Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.40.2.6
      1 /*	$NetBSD: cpu.c,v 1.40.2.6 2010/11/09 06:03:41 uebayasi Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.40.2.6 2010/11/09 06:03:41 uebayasi Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 
     89 <<<<<<< cpu.c
     90 #include <uvm/uvm_extern.h>
     91 #include <uvm/uvm_page.h>
     92 =======
     93 #include <uvm/uvm.h>
     94 >>>>>>> 1.51
     95 
     96 #include <machine/cpufunc.h>
     97 #include <machine/cpuvar.h>
     98 #include <machine/pmap.h>
     99 #include <machine/vmparam.h>
    100 #include <machine/mpbiosvar.h>
    101 #include <machine/pcb.h>
    102 #include <machine/specialreg.h>
    103 #include <machine/segments.h>
    104 #include <machine/gdt.h>
    105 #include <machine/mtrr.h>
    106 #include <machine/pio.h>
    107 
    108 #include <xen/vcpuvar.h>
    109 
    110 #if NLAPIC > 0
    111 #include <machine/apicvar.h>
    112 #include <machine/i82489reg.h>
    113 #include <machine/i82489var.h>
    114 #endif
    115 
    116 #include <dev/ic/mc146818reg.h>
    117 #include <dev/isa/isareg.h>
    118 
    119 #if MAXCPUS > 32
    120 #error cpu_info contains 32bit bitmasks
    121 #endif
    122 
    123 int     cpu_match(device_t, cfdata_t, void *);
    124 void    cpu_attach(device_t, device_t, void *);
    125 int     vcpu_match(device_t, cfdata_t, void *);
    126 void    vcpu_attach(device_t, device_t, void *);
    127 void    cpu_attach_common(device_t, device_t, void *);
    128 void	cpu_offline_md(void);
    129 
    130 struct cpu_softc {
    131 	device_t sc_dev;		/* device tree glue */
    132 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133 	bool sc_wasonline;
    134 };
    135 
    136 int mp_cpu_start(struct cpu_info *, paddr_t);
    137 void mp_cpu_start_cleanup(struct cpu_info *);
    138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139 				      mp_cpu_start_cleanup };
    140 
    141 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    142     cpu_match, cpu_attach, NULL, NULL);
    143 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    144     vcpu_match, vcpu_attach, NULL, NULL);
    145 
    146 /*
    147  * Statically-allocated CPU info for the primary CPU (or the only
    148  * CPU, on uniprocessors).  The CPU info list is initialized to
    149  * point at it.
    150  */
    151 #ifdef TRAPLOG
    152 #include <machine/tlog.h>
    153 struct tlog tlog_primary;
    154 #endif
    155 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    156 	.ci_dev = 0,
    157 	.ci_self = &cpu_info_primary,
    158 	.ci_idepth = -1,
    159 	.ci_curlwp = &lwp0,
    160 	.ci_curldt = -1,
    161 #ifdef TRAPLOG
    162 	.ci_tlog = &tlog_primary,
    163 #endif
    164 
    165 };
    166 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    167 	.ci_dev = 0,
    168 	.ci_self = &phycpu_info_primary,
    169 };
    170 
    171 struct cpu_info *cpu_info_list = &cpu_info_primary;
    172 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    173 
    174 static void	cpu_set_tss_gates(struct cpu_info *ci);
    175 
    176 uint32_t cpus_attached = 0;
    177 uint32_t cpus_running = 0;
    178 
    179 uint32_t phycpus_attached = 0;
    180 uint32_t phycpus_running = 0;
    181 
    182 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    183 			  *	[0] basic features %edx
    184 			  *	[1] basic features %ecx
    185 			  *	[2] extended features %edx
    186 			  *	[3] extended features %ecx
    187 			  *	[4] VIA padlock features
    188 			  */
    189 
    190 bool x86_mp_online;
    191 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    192 
    193 #if defined(MULTIPROCESSOR)
    194 void    	cpu_hatch(void *);
    195 static void    	cpu_boot_secondary(struct cpu_info *ci);
    196 static void    	cpu_start_secondary(struct cpu_info *ci);
    197 static void	cpu_copy_trampoline(void);
    198 
    199 /*
    200  * Runs once per boot once multiprocessor goo has been detected and
    201  * the local APIC on the boot processor has been mapped.
    202  *
    203  * Called from lapic_boot_init() (from mpbios_scan()).
    204  */
    205 void
    206 cpu_init_first(void)
    207 {
    208 
    209 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    210 	cpu_copy_trampoline();
    211 }
    212 #endif	/* MULTIPROCESSOR */
    213 
    214 int
    215 cpu_match(device_t parent, cfdata_t match, void *aux)
    216 {
    217 
    218 	return 1;
    219 }
    220 
    221 void
    222 cpu_attach(device_t parent, device_t self, void *aux)
    223 {
    224 	struct cpu_softc *sc = device_private(self);
    225 	struct cpu_attach_args *caa = aux;
    226 	struct cpu_info *ci;
    227 	uintptr_t ptr;
    228 	static bool again = false;
    229 
    230 	sc->sc_dev = self;
    231 
    232 	if (phycpus_attached == ~0) {
    233 		aprint_error(": increase MAXCPUS\n");
    234 		return;
    235 	}
    236 
    237 	/*
    238 	 * If we're an Application Processor, allocate a cpu_info
    239 	 * structure, otherwise use the primary's.
    240 	 */
    241 	if (caa->cpu_role == CPU_ROLE_AP) {
    242 		if ((boothowto & RB_MD1) != 0) {
    243 			aprint_error(": multiprocessor boot disabled\n");
    244 			if (!pmf_device_register(self, NULL, NULL))
    245 				aprint_error_dev(self,
    246 				   "couldn't establish power handler\n");
    247 			return;
    248 		}
    249 		aprint_naive(": Application Processor\n");
    250 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    251 		    KM_SLEEP);
    252 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    253 		ci->ci_curldt = -1;
    254 	} else {
    255 		aprint_naive(": %s Processor\n",
    256 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    257 		ci = &phycpu_info_primary;
    258 	}
    259 
    260 	ci->ci_self = ci;
    261 	sc->sc_info = ci;
    262 
    263 	ci->ci_dev = self;
    264 	ci->ci_acpiid = caa->cpu_id;
    265 	ci->ci_cpuid = caa->cpu_number;
    266 	ci->ci_vcpu = NULL;
    267 
    268 	/*
    269 	 * Boot processor may not be attached first, but the below
    270 	 * must be done to allow booting other processors.
    271 	 */
    272 	if (!again) {
    273 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    274 		/* Basic init */
    275 		again = true;
    276 	}
    277 
    278 	printf(": ");
    279 	switch (caa->cpu_role) {
    280 	case CPU_ROLE_SP:
    281 		printf("(uniprocessor)\n");
    282 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    283 		break;
    284 
    285 	case CPU_ROLE_BP:
    286 		printf("(boot processor)\n");
    287 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    288 		break;
    289 
    290 	case CPU_ROLE_AP:
    291 		/*
    292 		 * report on an AP
    293 		 */
    294 		printf("(application processor)\n");
    295 		if (ci->ci_flags & CPUF_PRESENT) {
    296 			struct cpu_info *tmp;
    297 
    298 			tmp = phycpu_info_list;
    299 			while (tmp->ci_next)
    300 				tmp = tmp->ci_next;
    301 
    302 			tmp->ci_next = ci;
    303 		}
    304 		break;
    305 
    306 	default:
    307 		panic("unknown processor type??\n");
    308 	}
    309 
    310 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    311 
    312 	return;
    313 }
    314 
    315 int
    316 vcpu_match(device_t parent, cfdata_t match, void *aux)
    317 {
    318 	struct vcpu_attach_args *vcaa = aux;
    319 
    320 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
    321 		return 1;
    322 	return 0;
    323 }
    324 
    325 void
    326 vcpu_attach(device_t parent, device_t self, void *aux)
    327 {
    328 	struct vcpu_attach_args *vcaa = aux;
    329 
    330 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    331 }
    332 
    333 static void
    334 cpu_vm_init(struct cpu_info *ci)
    335 {
    336 	int ncolors = 2, i;
    337 
    338 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    339 		struct x86_cache_info *cai;
    340 		int tcolors;
    341 
    342 		cai = &ci->ci_cinfo[i];
    343 
    344 		tcolors = atop(cai->cai_totalsize);
    345 		switch(cai->cai_associativity) {
    346 		case 0xff:
    347 			tcolors = 1; /* fully associative */
    348 			break;
    349 		case 0:
    350 		case 1:
    351 			break;
    352 		default:
    353 			tcolors /= cai->cai_associativity;
    354 		}
    355 		ncolors = max(ncolors, tcolors);
    356 	}
    357 
    358 	/*
    359 	 * Knowing the size of the largest cache on this CPU, re-color
    360 	 * our pages.
    361 	 */
    362 	if (ncolors <= uvmexp.ncolors)
    363 		return;
    364 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    365 	uvm_page_recolor(ncolors);
    366 }
    367 
    368 void
    369 cpu_attach_common(device_t parent, device_t self, void *aux)
    370 {
    371 	struct cpu_softc *sc = device_private(self);
    372 	struct cpu_attach_args *caa = aux;
    373 	struct cpu_info *ci;
    374 	uintptr_t ptr;
    375 	int cpunum = caa->cpu_number;
    376 	static bool again = false;
    377 
    378 	sc->sc_dev = self;
    379 
    380 	/*
    381 	 * If we're an Application Processor, allocate a cpu_info
    382 	 * structure, otherwise use the primary's.
    383 	 */
    384 	if (caa->cpu_role == CPU_ROLE_AP) {
    385 		aprint_naive(": Application Processor\n");
    386 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    387 		    KM_SLEEP);
    388 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    389 		memset(ci, 0, sizeof(*ci));
    390 #ifdef TRAPLOG
    391 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    392 #endif
    393 	} else {
    394 		aprint_naive(": %s Processor\n",
    395 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    396 		ci = &cpu_info_primary;
    397 #if NLAPIC > 0
    398 		if (cpunum != lapic_cpu_number()) {
    399 			/* XXX should be done earlier */
    400 			uint32_t reg;
    401 			aprint_verbose("\n");
    402 			aprint_verbose_dev(self, "running CPU at apic %d"
    403 			    " instead of at expected %d", lapic_cpu_number(),
    404 			    cpunum);
    405 			reg = i82489_readreg(LAPIC_ID);
    406 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    407 			    (cpunum << LAPIC_ID_SHIFT));
    408 		}
    409 		if (cpunum != lapic_cpu_number()) {
    410 			aprint_error_dev(self, "unable to reset apic id\n");
    411 		}
    412 #endif
    413 	}
    414 
    415 	ci->ci_self = ci;
    416 	sc->sc_info = ci;
    417 	ci->ci_dev = self;
    418 	ci->ci_cpuid = cpunum;
    419 
    420 	KASSERT(HYPERVISOR_shared_info != NULL);
    421 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    422 
    423 	ci->ci_func = caa->cpu_func;
    424 
    425 	/* Must be called before mi_cpu_attach(). */
    426 	cpu_vm_init(ci);
    427 
    428 	if (caa->cpu_role == CPU_ROLE_AP) {
    429 		int error;
    430 
    431 		error = mi_cpu_attach(ci);
    432 		if (error != 0) {
    433 			aprint_normal("\n");
    434 			aprint_error_dev(self,
    435 			    "mi_cpu_attach failed with %d\n", error);
    436 			return;
    437 		}
    438 	} else {
    439 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    440 	}
    441 
    442 	ci->ci_cpumask = (1 << cpu_index(ci));
    443 	pmap_reference(pmap_kernel());
    444 	ci->ci_pmap = pmap_kernel();
    445 	ci->ci_tlbstate = TLBSTATE_STALE;
    446 
    447 	/*
    448 	 * Boot processor may not be attached first, but the below
    449 	 * must be done to allow booting other processors.
    450 	 */
    451 	if (!again) {
    452 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    453 		/* Basic init. */
    454 		cpu_intr_init(ci);
    455 		cpu_get_tsc_freq(ci);
    456 		cpu_init(ci);
    457 		cpu_set_tss_gates(ci);
    458 		pmap_cpu_init_late(ci);
    459 #if NLAPIC > 0
    460 		if (caa->cpu_role != CPU_ROLE_SP) {
    461 			/* Enable lapic. */
    462 			lapic_enable();
    463 			lapic_set_lvt();
    464 			lapic_calibrate_timer();
    465 		}
    466 #endif
    467 		/* Make sure DELAY() is initialized. */
    468 		DELAY(1);
    469 		again = true;
    470 	}
    471 
    472 	/* further PCB init done later. */
    473 
    474 	switch (caa->cpu_role) {
    475 	case CPU_ROLE_SP:
    476 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    477 		cpu_identify(ci);
    478 #if 0
    479 		x86_errata();
    480 #endif
    481 		x86_cpu_idle_init();
    482 		break;
    483 
    484 	case CPU_ROLE_BP:
    485 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    486 		cpu_identify(ci);
    487 		cpu_init(ci);
    488 #if 0
    489 		x86_errata();
    490 #endif
    491 		x86_cpu_idle_init();
    492 		break;
    493 
    494 	case CPU_ROLE_AP:
    495 		/*
    496 		 * report on an AP
    497 		 */
    498 
    499 #if defined(MULTIPROCESSOR)
    500 		cpu_intr_init(ci);
    501 		gdt_alloc_cpu(ci);
    502 		cpu_set_tss_gates(ci);
    503 		pmap_cpu_init_early(ci);
    504 		pmap_cpu_init_late(ci);
    505 		cpu_start_secondary(ci);
    506 		if (ci->ci_flags & CPUF_PRESENT) {
    507 			struct cpu_info *tmp;
    508 
    509 			identifycpu(ci);
    510 			tmp = cpu_info_list;
    511 			while (tmp->ci_next)
    512 				tmp = tmp->ci_next;
    513 
    514 			tmp->ci_next = ci;
    515 		}
    516 #else
    517 		aprint_error_dev(self, "not started\n");
    518 #endif
    519 		break;
    520 
    521 	default:
    522 		aprint_normal("\n");
    523 		panic("unknown processor type??\n");
    524 	}
    525 
    526 	pat_init(ci);
    527 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    528 
    529 #if 0
    530 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    531 		aprint_error_dev(self, "couldn't establish power handler\n");
    532 #endif
    533 
    534 #if defined(MULTIPROCESSOR)
    535 	if (mp_verbose) {
    536 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    537 		struct pcb *pcb = lwp_getpcb(l);
    538 
    539 		aprint_verbose_dev(self,
    540 		    "idle lwp at %p, idle sp at 0x%p\n",
    541 		    l,
    542 #ifdef i386
    543 		    (void *)pcb->pcb_esp
    544 #else
    545 		    (void *)pcb->pcb_rsp
    546 #endif
    547 		);
    548 
    549 	}
    550 #endif
    551 }
    552 
    553 /*
    554  * Initialize the processor appropriately.
    555  */
    556 
    557 void
    558 cpu_init(struct cpu_info *ci)
    559 {
    560 
    561 	/*
    562 	 * On a P6 or above, enable global TLB caching if the
    563 	 * hardware supports it.
    564 	 */
    565 	if (cpu_feature[0] & CPUID_PGE)
    566 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    567 
    568 #ifdef XXXMTRR
    569 	/*
    570 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    571 	 */
    572 	if (cpu_feature[0] & CPUID_MTRR) {
    573 		if ((ci->ci_flags & CPUF_AP) == 0)
    574 			i686_mtrr_init_first();
    575 		mtrr_init_cpu(ci);
    576 	}
    577 #endif
    578 	/*
    579 	 * If we have FXSAVE/FXRESTOR, use them.
    580 	 */
    581 	if (cpu_feature[0] & CPUID_FXSR) {
    582 		lcr4(rcr4() | CR4_OSFXSR);
    583 
    584 		/*
    585 		 * If we have SSE/SSE2, enable XMM exceptions.
    586 		 */
    587 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    588 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    589 	}
    590 
    591 #ifdef __x86_64__
    592 	/* No user PGD mapped for this CPU yet */
    593 	ci->ci_xen_current_user_pgd = 0;
    594 #endif
    595 
    596 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    597 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    598 }
    599 
    600 
    601 #ifdef MULTIPROCESSOR
    602 void
    603 cpu_boot_secondary_processors(void)
    604 {
    605 	struct cpu_info *ci;
    606 	u_long i;
    607 
    608 	for (i = 0; i < maxcpus; i++) {
    609 		ci = cpu_lookup(i);
    610 		if (ci == NULL)
    611 			continue;
    612 		if (ci->ci_data.cpu_idlelwp == NULL)
    613 			continue;
    614 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    615 			continue;
    616 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    617 			continue;
    618 		cpu_boot_secondary(ci);
    619 	}
    620 
    621 	x86_mp_online = true;
    622 }
    623 
    624 static void
    625 cpu_init_idle_lwp(struct cpu_info *ci)
    626 {
    627 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    628 	struct pcb *pcb = lwp_getpcb(l);
    629 
    630 	pcb->pcb_cr0 = rcr0();
    631 }
    632 
    633 void
    634 cpu_init_idle_lwps(void)
    635 {
    636 	struct cpu_info *ci;
    637 	u_long i;
    638 
    639 	for (i = 0; i < maxcpus; i++) {
    640 		ci = cpu_lookup(i);
    641 		if (ci == NULL)
    642 			continue;
    643 		if (ci->ci_data.cpu_idlelwp == NULL)
    644 			continue;
    645 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    646 			continue;
    647 		cpu_init_idle_lwp(ci);
    648 	}
    649 }
    650 
    651 void
    652 cpu_start_secondary(struct cpu_info *ci)
    653 {
    654 	int i;
    655 	struct pmap *kpm = pmap_kernel();
    656 	extern uint32_t mp_pdirpa;
    657 
    658 	mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
    659 
    660 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    661 
    662 	aprint_debug_dev(ci->ci_dev, "starting\n");
    663 
    664 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    665 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
    666 		return;
    667 
    668 	/*
    669 	 * wait for it to become ready
    670 	 */
    671 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    672 #ifdef MPDEBUG
    673 		extern int cpu_trace[3];
    674 		static int otrace[3];
    675 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    676 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    677 				cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    678 			memcpy(otrace, cpu_trace, sizeof(otrace));
    679 		}
    680 #endif
    681 		delay(10);
    682 	}
    683 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    684 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    685 #if defined(MPDEBUG) && defined(DDB)
    686 		printf("dropping into debugger; continue from here to resume boot\n");
    687 		Debugger();
    688 #endif
    689 	}
    690 
    691 	CPU_START_CLEANUP(ci);
    692 }
    693 
    694 void
    695 cpu_boot_secondary(struct cpu_info *ci)
    696 {
    697 	int i;
    698 
    699 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    700 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    701 		delay(10);
    702 	}
    703 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    704 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    705 #if defined(MPDEBUG) && defined(DDB)
    706 		printf("dropping into debugger; continue from here to resume boot\n");
    707 		Debugger();
    708 #endif
    709 	}
    710 }
    711 
    712 /*
    713  * The CPU ends up here when its ready to run
    714  * This is called from code in mptramp.s; at this point, we are running
    715  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    716  * this processor will enter the idle loop and start looking for work.
    717  *
    718  * XXX should share some of this with init386 in machdep.c
    719  */
    720 void
    721 cpu_hatch(void *v)
    722 {
    723 	struct cpu_info *ci = (struct cpu_info *)v;
    724 	struct pcb *pcb;
    725 	int s, i;
    726 
    727 	cpu_probe(ci);
    728 
    729 	cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
    730 	cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
    731 
    732         cpu_init_msrs(ci, true);
    733 
    734 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    735 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    736 	while ((ci->ci_flags & CPUF_GO) == 0) {
    737 		/* Don't use delay, boot CPU may be patching the text. */
    738 		for (i = 10000; i != 0; i--)
    739 			x86_pause();
    740 	}
    741 
    742 	/* Because the text may have been patched in x86_patch(). */
    743 	wbinvd();
    744 	x86_flush();
    745 
    746 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    747 
    748 	pcb = lwp_getpcb(curlwp);
    749 	lcr3(pmap_kernel()->pm_pdirpa);
    750 	pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
    751 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    752 	lcr0(pcb->pcb_cr0);
    753 
    754 	cpu_init_idt();
    755 	gdt_init_cpu(ci);
    756 	lapic_enable();
    757 	lapic_set_lvt();
    758 	lapic_initclocks();
    759 
    760 #ifdef i386
    761 	npxinit(ci);
    762 #else
    763 	fpuinit(ci);
    764 #endif
    765 
    766 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    767 	ltr(ci->ci_tss_sel);
    768 
    769 	cpu_init(ci);
    770 	cpu_get_tsc_freq(ci);
    771 
    772 	s = splhigh();
    773 #ifdef i386
    774 	lapic_tpr = 0;
    775 #else
    776 	lcr8(0);
    777 #endif
    778 	x86_enable_intr();
    779 	splx(s);
    780 #if 0
    781 	x86_errata();
    782 #endif
    783 
    784 	aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
    785 		(long)ci->ci_cpuid);
    786 }
    787 
    788 #if defined(DDB)
    789 
    790 #include <ddb/db_output.h>
    791 #include <machine/db_machdep.h>
    792 
    793 /*
    794  * Dump CPU information from ddb.
    795  */
    796 void
    797 cpu_debug_dump(void)
    798 {
    799 	struct cpu_info *ci;
    800 	CPU_INFO_ITERATOR cii;
    801 
    802 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    803 	for (CPU_INFO_FOREACH(cii, ci)) {
    804 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    805 		    ci,
    806 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    807 		    (long)ci->ci_cpuid,
    808 		    ci->ci_flags, ci->ci_ipis,
    809 		    ci->ci_curlwp,
    810 		    ci->ci_fpcurlwp);
    811 	}
    812 }
    813 #endif /* DDB */
    814 
    815 static void
    816 cpu_copy_trampoline(void)
    817 {
    818 	/*
    819 	 * Copy boot code.
    820 	 */
    821 	extern u_char cpu_spinup_trampoline[];
    822 	extern u_char cpu_spinup_trampoline_end[];
    823 
    824 	vaddr_t mp_trampoline_vaddr;
    825 
    826 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    827 		UVM_KMF_VAONLY);
    828 
    829 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    830 		VM_PROT_READ | VM_PROT_WRITE, 0);
    831 	pmap_update(pmap_kernel());
    832 	memcpy((void *)mp_trampoline_vaddr,
    833 		cpu_spinup_trampoline,
    834 		cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    835 
    836 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    837 	pmap_update(pmap_kernel());
    838 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    839 }
    840 
    841 #endif /* MULTIPROCESSOR */
    842 
    843 #ifdef i386
    844 #if 0
    845 static void
    846 tss_init(struct i386tss *tss, void *stack, void *func)
    847 {
    848 	memset(tss, 0, sizeof *tss);
    849 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    850 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    851 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    852 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    853 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    854 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    855 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    856 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    857 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    858 	tss->__tss_eflags = PSL_MBO | PSL_NT;   /* XXX not needed? */
    859 	tss->__tss_eip = (int)func;
    860 }
    861 #endif
    862 
    863 /* XXX */
    864 #define IDTVEC(name)	__CONCAT(X, name)
    865 typedef void (vector)(void);
    866 extern vector IDTVEC(tss_trap08);
    867 #ifdef DDB
    868 extern vector Xintrddbipi;
    869 extern int ddb_vec;
    870 #endif
    871 
    872 static void
    873 cpu_set_tss_gates(struct cpu_info *ci)
    874 {
    875 #if 0
    876 	struct segment_descriptor sd;
    877 
    878 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    879 	    UVM_KMF_WIRED);
    880 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    881 	    IDTVEC(tss_trap08));
    882 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    883 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    884 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    885 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    886 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    887 #endif
    888 
    889 #if defined(DDB) && defined(MULTIPROCESSOR)
    890 	/*
    891 	 * Set up separate handler for the DDB IPI, so that it doesn't
    892 	 * stomp on a possibly corrupted stack.
    893 	 *
    894 	 * XXX overwriting the gate set in db_machine_init.
    895 	 * Should rearrange the code so that it's set only once.
    896 	 */
    897 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    898 	    UVM_KMF_WIRED);
    899 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    900 	    Xintrddbipi);
    901 
    902 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    903 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    904 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    905 
    906 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    907 	    GSEL(GIPITSS_SEL, SEL_KPL));
    908 #endif
    909 }
    910 #else
    911 static void
    912 cpu_set_tss_gates(struct cpu_info *ci)
    913 {
    914 
    915 }
    916 #endif	/* i386 */
    917 
    918 int
    919 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    920 {
    921 #if 0
    922 #if NLAPIC > 0
    923 	int error;
    924 #endif
    925 	unsigned short dwordptr[2];
    926 
    927 	/*
    928 	 * Bootstrap code must be addressable in real mode
    929 	 * and it must be page aligned.
    930 	 */
    931 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    932 
    933 	/*
    934 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    935 	 */
    936 
    937 	outb(IO_RTC, NVRAM_RESET);
    938 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    939 
    940 	/*
    941 	 * "and the warm reset vector (DWORD based at 40:67) to point
    942 	 * to the AP startup code ..."
    943 	 */
    944 
    945 	dwordptr[0] = 0;
    946 	dwordptr[1] = target >> 4;
    947 
    948 	pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    949 	pmap_update(pmap_kernel());
    950 
    951 	memcpy ((uint8_t *) 0x467, dwordptr, 4);
    952 
    953 	pmap_kremove (0, PAGE_SIZE);
    954 	pmap_update(pmap_kernel());
    955 
    956 #if NLAPIC > 0
    957 	/*
    958 	 * ... prior to executing the following sequence:"
    959 	 */
    960 
    961 	if (ci->ci_flags & CPUF_AP) {
    962 		if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
    963 			return error;
    964 
    965 		delay(10000);
    966 
    967 		if (cpu_feature & CPUID_APIC) {
    968 			error = x86_ipi_init(ci->ci_cpuid);
    969 			if (error != 0) {
    970 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    971 						__func__);
    972 				return error;
    973 			}
    974 
    975 			delay(10000);
    976 
    977 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    978 					LAPIC_DLMODE_STARTUP);
    979 			if (error != 0) {
    980 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    981 						__func__);
    982 				return error;
    983 			}
    984 			delay(200);
    985 
    986 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    987 					LAPIC_DLMODE_STARTUP);
    988 			if (error != 0) {
    989 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
    990 						__func__);
    991 				return error;
    992 			}
    993 			delay(200);
    994 		}
    995 	}
    996 #endif
    997 #endif /* 0 */
    998 	return 0;
    999 }
   1000 
   1001 void
   1002 mp_cpu_start_cleanup(struct cpu_info *ci)
   1003 {
   1004 #if 0
   1005 	/*
   1006 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1007 	 */
   1008 
   1009 	outb(IO_RTC, NVRAM_RESET);
   1010 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1011 #endif
   1012 }
   1013 
   1014 void
   1015 cpu_init_msrs(struct cpu_info *ci, bool full)
   1016 {
   1017 #ifdef __x86_64__
   1018 	if (full) {
   1019 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1020 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1021 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1022 	}
   1023 #endif	/* __x86_64__ */
   1024 
   1025 	if (cpu_feature[2] & CPUID_NOX)
   1026 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1027 }
   1028 
   1029 void
   1030 cpu_offline_md(void)
   1031 {
   1032         int s;
   1033 
   1034         s = splhigh();
   1035 #ifdef __i386__
   1036         npxsave_cpu(true);
   1037 #else
   1038         fpusave_cpu(true);
   1039 #endif
   1040         splx(s);
   1041 }
   1042 
   1043 #if 0
   1044 /* XXX joerg restructure and restart CPUs individually */
   1045 static bool
   1046 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1047 {
   1048 	struct cpu_softc *sc = device_private(dv);
   1049 	struct cpu_info *ci = sc->sc_info;
   1050 	int err;
   1051 
   1052 	if (ci->ci_flags & CPUF_PRIMARY)
   1053 		return true;
   1054 	if (ci->ci_data.cpu_idlelwp == NULL)
   1055 		return true;
   1056 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1057 		return true;
   1058 
   1059 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1060 
   1061 	if (sc->sc_wasonline) {
   1062 		mutex_enter(&cpu_lock);
   1063 		err = cpu_setstate(ci, false);
   1064 		mutex_exit(&cpu_lock);
   1065 
   1066 		if (err)
   1067 			return false;
   1068 	}
   1069 
   1070 	return true;
   1071 }
   1072 
   1073 static bool
   1074 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1075 {
   1076 	struct cpu_softc *sc = device_private(dv);
   1077 	struct cpu_info *ci = sc->sc_info;
   1078 	int err = 0;
   1079 
   1080 	if (ci->ci_flags & CPUF_PRIMARY)
   1081 		return true;
   1082 	if (ci->ci_data.cpu_idlelwp == NULL)
   1083 		return true;
   1084 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1085 		return true;
   1086 
   1087 	if (sc->sc_wasonline) {
   1088 		mutex_enter(&cpu_lock);
   1089 		err = cpu_setstate(ci, true);
   1090 		mutex_exit(&cpu_lock);
   1091 	}
   1092 
   1093 	return err == 0;
   1094 }
   1095 #endif
   1096 
   1097 void
   1098 cpu_get_tsc_freq(struct cpu_info *ci)
   1099 {
   1100 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1101 	delay(1000000);
   1102 	uint64_t freq = 1000000000ULL << 32;
   1103 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1104 	if ( tinfo->tsc_shift < 0 )
   1105 		freq = freq << -tinfo->tsc_shift;
   1106 	else
   1107 		freq = freq >> tinfo->tsc_shift;
   1108 	ci->ci_data.cpu_cc_freq = freq;
   1109 }
   1110 
   1111 void
   1112 x86_cpu_idle_xen(void)
   1113 {
   1114 	struct cpu_info *ci = curcpu();
   1115 
   1116 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1117 
   1118 	x86_disable_intr();
   1119 	if (!__predict_false(ci->ci_want_resched)) {
   1120 		idle_block();
   1121 	} else {
   1122 		x86_enable_intr();
   1123 	}
   1124 }
   1125 
   1126 /*
   1127  * Loads pmap for the current CPU.
   1128  */
   1129 void
   1130 cpu_load_pmap(struct pmap *pmap)
   1131 {
   1132 #ifdef i386
   1133 #ifdef PAE
   1134 	int i, s;
   1135 	struct cpu_info *ci;
   1136 
   1137 	s = splvm(); /* just to be safe */
   1138 	ci = curcpu();
   1139 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1140 	/* don't update the kernel L3 slot */
   1141 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1142 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1143 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1144 	}
   1145 	splx(s);
   1146 	tlbflush();
   1147 #else /* PAE */
   1148 	lcr3(pmap_pdirpa(pmap, 0));
   1149 #endif /* PAE */
   1150 #endif /* i386 */
   1151 
   1152 #ifdef __x86_64__
   1153 	int i, s;
   1154 	pd_entry_t *old_pgd, *new_pgd;
   1155 	paddr_t addr;
   1156 	struct cpu_info *ci;
   1157 
   1158 	/* kernel pmap always in cr3 and should never go in user cr3 */
   1159 	if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
   1160 		ci = curcpu();
   1161 		/*
   1162 		 * Map user space address in kernel space and load
   1163 		 * user cr3
   1164 		 */
   1165 		s = splvm();
   1166 		new_pgd = pmap->pm_pdir;
   1167 		old_pgd = pmap_kernel()->pm_pdir;
   1168 		addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
   1169 		for (i = 0; i < PDIR_SLOT_PTE;
   1170 		    i++, addr += sizeof(pd_entry_t)) {
   1171 			if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
   1172 				xpq_queue_pte_update(addr, new_pgd[i]);
   1173 		}
   1174 		tlbflush();
   1175 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1176 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1177 		splx(s);
   1178 	}
   1179 #endif /* __x86_64__ */
   1180 }
   1181