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.40.2.5 2010/11/06 08:08:23 uebayasi Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 
     89 #include <uvm/uvm_extern.h>
     90 #include <uvm/uvm_page.h>
     91 
     92 #include <machine/cpufunc.h>
     93 #include <machine/cpuvar.h>
     94 #include <machine/pmap.h>
     95 #include <machine/vmparam.h>
     96 #include <machine/mpbiosvar.h>
     97 #include <machine/pcb.h>
     98 #include <machine/specialreg.h>
     99 #include <machine/segments.h>
    100 #include <machine/gdt.h>
    101 #include <machine/mtrr.h>
    102 #include <machine/pio.h>
    103 
    104 #include <xen/vcpuvar.h>
    105 
    106 #if NLAPIC > 0
    107 #include <machine/apicvar.h>
    108 #include <machine/i82489reg.h>
    109 #include <machine/i82489var.h>
    110 #endif
    111 
    112 #include <dev/ic/mc146818reg.h>
    113 #include <dev/isa/isareg.h>
    114 
    115 #if MAXCPUS > 32
    116 #error cpu_info contains 32bit bitmasks
    117 #endif
    118 
    119 int     cpu_match(device_t, cfdata_t, void *);
    120 void    cpu_attach(device_t, device_t, void *);
    121 int     vcpu_match(device_t, cfdata_t, void *);
    122 void    vcpu_attach(device_t, device_t, void *);
    123 void    cpu_attach_common(device_t, device_t, void *);
    124 void	cpu_offline_md(void);
    125 
    126 struct cpu_softc {
    127 	device_t sc_dev;		/* device tree glue */
    128 	struct cpu_info *sc_info;	/* pointer to CPU info */
    129 	bool sc_wasonline;
    130 };
    131 
    132 int mp_cpu_start(struct cpu_info *, paddr_t);
    133 void mp_cpu_start_cleanup(struct cpu_info *);
    134 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    135 				      mp_cpu_start_cleanup };
    136 
    137 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    138     cpu_match, cpu_attach, NULL, NULL);
    139 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    140     vcpu_match, vcpu_attach, NULL, NULL);
    141 
    142 /*
    143  * Statically-allocated CPU info for the primary CPU (or the only
    144  * CPU, on uniprocessors).  The CPU info list is initialized to
    145  * point at it.
    146  */
    147 #ifdef TRAPLOG
    148 #include <machine/tlog.h>
    149 struct tlog tlog_primary;
    150 #endif
    151 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    152 	.ci_dev = 0,
    153 	.ci_self = &cpu_info_primary,
    154 	.ci_idepth = -1,
    155 	.ci_curlwp = &lwp0,
    156 	.ci_curldt = -1,
    157 #ifdef TRAPLOG
    158 	.ci_tlog = &tlog_primary,
    159 #endif
    160 
    161 };
    162 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    163 	.ci_dev = 0,
    164 	.ci_self = &phycpu_info_primary,
    165 };
    166 
    167 struct cpu_info *cpu_info_list = &cpu_info_primary;
    168 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    169 
    170 static void	cpu_set_tss_gates(struct cpu_info *ci);
    171 
    172 uint32_t cpus_attached = 0;
    173 uint32_t cpus_running = 0;
    174 
    175 uint32_t phycpus_attached = 0;
    176 uint32_t phycpus_running = 0;
    177 
    178 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    179 			  *	[0] basic features %edx
    180 			  *	[1] basic features %ecx
    181 			  *	[2] extended features %edx
    182 			  *	[3] extended features %ecx
    183 			  *	[4] VIA padlock features
    184 			  */
    185 
    186 bool x86_mp_online;
    187 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    188 
    189 #if defined(MULTIPROCESSOR)
    190 void    	cpu_hatch(void *);
    191 static void    	cpu_boot_secondary(struct cpu_info *ci);
    192 static void    	cpu_start_secondary(struct cpu_info *ci);
    193 static void	cpu_copy_trampoline(void);
    194 
    195 /*
    196  * Runs once per boot once multiprocessor goo has been detected and
    197  * the local APIC on the boot processor has been mapped.
    198  *
    199  * Called from lapic_boot_init() (from mpbios_scan()).
    200  */
    201 void
    202 cpu_init_first(void)
    203 {
    204 
    205 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    206 	cpu_copy_trampoline();
    207 }
    208 #endif	/* MULTIPROCESSOR */
    209 
    210 int
    211 cpu_match(device_t parent, cfdata_t match, void *aux)
    212 {
    213 
    214 	return 1;
    215 }
    216 
    217 void
    218 cpu_attach(device_t parent, device_t self, void *aux)
    219 {
    220 	struct cpu_softc *sc = device_private(self);
    221 	struct cpu_attach_args *caa = aux;
    222 	struct cpu_info *ci;
    223 	uintptr_t ptr;
    224 	static bool again = false;
    225 
    226 	sc->sc_dev = self;
    227 
    228 	if (phycpus_attached == ~0) {
    229 		aprint_error(": increase MAXCPUS\n");
    230 		return;
    231 	}
    232 
    233 	/*
    234 	 * If we're an Application Processor, allocate a cpu_info
    235 	 * structure, otherwise use the primary's.
    236 	 */
    237 	if (caa->cpu_role == CPU_ROLE_AP) {
    238 		if ((boothowto & RB_MD1) != 0) {
    239 			aprint_error(": multiprocessor boot disabled\n");
    240 			if (!pmf_device_register(self, NULL, NULL))
    241 				aprint_error_dev(self,
    242 				   "couldn't establish power handler\n");
    243 			return;
    244 		}
    245 		aprint_naive(": Application Processor\n");
    246 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    247 		    KM_SLEEP);
    248 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    249 		ci->ci_curldt = -1;
    250 	} else {
    251 		aprint_naive(": %s Processor\n",
    252 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    253 		ci = &phycpu_info_primary;
    254 	}
    255 
    256 	ci->ci_self = ci;
    257 	sc->sc_info = ci;
    258 
    259 	ci->ci_dev = self;
    260 	ci->ci_acpiid = caa->cpu_id;
    261 	ci->ci_cpuid = caa->cpu_number;
    262 	ci->ci_vcpu = NULL;
    263 
    264 	/*
    265 	 * Boot processor may not be attached first, but the below
    266 	 * must be done to allow booting other processors.
    267 	 */
    268 	if (!again) {
    269 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    270 		/* Basic init */
    271 		again = true;
    272 	}
    273 
    274 	printf(": ");
    275 	switch (caa->cpu_role) {
    276 	case CPU_ROLE_SP:
    277 		printf("(uniprocessor)\n");
    278 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    279 		break;
    280 
    281 	case CPU_ROLE_BP:
    282 		printf("(boot processor)\n");
    283 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    284 		break;
    285 
    286 	case CPU_ROLE_AP:
    287 		/*
    288 		 * report on an AP
    289 		 */
    290 		printf("(application processor)\n");
    291 		if (ci->ci_flags & CPUF_PRESENT) {
    292 			struct cpu_info *tmp;
    293 
    294 			tmp = phycpu_info_list;
    295 			while (tmp->ci_next)
    296 				tmp = tmp->ci_next;
    297 
    298 			tmp->ci_next = ci;
    299 		}
    300 		break;
    301 
    302 	default:
    303 		panic("unknown processor type??\n");
    304 	}
    305 
    306 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    307 
    308 	return;
    309 }
    310 
    311 int
    312 vcpu_match(device_t parent, cfdata_t match, void *aux)
    313 {
    314 	struct vcpu_attach_args *vcaa = aux;
    315 
    316 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
    317 		return 1;
    318 	return 0;
    319 }
    320 
    321 void
    322 vcpu_attach(device_t parent, device_t self, void *aux)
    323 {
    324 	struct vcpu_attach_args *vcaa = aux;
    325 
    326 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    327 }
    328 
    329 static void
    330 cpu_vm_init(struct cpu_info *ci)
    331 {
    332 	int ncolors = 2, i;
    333 
    334 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    335 		struct x86_cache_info *cai;
    336 		int tcolors;
    337 
    338 		cai = &ci->ci_cinfo[i];
    339 
    340 		tcolors = atop(cai->cai_totalsize);
    341 		switch(cai->cai_associativity) {
    342 		case 0xff:
    343 			tcolors = 1; /* fully associative */
    344 			break;
    345 		case 0:
    346 		case 1:
    347 			break;
    348 		default:
    349 			tcolors /= cai->cai_associativity;
    350 		}
    351 		ncolors = max(ncolors, tcolors);
    352 	}
    353 
    354 	/*
    355 	 * Knowing the size of the largest cache on this CPU, re-color
    356 	 * our pages.
    357 	 */
    358 	if (ncolors <= uvmexp.ncolors)
    359 		return;
    360 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    361 	uvm_page_recolor(ncolors);
    362 }
    363 
    364 void
    365 cpu_attach_common(device_t parent, device_t self, void *aux)
    366 {
    367 	struct cpu_softc *sc = device_private(self);
    368 	struct cpu_attach_args *caa = aux;
    369 	struct cpu_info *ci;
    370 	uintptr_t ptr;
    371 	int cpunum = caa->cpu_number;
    372 	static bool again = false;
    373 
    374 	sc->sc_dev = self;
    375 
    376 	/*
    377 	 * If we're an Application Processor, allocate a cpu_info
    378 	 * structure, otherwise use the primary's.
    379 	 */
    380 	if (caa->cpu_role == CPU_ROLE_AP) {
    381 		aprint_naive(": Application Processor\n");
    382 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    383 		    KM_SLEEP);
    384 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    385 		memset(ci, 0, sizeof(*ci));
    386 #ifdef TRAPLOG
    387 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    388 #endif
    389 	} else {
    390 		aprint_naive(": %s Processor\n",
    391 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    392 		ci = &cpu_info_primary;
    393 #if NLAPIC > 0
    394 		if (cpunum != lapic_cpu_number()) {
    395 			/* XXX should be done earlier */
    396 			uint32_t reg;
    397 			aprint_verbose("\n");
    398 			aprint_verbose_dev(self, "running CPU at apic %d"
    399 			    " instead of at expected %d", lapic_cpu_number(),
    400 			    cpunum);
    401 			reg = i82489_readreg(LAPIC_ID);
    402 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    403 			    (cpunum << LAPIC_ID_SHIFT));
    404 		}
    405 		if (cpunum != lapic_cpu_number()) {
    406 			aprint_error_dev(self, "unable to reset apic id\n");
    407 		}
    408 #endif
    409 	}
    410 
    411 	ci->ci_self = ci;
    412 	sc->sc_info = ci;
    413 	ci->ci_dev = self;
    414 	ci->ci_cpuid = cpunum;
    415 
    416 	KASSERT(HYPERVISOR_shared_info != NULL);
    417 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    418 
    419 	ci->ci_func = caa->cpu_func;
    420 
    421 	/* Must be called before mi_cpu_attach(). */
    422 	cpu_vm_init(ci);
    423 
    424 	if (caa->cpu_role == CPU_ROLE_AP) {
    425 		int error;
    426 
    427 		error = mi_cpu_attach(ci);
    428 		if (error != 0) {
    429 			aprint_normal("\n");
    430 			aprint_error_dev(self,
    431 			    "mi_cpu_attach failed with %d\n", error);
    432 			return;
    433 		}
    434 	} else {
    435 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    436 	}
    437 
    438 	ci->ci_cpumask = (1 << cpu_index(ci));
    439 	pmap_reference(pmap_kernel());
    440 	ci->ci_pmap = pmap_kernel();
    441 	ci->ci_tlbstate = TLBSTATE_STALE;
    442 
    443 	/*
    444 	 * Boot processor may not be attached first, but the below
    445 	 * must be done to allow booting other processors.
    446 	 */
    447 	if (!again) {
    448 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    449 		/* Basic init. */
    450 		cpu_intr_init(ci);
    451 		cpu_get_tsc_freq(ci);
    452 		cpu_init(ci);
    453 		cpu_set_tss_gates(ci);
    454 		pmap_cpu_init_late(ci);
    455 #if NLAPIC > 0
    456 		if (caa->cpu_role != CPU_ROLE_SP) {
    457 			/* Enable lapic. */
    458 			lapic_enable();
    459 			lapic_set_lvt();
    460 			lapic_calibrate_timer();
    461 		}
    462 #endif
    463 		/* Make sure DELAY() is initialized. */
    464 		DELAY(1);
    465 		again = true;
    466 	}
    467 
    468 	/* further PCB init done later. */
    469 
    470 	switch (caa->cpu_role) {
    471 	case CPU_ROLE_SP:
    472 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    473 		cpu_identify(ci);
    474 #if 0
    475 		x86_errata();
    476 #endif
    477 		x86_cpu_idle_init();
    478 		break;
    479 
    480 	case CPU_ROLE_BP:
    481 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    482 		cpu_identify(ci);
    483 		cpu_init(ci);
    484 #if 0
    485 		x86_errata();
    486 #endif
    487 		x86_cpu_idle_init();
    488 		break;
    489 
    490 	case CPU_ROLE_AP:
    491 		/*
    492 		 * report on an AP
    493 		 */
    494 
    495 #if defined(MULTIPROCESSOR)
    496 		cpu_intr_init(ci);
    497 		gdt_alloc_cpu(ci);
    498 		cpu_set_tss_gates(ci);
    499 		pmap_cpu_init_early(ci);
    500 		pmap_cpu_init_late(ci);
    501 		cpu_start_secondary(ci);
    502 		if (ci->ci_flags & CPUF_PRESENT) {
    503 			struct cpu_info *tmp;
    504 
    505 			identifycpu(ci);
    506 			tmp = cpu_info_list;
    507 			while (tmp->ci_next)
    508 				tmp = tmp->ci_next;
    509 
    510 			tmp->ci_next = ci;
    511 		}
    512 #else
    513 		aprint_error_dev(self, "not started\n");
    514 #endif
    515 		break;
    516 
    517 	default:
    518 		aprint_normal("\n");
    519 		panic("unknown processor type??\n");
    520 	}
    521 
    522 	pat_init(ci);
    523 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    524 
    525 #if 0
    526 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    527 		aprint_error_dev(self, "couldn't establish power handler\n");
    528 #endif
    529 
    530 #if defined(MULTIPROCESSOR)
    531 	if (mp_verbose) {
    532 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    533 		struct pcb *pcb = lwp_getpcb(l);
    534 
    535 		aprint_verbose_dev(self,
    536 		    "idle lwp at %p, idle sp at 0x%p\n",
    537 		    l,
    538 #ifdef i386
    539 		    (void *)pcb->pcb_esp
    540 #else
    541 		    (void *)pcb->pcb_rsp
    542 #endif
    543 		);
    544 
    545 	}
    546 #endif
    547 }
    548 
    549 /*
    550  * Initialize the processor appropriately.
    551  */
    552 
    553 void
    554 cpu_init(struct cpu_info *ci)
    555 {
    556 
    557 	/*
    558 	 * On a P6 or above, enable global TLB caching if the
    559 	 * hardware supports it.
    560 	 */
    561 	if (cpu_feature[0] & CPUID_PGE)
    562 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    563 
    564 #ifdef XXXMTRR
    565 	/*
    566 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    567 	 */
    568 	if (cpu_feature[0] & CPUID_MTRR) {
    569 		if ((ci->ci_flags & CPUF_AP) == 0)
    570 			i686_mtrr_init_first();
    571 		mtrr_init_cpu(ci);
    572 	}
    573 #endif
    574 	/*
    575 	 * If we have FXSAVE/FXRESTOR, use them.
    576 	 */
    577 	if (cpu_feature[0] & CPUID_FXSR) {
    578 		lcr4(rcr4() | CR4_OSFXSR);
    579 
    580 		/*
    581 		 * If we have SSE/SSE2, enable XMM exceptions.
    582 		 */
    583 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    584 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    585 	}
    586 
    587 #ifdef __x86_64__
    588 	/* No user PGD mapped for this CPU yet */
    589 	ci->ci_xen_current_user_pgd = 0;
    590 #endif
    591 
    592 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    593 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    594 }
    595 
    596 
    597 #ifdef MULTIPROCESSOR
    598 void
    599 cpu_boot_secondary_processors(void)
    600 {
    601 	struct cpu_info *ci;
    602 	u_long i;
    603 
    604 	for (i = 0; i < maxcpus; i++) {
    605 		ci = cpu_lookup(i);
    606 		if (ci == NULL)
    607 			continue;
    608 		if (ci->ci_data.cpu_idlelwp == NULL)
    609 			continue;
    610 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    611 			continue;
    612 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    613 			continue;
    614 		cpu_boot_secondary(ci);
    615 	}
    616 
    617 	x86_mp_online = true;
    618 }
    619 
    620 static void
    621 cpu_init_idle_lwp(struct cpu_info *ci)
    622 {
    623 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    624 	struct pcb *pcb = lwp_getpcb(l);
    625 
    626 	pcb->pcb_cr0 = rcr0();
    627 }
    628 
    629 void
    630 cpu_init_idle_lwps(void)
    631 {
    632 	struct cpu_info *ci;
    633 	u_long i;
    634 
    635 	for (i = 0; i < maxcpus; i++) {
    636 		ci = cpu_lookup(i);
    637 		if (ci == NULL)
    638 			continue;
    639 		if (ci->ci_data.cpu_idlelwp == NULL)
    640 			continue;
    641 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    642 			continue;
    643 		cpu_init_idle_lwp(ci);
    644 	}
    645 }
    646 
    647 void
    648 cpu_start_secondary(struct cpu_info *ci)
    649 {
    650 	int i;
    651 	struct pmap *kpm = pmap_kernel();
    652 	extern uint32_t mp_pdirpa;
    653 
    654 	mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
    655 
    656 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    657 
    658 	aprint_debug_dev(ci->ci_dev, "starting\n");
    659 
    660 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    661 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
    662 		return;
    663 
    664 	/*
    665 	 * wait for it to become ready
    666 	 */
    667 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    668 #ifdef MPDEBUG
    669 		extern int cpu_trace[3];
    670 		static int otrace[3];
    671 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    672 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    673 				cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    674 			memcpy(otrace, cpu_trace, sizeof(otrace));
    675 		}
    676 #endif
    677 		delay(10);
    678 	}
    679 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    680 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    681 #if defined(MPDEBUG) && defined(DDB)
    682 		printf("dropping into debugger; continue from here to resume boot\n");
    683 		Debugger();
    684 #endif
    685 	}
    686 
    687 	CPU_START_CLEANUP(ci);
    688 }
    689 
    690 void
    691 cpu_boot_secondary(struct cpu_info *ci)
    692 {
    693 	int i;
    694 
    695 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    696 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    697 		delay(10);
    698 	}
    699 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    700 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    701 #if defined(MPDEBUG) && defined(DDB)
    702 		printf("dropping into debugger; continue from here to resume boot\n");
    703 		Debugger();
    704 #endif
    705 	}
    706 }
    707 
    708 /*
    709  * The CPU ends up here when its ready to run
    710  * This is called from code in mptramp.s; at this point, we are running
    711  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    712  * this processor will enter the idle loop and start looking for work.
    713  *
    714  * XXX should share some of this with init386 in machdep.c
    715  */
    716 void
    717 cpu_hatch(void *v)
    718 {
    719 	struct cpu_info *ci = (struct cpu_info *)v;
    720 	struct pcb *pcb;
    721 	int s, i;
    722 
    723 	cpu_probe(ci);
    724 
    725 	cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
    726 	cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
    727 
    728         cpu_init_msrs(ci, true);
    729 
    730 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    731 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    732 	while ((ci->ci_flags & CPUF_GO) == 0) {
    733 		/* Don't use delay, boot CPU may be patching the text. */
    734 		for (i = 10000; i != 0; i--)
    735 			x86_pause();
    736 	}
    737 
    738 	/* Because the text may have been patched in x86_patch(). */
    739 	wbinvd();
    740 	x86_flush();
    741 
    742 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    743 
    744 	pcb = lwp_getpcb(curlwp);
    745 	lcr3(pmap_kernel()->pm_pdirpa);
    746 	pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
    747 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    748 	lcr0(pcb->pcb_cr0);
    749 
    750 	cpu_init_idt();
    751 	gdt_init_cpu(ci);
    752 	lapic_enable();
    753 	lapic_set_lvt();
    754 	lapic_initclocks();
    755 
    756 #ifdef i386
    757 	npxinit(ci);
    758 #else
    759 	fpuinit(ci);
    760 #endif
    761 
    762 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    763 	ltr(ci->ci_tss_sel);
    764 
    765 	cpu_init(ci);
    766 	cpu_get_tsc_freq(ci);
    767 
    768 	s = splhigh();
    769 #ifdef i386
    770 	lapic_tpr = 0;
    771 #else
    772 	lcr8(0);
    773 #endif
    774 	x86_enable_intr();
    775 	splx(s);
    776 #if 0
    777 	x86_errata();
    778 #endif
    779 
    780 	aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
    781 		(long)ci->ci_cpuid);
    782 }
    783 
    784 #if defined(DDB)
    785 
    786 #include <ddb/db_output.h>
    787 #include <machine/db_machdep.h>
    788 
    789 /*
    790  * Dump CPU information from ddb.
    791  */
    792 void
    793 cpu_debug_dump(void)
    794 {
    795 	struct cpu_info *ci;
    796 	CPU_INFO_ITERATOR cii;
    797 
    798 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    799 	for (CPU_INFO_FOREACH(cii, ci)) {
    800 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    801 		    ci,
    802 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    803 		    (long)ci->ci_cpuid,
    804 		    ci->ci_flags, ci->ci_ipis,
    805 		    ci->ci_curlwp,
    806 		    ci->ci_fpcurlwp);
    807 	}
    808 }
    809 #endif /* DDB */
    810 
    811 static void
    812 cpu_copy_trampoline(void)
    813 {
    814 	/*
    815 	 * Copy boot code.
    816 	 */
    817 	extern u_char cpu_spinup_trampoline[];
    818 	extern u_char cpu_spinup_trampoline_end[];
    819 
    820 	vaddr_t mp_trampoline_vaddr;
    821 
    822 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    823 		UVM_KMF_VAONLY);
    824 
    825 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    826 		VM_PROT_READ | VM_PROT_WRITE, 0);
    827 	pmap_update(pmap_kernel());
    828 	memcpy((void *)mp_trampoline_vaddr,
    829 		cpu_spinup_trampoline,
    830 		cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    831 
    832 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    833 	pmap_update(pmap_kernel());
    834 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    835 }
    836 
    837 #endif /* MULTIPROCESSOR */
    838 
    839 #ifdef i386
    840 #if 0
    841 static void
    842 tss_init(struct i386tss *tss, void *stack, void *func)
    843 {
    844 	memset(tss, 0, sizeof *tss);
    845 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    846 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    847 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    848 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    849 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    850 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    851 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    852 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    853 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    854 	tss->__tss_eflags = PSL_MBO | PSL_NT;   /* XXX not needed? */
    855 	tss->__tss_eip = (int)func;
    856 }
    857 #endif
    858 
    859 /* XXX */
    860 #define IDTVEC(name)	__CONCAT(X, name)
    861 typedef void (vector)(void);
    862 extern vector IDTVEC(tss_trap08);
    863 #ifdef DDB
    864 extern vector Xintrddbipi;
    865 extern int ddb_vec;
    866 #endif
    867 
    868 static void
    869 cpu_set_tss_gates(struct cpu_info *ci)
    870 {
    871 #if 0
    872 	struct segment_descriptor sd;
    873 
    874 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    875 	    UVM_KMF_WIRED);
    876 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    877 	    IDTVEC(tss_trap08));
    878 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    879 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    880 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    881 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    882 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    883 #endif
    884 
    885 #if defined(DDB) && defined(MULTIPROCESSOR)
    886 	/*
    887 	 * Set up separate handler for the DDB IPI, so that it doesn't
    888 	 * stomp on a possibly corrupted stack.
    889 	 *
    890 	 * XXX overwriting the gate set in db_machine_init.
    891 	 * Should rearrange the code so that it's set only once.
    892 	 */
    893 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    894 	    UVM_KMF_WIRED);
    895 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    896 	    Xintrddbipi);
    897 
    898 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    899 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    900 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    901 
    902 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    903 	    GSEL(GIPITSS_SEL, SEL_KPL));
    904 #endif
    905 }
    906 #else
    907 static void
    908 cpu_set_tss_gates(struct cpu_info *ci)
    909 {
    910 
    911 }
    912 #endif	/* i386 */
    913 
    914 int
    915 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    916 {
    917 #if 0
    918 #if NLAPIC > 0
    919 	int error;
    920 #endif
    921 	unsigned short dwordptr[2];
    922 
    923 	/*
    924 	 * Bootstrap code must be addressable in real mode
    925 	 * and it must be page aligned.
    926 	 */
    927 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    928 
    929 	/*
    930 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    931 	 */
    932 
    933 	outb(IO_RTC, NVRAM_RESET);
    934 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    935 
    936 	/*
    937 	 * "and the warm reset vector (DWORD based at 40:67) to point
    938 	 * to the AP startup code ..."
    939 	 */
    940 
    941 	dwordptr[0] = 0;
    942 	dwordptr[1] = target >> 4;
    943 
    944 	pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    945 	pmap_update(pmap_kernel());
    946 
    947 	memcpy ((uint8_t *) 0x467, dwordptr, 4);
    948 
    949 	pmap_kremove (0, PAGE_SIZE);
    950 	pmap_update(pmap_kernel());
    951 
    952 #if NLAPIC > 0
    953 	/*
    954 	 * ... prior to executing the following sequence:"
    955 	 */
    956 
    957 	if (ci->ci_flags & CPUF_AP) {
    958 		if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
    959 			return error;
    960 
    961 		delay(10000);
    962 
    963 		if (cpu_feature & CPUID_APIC) {
    964 			error = x86_ipi_init(ci->ci_cpuid);
    965 			if (error != 0) {
    966 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    967 						__func__);
    968 				return error;
    969 			}
    970 
    971 			delay(10000);
    972 
    973 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    974 					LAPIC_DLMODE_STARTUP);
    975 			if (error != 0) {
    976 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    977 						__func__);
    978 				return error;
    979 			}
    980 			delay(200);
    981 
    982 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    983 					LAPIC_DLMODE_STARTUP);
    984 			if (error != 0) {
    985 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
    986 						__func__);
    987 				return error;
    988 			}
    989 			delay(200);
    990 		}
    991 	}
    992 #endif
    993 #endif /* 0 */
    994 	return 0;
    995 }
    996 
    997 void
    998 mp_cpu_start_cleanup(struct cpu_info *ci)
    999 {
   1000 #if 0
   1001 	/*
   1002 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1003 	 */
   1004 
   1005 	outb(IO_RTC, NVRAM_RESET);
   1006 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1007 #endif
   1008 }
   1009 
   1010 void
   1011 cpu_init_msrs(struct cpu_info *ci, bool full)
   1012 {
   1013 #ifdef __x86_64__
   1014 	if (full) {
   1015 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1016 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1017 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1018 	}
   1019 #endif	/* __x86_64__ */
   1020 
   1021 	if (cpu_feature[2] & CPUID_NOX)
   1022 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1023 }
   1024 
   1025 void
   1026 cpu_offline_md(void)
   1027 {
   1028         int s;
   1029 
   1030         s = splhigh();
   1031 #ifdef __i386__
   1032         npxsave_cpu(true);
   1033 #else
   1034         fpusave_cpu(true);
   1035 #endif
   1036         splx(s);
   1037 }
   1038 
   1039 #if 0
   1040 /* XXX joerg restructure and restart CPUs individually */
   1041 static bool
   1042 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1043 {
   1044 	struct cpu_softc *sc = device_private(dv);
   1045 	struct cpu_info *ci = sc->sc_info;
   1046 	int err;
   1047 
   1048 	if (ci->ci_flags & CPUF_PRIMARY)
   1049 		return true;
   1050 	if (ci->ci_data.cpu_idlelwp == NULL)
   1051 		return true;
   1052 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1053 		return true;
   1054 
   1055 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1056 
   1057 	if (sc->sc_wasonline) {
   1058 		mutex_enter(&cpu_lock);
   1059 		err = cpu_setstate(ci, false);
   1060 		mutex_exit(&cpu_lock);
   1061 
   1062 		if (err)
   1063 			return false;
   1064 	}
   1065 
   1066 	return true;
   1067 }
   1068 
   1069 static bool
   1070 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1071 {
   1072 	struct cpu_softc *sc = device_private(dv);
   1073 	struct cpu_info *ci = sc->sc_info;
   1074 	int err = 0;
   1075 
   1076 	if (ci->ci_flags & CPUF_PRIMARY)
   1077 		return true;
   1078 	if (ci->ci_data.cpu_idlelwp == NULL)
   1079 		return true;
   1080 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1081 		return true;
   1082 
   1083 	if (sc->sc_wasonline) {
   1084 		mutex_enter(&cpu_lock);
   1085 		err = cpu_setstate(ci, true);
   1086 		mutex_exit(&cpu_lock);
   1087 	}
   1088 
   1089 	return err == 0;
   1090 }
   1091 #endif
   1092 
   1093 void
   1094 cpu_get_tsc_freq(struct cpu_info *ci)
   1095 {
   1096 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1097 	delay(1000000);
   1098 	uint64_t freq = 1000000000ULL << 32;
   1099 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1100 	if ( tinfo->tsc_shift < 0 )
   1101 		freq = freq << -tinfo->tsc_shift;
   1102 	else
   1103 		freq = freq >> tinfo->tsc_shift;
   1104 	ci->ci_data.cpu_cc_freq = freq;
   1105 }
   1106 
   1107 void
   1108 x86_cpu_idle_xen(void)
   1109 {
   1110 	struct cpu_info *ci = curcpu();
   1111 
   1112 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1113 
   1114 	x86_disable_intr();
   1115 	if (!__predict_false(ci->ci_want_resched)) {
   1116 		idle_block();
   1117 	} else {
   1118 		x86_enable_intr();
   1119 	}
   1120 }
   1121 
   1122 /*
   1123  * Loads pmap for the current CPU.
   1124  */
   1125 void
   1126 cpu_load_pmap(struct pmap *pmap)
   1127 {
   1128 #ifdef i386
   1129 #ifdef PAE
   1130 	int i, s;
   1131 	struct cpu_info *ci;
   1132 
   1133 	s = splvm(); /* just to be safe */
   1134 	ci = curcpu();
   1135 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1136 	/* don't update the kernel L3 slot */
   1137 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1138 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1139 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1140 	}
   1141 	splx(s);
   1142 	tlbflush();
   1143 #else /* PAE */
   1144 	lcr3(pmap_pdirpa(pmap, 0));
   1145 #endif /* PAE */
   1146 #endif /* i386 */
   1147 
   1148 #ifdef __x86_64__
   1149 	int i, s;
   1150 	pd_entry_t *old_pgd, *new_pgd;
   1151 	paddr_t addr;
   1152 	struct cpu_info *ci;
   1153 
   1154 	/* kernel pmap always in cr3 and should never go in user cr3 */
   1155 	if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
   1156 		ci = curcpu();
   1157 		/*
   1158 		 * Map user space address in kernel space and load
   1159 		 * user cr3
   1160 		 */
   1161 		s = splvm();
   1162 		new_pgd = pmap->pm_pdir;
   1163 		old_pgd = pmap_kernel()->pm_pdir;
   1164 		addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
   1165 		for (i = 0; i < PDIR_SLOT_PTE;
   1166 		    i++, addr += sizeof(pd_entry_t)) {
   1167 			if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
   1168 				xpq_queue_pte_update(addr, new_pgd[i]);
   1169 		}
   1170 		tlbflush();
   1171 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1172 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1173 		splx(s);
   1174 	}
   1175 #endif /* __x86_64__ */
   1176 }
   1177