cpu.c revision 1.42.2.3 1 /* $NetBSD: cpu.c,v 1.42.2.3 2010/07/03 01:19:30 rmind Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.42.2.3 2010/07/03 01:19:30 rmind Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <machine/cpufunc.h>
92 #include <machine/cpuvar.h>
93 #include <machine/pmap.h>
94 #include <machine/vmparam.h>
95 #include <machine/mpbiosvar.h>
96 #include <machine/pcb.h>
97 #include <machine/specialreg.h>
98 #include <machine/segments.h>
99 #include <machine/gdt.h>
100 #include <machine/mtrr.h>
101 #include <machine/pio.h>
102
103 #include <xen/vcpuvar.h>
104
105 #if NLAPIC > 0
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109 #endif
110
111 #include <dev/ic/mc146818reg.h>
112 #include <dev/isa/isareg.h>
113
114 #if MAXCPUS > 32
115 #error cpu_info contains 32bit bitmasks
116 #endif
117
118 int cpu_match(device_t, cfdata_t, void *);
119 void cpu_attach(device_t, device_t, void *);
120 int vcpu_match(device_t, cfdata_t, void *);
121 void vcpu_attach(device_t, device_t, void *);
122 void cpu_attach_common(device_t, device_t, void *);
123 void cpu_offline_md(void);
124
125 struct cpu_softc {
126 device_t sc_dev; /* device tree glue */
127 struct cpu_info *sc_info; /* pointer to CPU info */
128 bool sc_wasonline;
129 };
130
131 int mp_cpu_start(struct cpu_info *, paddr_t);
132 void mp_cpu_start_cleanup(struct cpu_info *);
133 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
134 mp_cpu_start_cleanup };
135
136 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
137 cpu_match, cpu_attach, NULL, NULL);
138 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
139 vcpu_match, vcpu_attach, NULL, NULL);
140
141 /*
142 * Statically-allocated CPU info for the primary CPU (or the only
143 * CPU, on uniprocessors). The CPU info list is initialized to
144 * point at it.
145 */
146 #ifdef TRAPLOG
147 #include <machine/tlog.h>
148 struct tlog tlog_primary;
149 #endif
150 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 .ci_dev = 0,
152 .ci_self = &cpu_info_primary,
153 .ci_idepth = -1,
154 .ci_curlwp = &lwp0,
155 .ci_curldt = -1,
156 #ifdef TRAPLOG
157 .ci_tlog = &tlog_primary,
158 #endif
159
160 };
161 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
162 .ci_dev = 0,
163 .ci_self = &phycpu_info_primary,
164 };
165
166 struct cpu_info *cpu_info_list = &cpu_info_primary;
167 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
168
169 static void cpu_set_tss_gates(struct cpu_info *ci);
170
171 uint32_t cpus_attached = 0;
172 uint32_t cpus_running = 0;
173
174 uint32_t phycpus_attached = 0;
175 uint32_t phycpus_running = 0;
176
177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 * [0] basic features %edx
179 * [1] basic features %ecx
180 * [2] extended features %edx
181 * [3] extended features %ecx
182 * [4] VIA padlock features
183 */
184
185 bool x86_mp_online;
186 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
187
188 #if defined(MULTIPROCESSOR)
189 void cpu_hatch(void *);
190 static void cpu_boot_secondary(struct cpu_info *ci);
191 static void cpu_start_secondary(struct cpu_info *ci);
192 static void cpu_copy_trampoline(void);
193
194 /*
195 * Runs once per boot once multiprocessor goo has been detected and
196 * the local APIC on the boot processor has been mapped.
197 *
198 * Called from lapic_boot_init() (from mpbios_scan()).
199 */
200 void
201 cpu_init_first(void)
202 {
203
204 cpu_info_primary.ci_cpuid = lapic_cpu_number();
205 cpu_copy_trampoline();
206 }
207 #endif /* MULTIPROCESSOR */
208
209 int
210 cpu_match(device_t parent, cfdata_t match, void *aux)
211 {
212
213 return 1;
214 }
215
216 void
217 cpu_attach(device_t parent, device_t self, void *aux)
218 {
219 struct cpu_softc *sc = device_private(self);
220 struct cpu_attach_args *caa = aux;
221 struct cpu_info *ci;
222 uintptr_t ptr;
223 static bool again = false;
224
225 sc->sc_dev = self;
226
227 if (phycpus_attached == ~0) {
228 aprint_error(": increase MAXCPUS\n");
229 return;
230 }
231
232 /*
233 * If we're an Application Processor, allocate a cpu_info
234 * structure, otherwise use the primary's.
235 */
236 if (caa->cpu_role == CPU_ROLE_AP) {
237 if ((boothowto & RB_MD1) != 0) {
238 aprint_error(": multiprocessor boot disabled\n");
239 if (!pmf_device_register(self, NULL, NULL))
240 aprint_error_dev(self,
241 "couldn't establish power handler\n");
242 return;
243 }
244 aprint_naive(": Application Processor\n");
245 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
246 KM_SLEEP);
247 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
248 ci->ci_curldt = -1;
249 } else {
250 aprint_naive(": %s Processor\n",
251 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
252 ci = &phycpu_info_primary;
253 }
254
255 ci->ci_self = ci;
256 sc->sc_info = ci;
257
258 ci->ci_dev = self;
259 ci->ci_cpuid = caa->cpu_number;
260 ci->ci_vcpu = NULL;
261
262 /*
263 * Boot processor may not be attached first, but the below
264 * must be done to allow booting other processors.
265 */
266 if (!again) {
267 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
268 /* Basic init */
269 again = true;
270 }
271
272 printf(": ");
273 switch (caa->cpu_role) {
274 case CPU_ROLE_SP:
275 printf("(uniprocessor)\n");
276 atomic_or_32(&ci->ci_flags, CPUF_SP);
277 break;
278
279 case CPU_ROLE_BP:
280 printf("(boot processor)\n");
281 atomic_or_32(&ci->ci_flags, CPUF_BSP);
282 break;
283
284 case CPU_ROLE_AP:
285 /*
286 * report on an AP
287 */
288 printf("(application processor)\n");
289 if (ci->ci_flags & CPUF_PRESENT) {
290 struct cpu_info *tmp;
291
292 tmp = phycpu_info_list;
293 while (tmp->ci_next)
294 tmp = tmp->ci_next;
295
296 tmp->ci_next = ci;
297 }
298 break;
299
300 default:
301 panic("unknown processor type??\n");
302 }
303
304 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
305
306 return;
307 }
308
309 int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 struct vcpu_attach_args *vcaa = aux;
313
314 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
315 return 1;
316 return 0;
317 }
318
319 void
320 vcpu_attach(device_t parent, device_t self, void *aux)
321 {
322 struct vcpu_attach_args *vcaa = aux;
323
324 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
325 }
326
327 static void
328 cpu_vm_init(struct cpu_info *ci)
329 {
330 int ncolors = 2, i;
331
332 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
333 struct x86_cache_info *cai;
334 int tcolors;
335
336 cai = &ci->ci_cinfo[i];
337
338 tcolors = atop(cai->cai_totalsize);
339 switch(cai->cai_associativity) {
340 case 0xff:
341 tcolors = 1; /* fully associative */
342 break;
343 case 0:
344 case 1:
345 break;
346 default:
347 tcolors /= cai->cai_associativity;
348 }
349 ncolors = max(ncolors, tcolors);
350 }
351
352 /*
353 * Knowing the size of the largest cache on this CPU, re-color
354 * our pages.
355 */
356 if (ncolors <= uvmexp.ncolors)
357 return;
358 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
359 uvm_page_recolor(ncolors);
360 }
361
362 void
363 cpu_attach_common(device_t parent, device_t self, void *aux)
364 {
365 struct cpu_softc *sc = device_private(self);
366 struct cpu_attach_args *caa = aux;
367 struct cpu_info *ci;
368 uintptr_t ptr;
369 int cpunum = caa->cpu_number;
370 static bool again = false;
371
372 sc->sc_dev = self;
373
374 /*
375 * If we're an Application Processor, allocate a cpu_info
376 * structure, otherwise use the primary's.
377 */
378 if (caa->cpu_role == CPU_ROLE_AP) {
379 aprint_naive(": Application Processor\n");
380 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
381 KM_SLEEP);
382 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
383 memset(ci, 0, sizeof(*ci));
384 #ifdef TRAPLOG
385 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
386 #endif
387 } else {
388 aprint_naive(": %s Processor\n",
389 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
390 ci = &cpu_info_primary;
391 #if NLAPIC > 0
392 if (cpunum != lapic_cpu_number()) {
393 /* XXX should be done earlier */
394 uint32_t reg;
395 aprint_verbose("\n");
396 aprint_verbose_dev(self, "running CPU at apic %d"
397 " instead of at expected %d", lapic_cpu_number(),
398 cpunum);
399 reg = i82489_readreg(LAPIC_ID);
400 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
401 (cpunum << LAPIC_ID_SHIFT));
402 }
403 if (cpunum != lapic_cpu_number()) {
404 aprint_error_dev(self, "unable to reset apic id\n");
405 }
406 #endif
407 }
408
409 ci->ci_self = ci;
410 sc->sc_info = ci;
411 ci->ci_dev = self;
412 ci->ci_cpuid = cpunum;
413
414 KASSERT(HYPERVISOR_shared_info != NULL);
415 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
416
417 ci->ci_func = caa->cpu_func;
418
419 /* Must be called before mi_cpu_attach(). */
420 cpu_vm_init(ci);
421
422 if (caa->cpu_role == CPU_ROLE_AP) {
423 int error;
424
425 error = mi_cpu_attach(ci);
426 if (error != 0) {
427 aprint_normal("\n");
428 aprint_error_dev(self,
429 "mi_cpu_attach failed with %d\n", error);
430 return;
431 }
432 } else {
433 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
434 }
435
436 ci->ci_cpumask = (1 << cpu_index(ci));
437 pmap_reference(pmap_kernel());
438 ci->ci_pmap = pmap_kernel();
439 ci->ci_tlbstate = TLBSTATE_STALE;
440
441 /*
442 * Boot processor may not be attached first, but the below
443 * must be done to allow booting other processors.
444 */
445 if (!again) {
446 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
447 /* Basic init. */
448 cpu_intr_init(ci);
449 cpu_get_tsc_freq(ci);
450 cpu_init(ci);
451 cpu_set_tss_gates(ci);
452 #if NLAPIC > 0
453 if (caa->cpu_role != CPU_ROLE_SP) {
454 /* Enable lapic. */
455 lapic_enable();
456 lapic_set_lvt();
457 lapic_calibrate_timer();
458 }
459 #endif
460 /* Make sure DELAY() is initialized. */
461 DELAY(1);
462 again = true;
463 }
464
465 /* further PCB init done later. */
466
467 switch (caa->cpu_role) {
468 case CPU_ROLE_SP:
469 atomic_or_32(&ci->ci_flags, CPUF_SP);
470 cpu_identify(ci);
471 #if 0
472 x86_errata();
473 #endif
474 x86_cpu_idle_init();
475 break;
476
477 case CPU_ROLE_BP:
478 atomic_or_32(&ci->ci_flags, CPUF_BSP);
479 cpu_identify(ci);
480 cpu_init(ci);
481 #if 0
482 x86_errata();
483 #endif
484 x86_cpu_idle_init();
485 break;
486
487 case CPU_ROLE_AP:
488 /*
489 * report on an AP
490 */
491
492 #if defined(MULTIPROCESSOR)
493 cpu_intr_init(ci);
494 gdt_alloc_cpu(ci);
495 cpu_set_tss_gates(ci);
496 cpu_start_secondary(ci);
497 if (ci->ci_flags & CPUF_PRESENT) {
498 struct cpu_info *tmp;
499
500 identifycpu(ci);
501 tmp = cpu_info_list;
502 while (tmp->ci_next)
503 tmp = tmp->ci_next;
504
505 tmp->ci_next = ci;
506 }
507 #else
508 aprint_error_dev(self, "not started\n");
509 #endif
510 break;
511
512 default:
513 aprint_normal("\n");
514 panic("unknown processor type??\n");
515 }
516
517 atomic_or_32(&cpus_attached, ci->ci_cpumask);
518
519 #if 0
520 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
521 aprint_error_dev(self, "couldn't establish power handler\n");
522 #endif
523
524 #if defined(MULTIPROCESSOR)
525 if (mp_verbose) {
526 struct lwp *l = ci->ci_data.cpu_idlelwp;
527 struct pcb *pcb = lwp_getpcb(l);
528
529 aprint_verbose_dev(self,
530 "idle lwp at %p, idle sp at 0x%p\n",
531 l,
532 #ifdef i386
533 (void *)pcb->pcb_esp
534 #else
535 (void *)pcb->pcb_rsp
536 #endif
537 );
538
539 }
540 #endif
541 }
542
543 /*
544 * Initialize the processor appropriately.
545 */
546
547 void
548 cpu_init(struct cpu_info *ci)
549 {
550
551 /*
552 * On a P6 or above, enable global TLB caching if the
553 * hardware supports it.
554 */
555 if (cpu_feature[0] & CPUID_PGE)
556 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
557
558 #ifdef XXXMTRR
559 /*
560 * On a P6 or above, initialize MTRR's if the hardware supports them.
561 */
562 if (cpu_feature[0] & CPUID_MTRR) {
563 if ((ci->ci_flags & CPUF_AP) == 0)
564 i686_mtrr_init_first();
565 mtrr_init_cpu(ci);
566 }
567 #endif
568 /*
569 * If we have FXSAVE/FXRESTOR, use them.
570 */
571 if (cpu_feature[0] & CPUID_FXSR) {
572 lcr4(rcr4() | CR4_OSFXSR);
573
574 /*
575 * If we have SSE/SSE2, enable XMM exceptions.
576 */
577 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
578 lcr4(rcr4() | CR4_OSXMMEXCPT);
579 }
580
581 atomic_or_32(&cpus_running, ci->ci_cpumask);
582 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
583 }
584
585
586 #ifdef MULTIPROCESSOR
587 void
588 cpu_boot_secondary_processors(void)
589 {
590 struct cpu_info *ci;
591 u_long i;
592
593 for (i = 0; i < maxcpus; i++) {
594 ci = cpu_lookup(i);
595 if (ci == NULL)
596 continue;
597 if (ci->ci_data.cpu_idlelwp == NULL)
598 continue;
599 if ((ci->ci_flags & CPUF_PRESENT) == 0)
600 continue;
601 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
602 continue;
603 cpu_boot_secondary(ci);
604 }
605
606 x86_mp_online = true;
607 }
608
609 static void
610 cpu_init_idle_lwp(struct cpu_info *ci)
611 {
612 struct lwp *l = ci->ci_data.cpu_idlelwp;
613 struct pcb *pcb = lwp_getpcb(l);
614
615 pcb->pcb_cr0 = rcr0();
616 }
617
618 void
619 cpu_init_idle_lwps(void)
620 {
621 struct cpu_info *ci;
622 u_long i;
623
624 for (i = 0; i < maxcpus; i++) {
625 ci = cpu_lookup(i);
626 if (ci == NULL)
627 continue;
628 if (ci->ci_data.cpu_idlelwp == NULL)
629 continue;
630 if ((ci->ci_flags & CPUF_PRESENT) == 0)
631 continue;
632 cpu_init_idle_lwp(ci);
633 }
634 }
635
636 void
637 cpu_start_secondary(struct cpu_info *ci)
638 {
639 int i;
640 struct pmap *kpm = pmap_kernel();
641 extern uint32_t mp_pdirpa;
642
643 mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
644
645 atomic_or_32(&ci->ci_flags, CPUF_AP);
646
647 aprint_debug_dev(ci->ci_dev, "starting\n");
648
649 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
650 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
651 return;
652
653 /*
654 * wait for it to become ready
655 */
656 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
657 #ifdef MPDEBUG
658 extern int cpu_trace[3];
659 static int otrace[3];
660 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
661 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
662 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
663 memcpy(otrace, cpu_trace, sizeof(otrace));
664 }
665 #endif
666 delay(10);
667 }
668 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
669 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
670 #if defined(MPDEBUG) && defined(DDB)
671 printf("dropping into debugger; continue from here to resume boot\n");
672 Debugger();
673 #endif
674 }
675
676 CPU_START_CLEANUP(ci);
677 }
678
679 void
680 cpu_boot_secondary(struct cpu_info *ci)
681 {
682 int i;
683
684 atomic_or_32(&ci->ci_flags, CPUF_GO);
685 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
686 delay(10);
687 }
688 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
689 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
690 #if defined(MPDEBUG) && defined(DDB)
691 printf("dropping into debugger; continue from here to resume boot\n");
692 Debugger();
693 #endif
694 }
695 }
696
697 /*
698 * The CPU ends up here when its ready to run
699 * This is called from code in mptramp.s; at this point, we are running
700 * in the idle pcb/idle stack of the new CPU. When this function returns,
701 * this processor will enter the idle loop and start looking for work.
702 *
703 * XXX should share some of this with init386 in machdep.c
704 */
705 void
706 cpu_hatch(void *v)
707 {
708 struct cpu_info *ci = (struct cpu_info *)v;
709 struct pcb *pcb;
710 int s, i;
711
712 cpu_probe(ci);
713
714 cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
715 cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
716
717 cpu_init_msrs(ci, true);
718
719 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
720 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
721 while ((ci->ci_flags & CPUF_GO) == 0) {
722 /* Don't use delay, boot CPU may be patching the text. */
723 for (i = 10000; i != 0; i--)
724 x86_pause();
725 }
726
727 /* Because the text may have been patched in x86_patch(). */
728 wbinvd();
729 x86_flush();
730
731 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
732
733 pcb = lwp_getpcb(curlwp);
734 lcr3(pmap_kernel()->pm_pdirpa);
735 pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
736 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
737 lcr0(pcb->pcb_cr0);
738
739 cpu_init_idt();
740 gdt_init_cpu(ci);
741 lapic_enable();
742 lapic_set_lvt();
743 lapic_initclocks();
744
745 #ifdef i386
746 npxinit(ci);
747 #else
748 fpuinit(ci);
749 #endif
750
751 lldt(GSEL(GLDT_SEL, SEL_KPL));
752 ltr(ci->ci_tss_sel);
753
754 cpu_init(ci);
755 cpu_get_tsc_freq(ci);
756
757 s = splhigh();
758 #ifdef i386
759 lapic_tpr = 0;
760 #else
761 lcr8(0);
762 #endif
763 x86_enable_intr();
764 splx(s);
765 #if 0
766 x86_errata();
767 #endif
768
769 aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
770 (long)ci->ci_cpuid);
771 }
772
773 #if defined(DDB)
774
775 #include <ddb/db_output.h>
776 #include <machine/db_machdep.h>
777
778 /*
779 * Dump CPU information from ddb.
780 */
781 void
782 cpu_debug_dump(void)
783 {
784 struct cpu_info *ci;
785 CPU_INFO_ITERATOR cii;
786
787 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
788 for (CPU_INFO_FOREACH(cii, ci)) {
789 db_printf("%p %s %ld %x %x %10p %10p\n",
790 ci,
791 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
792 (long)ci->ci_cpuid,
793 ci->ci_flags, ci->ci_ipis,
794 ci->ci_curlwp,
795 ci->ci_fpcurlwp);
796 }
797 }
798 #endif /* DDB */
799
800 static void
801 cpu_copy_trampoline(void)
802 {
803 /*
804 * Copy boot code.
805 */
806 extern u_char cpu_spinup_trampoline[];
807 extern u_char cpu_spinup_trampoline_end[];
808
809 vaddr_t mp_trampoline_vaddr;
810
811 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
812 UVM_KMF_VAONLY);
813
814 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
815 VM_PROT_READ | VM_PROT_WRITE, 0);
816 pmap_update(pmap_kernel());
817 memcpy((void *)mp_trampoline_vaddr,
818 cpu_spinup_trampoline,
819 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
820
821 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
822 pmap_update(pmap_kernel());
823 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
824 }
825
826 #endif /* MULTIPROCESSOR */
827
828 #ifdef i386
829 #if 0
830 static void
831 tss_init(struct i386tss *tss, void *stack, void *func)
832 {
833 memset(tss, 0, sizeof *tss);
834 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
835 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
836 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
837 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
838 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
839 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
840 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
841 tss->tss_esp = (int)((char *)stack + USPACE - 16);
842 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
843 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
844 tss->__tss_eip = (int)func;
845 }
846 #endif
847
848 /* XXX */
849 #define IDTVEC(name) __CONCAT(X, name)
850 typedef void (vector)(void);
851 extern vector IDTVEC(tss_trap08);
852 #ifdef DDB
853 extern vector Xintrddbipi;
854 extern int ddb_vec;
855 #endif
856
857 static void
858 cpu_set_tss_gates(struct cpu_info *ci)
859 {
860 #if 0
861 struct segment_descriptor sd;
862
863 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
864 UVM_KMF_WIRED);
865 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
866 IDTVEC(tss_trap08));
867 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
868 SDT_SYS386TSS, SEL_KPL, 0, 0);
869 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
870 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
871 GSEL(GTRAPTSS_SEL, SEL_KPL));
872 #endif
873
874 #if defined(DDB) && defined(MULTIPROCESSOR)
875 /*
876 * Set up separate handler for the DDB IPI, so that it doesn't
877 * stomp on a possibly corrupted stack.
878 *
879 * XXX overwriting the gate set in db_machine_init.
880 * Should rearrange the code so that it's set only once.
881 */
882 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
883 UVM_KMF_WIRED);
884 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
885 Xintrddbipi);
886
887 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
888 SDT_SYS386TSS, SEL_KPL, 0, 0);
889 ci->ci_gdt[GIPITSS_SEL].sd = sd;
890
891 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
892 GSEL(GIPITSS_SEL, SEL_KPL));
893 #endif
894 }
895 #else
896 static void
897 cpu_set_tss_gates(struct cpu_info *ci)
898 {
899
900 }
901 #endif /* i386 */
902
903 int
904 mp_cpu_start(struct cpu_info *ci, paddr_t target)
905 {
906 #if 0
907 #if NLAPIC > 0
908 int error;
909 #endif
910 unsigned short dwordptr[2];
911
912 /*
913 * Bootstrap code must be addressable in real mode
914 * and it must be page aligned.
915 */
916 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
917
918 /*
919 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
920 */
921
922 outb(IO_RTC, NVRAM_RESET);
923 outb(IO_RTC+1, NVRAM_RESET_JUMP);
924
925 /*
926 * "and the warm reset vector (DWORD based at 40:67) to point
927 * to the AP startup code ..."
928 */
929
930 dwordptr[0] = 0;
931 dwordptr[1] = target >> 4;
932
933 pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
934 pmap_update(pmap_kernel());
935
936 memcpy ((uint8_t *) 0x467, dwordptr, 4);
937
938 pmap_kremove (0, PAGE_SIZE);
939 pmap_update(pmap_kernel());
940
941 #if NLAPIC > 0
942 /*
943 * ... prior to executing the following sequence:"
944 */
945
946 if (ci->ci_flags & CPUF_AP) {
947 if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
948 return error;
949
950 delay(10000);
951
952 if (cpu_feature & CPUID_APIC) {
953 error = x86_ipi_init(ci->ci_cpuid);
954 if (error != 0) {
955 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
956 __func__);
957 return error;
958 }
959
960 delay(10000);
961
962 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
963 LAPIC_DLMODE_STARTUP);
964 if (error != 0) {
965 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
966 __func__);
967 return error;
968 }
969 delay(200);
970
971 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
972 LAPIC_DLMODE_STARTUP);
973 if (error != 0) {
974 aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
975 __func__);
976 return error;
977 }
978 delay(200);
979 }
980 }
981 #endif
982 #endif /* 0 */
983 return 0;
984 }
985
986 void
987 mp_cpu_start_cleanup(struct cpu_info *ci)
988 {
989 #if 0
990 /*
991 * Ensure the NVRAM reset byte contains something vaguely sane.
992 */
993
994 outb(IO_RTC, NVRAM_RESET);
995 outb(IO_RTC+1, NVRAM_RESET_RST);
996 #endif
997 }
998
999 void
1000 cpu_init_msrs(struct cpu_info *ci, bool full)
1001 {
1002 #ifdef __x86_64__
1003 if (full) {
1004 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1005 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1006 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1007 }
1008 #endif /* __x86_64__ */
1009
1010 if (cpu_feature[2] & CPUID_NOX)
1011 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1012 }
1013
1014 void
1015 cpu_offline_md(void)
1016 {
1017 int s;
1018
1019 s = splhigh();
1020 #ifdef __i386__
1021 npxsave_cpu(true);
1022 #else
1023 fpusave_cpu(true);
1024 #endif
1025 splx(s);
1026 }
1027
1028 #if 0
1029 /* XXX joerg restructure and restart CPUs individually */
1030 static bool
1031 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1032 {
1033 struct cpu_softc *sc = device_private(dv);
1034 struct cpu_info *ci = sc->sc_info;
1035 int err;
1036
1037 if (ci->ci_flags & CPUF_PRIMARY)
1038 return true;
1039 if (ci->ci_data.cpu_idlelwp == NULL)
1040 return true;
1041 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1042 return true;
1043
1044 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1045
1046 if (sc->sc_wasonline) {
1047 mutex_enter(&cpu_lock);
1048 err = cpu_setstate(ci, false);
1049 mutex_exit(&cpu_lock);
1050
1051 if (err)
1052 return false;
1053 }
1054
1055 return true;
1056 }
1057
1058 static bool
1059 cpu_resume(device_t dv, const pmf_qual_t *qual)
1060 {
1061 struct cpu_softc *sc = device_private(dv);
1062 struct cpu_info *ci = sc->sc_info;
1063 int err = 0;
1064
1065 if (ci->ci_flags & CPUF_PRIMARY)
1066 return true;
1067 if (ci->ci_data.cpu_idlelwp == NULL)
1068 return true;
1069 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1070 return true;
1071
1072 if (sc->sc_wasonline) {
1073 mutex_enter(&cpu_lock);
1074 err = cpu_setstate(ci, true);
1075 mutex_exit(&cpu_lock);
1076 }
1077
1078 return err == 0;
1079 }
1080 #endif
1081
1082 void
1083 cpu_get_tsc_freq(struct cpu_info *ci)
1084 {
1085 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1086 delay(1000000);
1087 uint64_t freq = 1000000000ULL << 32;
1088 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1089 if ( tinfo->tsc_shift < 0 )
1090 freq = freq << -tinfo->tsc_shift;
1091 else
1092 freq = freq >> tinfo->tsc_shift;
1093 ci->ci_data.cpu_cc_freq = freq;
1094 }
1095
1096 void
1097 x86_cpu_idle_xen(void)
1098 {
1099 struct cpu_info *ci = curcpu();
1100
1101 KASSERT(ci->ci_ilevel == IPL_NONE);
1102
1103 x86_disable_intr();
1104 if (!__predict_false(ci->ci_want_resched)) {
1105 idle_block();
1106 } else {
1107 x86_enable_intr();
1108 }
1109 }
1110