Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.5
      1 /*	$NetBSD: cpu.c,v 1.5 2007/12/18 07:17:18 joerg Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by RedBack Networks Inc.
     10  *
     11  * Author: Bill Sommerfeld
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *        This product includes software developed by the NetBSD
     24  *        Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*
     43  * Copyright (c) 1999 Stefan Grefen
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by the NetBSD
     56  *      Foundation, Inc. and its contributors.
     57  * 4. Neither the name of The NetBSD Foundation nor the names of its
     58  *    contributors may be used to endorse or promote products derived
     59  *    from this software without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     62  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  */
     73 
     74 #include <sys/cdefs.h>
     75 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.5 2007/12/18 07:17:18 joerg Exp $");
     76 
     77 #include "opt_ddb.h"
     78 #include "opt_multiprocessor.h"
     79 #include "opt_mpbios.h"		/* for MPDEBUG */
     80 #include "opt_mtrr.h"
     81 #include "opt_xen.h"
     82 
     83 #include "lapic.h"
     84 #include "ioapic.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/proc.h>
     88 #include <sys/user.h>
     89 #include <sys/systm.h>
     90 #include <sys/device.h>
     91 #include <sys/malloc.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #include <machine/cpu.h>
     96 #include <machine/cpufunc.h>
     97 #include <machine/cpuvar.h>
     98 #include <machine/pmap.h>
     99 #include <machine/vmparam.h>
    100 #include <machine/mpbiosvar.h>
    101 #include <machine/pcb.h>
    102 #include <machine/specialreg.h>
    103 #include <machine/segments.h>
    104 #include <machine/gdt.h>
    105 #include <machine/mtrr.h>
    106 #include <machine/pio.h>
    107 
    108 #ifdef XEN3
    109 #include <xen/vcpuvar.h>
    110 #endif
    111 
    112 #if NLAPIC > 0
    113 #include <machine/apicvar.h>
    114 #include <machine/i82489reg.h>
    115 #include <machine/i82489var.h>
    116 #endif
    117 
    118 #if NIOAPIC > 0
    119 #include <machine/i82093var.h>
    120 #endif
    121 
    122 #include <dev/ic/mc146818reg.h>
    123 #include <dev/isa/isareg.h>
    124 
    125 int     cpu_match(struct device *, struct cfdata *, void *);
    126 void    cpu_attach(struct device *, struct device *, void *);
    127 #ifdef XEN3
    128 int     vcpu_match(struct device *, struct cfdata *, void *);
    129 void    vcpu_attach(struct device *, struct device *, void *);
    130 #endif
    131 void    cpu_attach_common(struct device *, struct device *, void *);
    132 
    133 struct cpu_softc {
    134 	struct device sc_dev;		/* device tree glue */
    135 	struct cpu_info *sc_info;	/* pointer to CPU info */
    136 };
    137 
    138 int mp_cpu_start(struct cpu_info *, paddr_t);
    139 void mp_cpu_start_cleanup(struct cpu_info *);
    140 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    141 				      mp_cpu_start_cleanup };
    142 
    143 CFATTACH_DECL(cpu, sizeof(struct cpu_softc),
    144     cpu_match, cpu_attach, NULL, NULL);
    145 #ifdef XEN3
    146 CFATTACH_DECL(vcpu, sizeof(struct cpu_softc),
    147     vcpu_match, vcpu_attach, NULL, NULL);
    148 #endif
    149 
    150 /*
    151  * Statically-allocated CPU info for the primary CPU (or the only
    152  * CPU, on uniprocessors).  The CPU info list is initialized to
    153  * point at it.
    154  */
    155 #ifdef TRAPLOG
    156 #include <machine/tlog.h>
    157 struct tlog tlog_primary;
    158 #endif
    159 struct cpu_info cpu_info_primary = {
    160 	.ci_self = &cpu_info_primary,
    161 #ifndef __x86_64__
    162 	.ci_self150 = (uint8_t *)&cpu_info_primary + 0x150,
    163 #endif
    164 	.ci_idepth = -1,
    165 	.ci_curlwp = &lwp0,
    166 #ifdef TRAPLOG
    167 	.ci_tlog = &tlog_primary,
    168 #endif
    169 
    170 };
    171 struct cpu_info phycpu_info_primary = {
    172 	.ci_self = &phycpu_info_primary,
    173 #ifndef __x86_64__
    174 	.ci_self150 = (uint8_t *)&phycpu_info_primary + 0x150,
    175 #endif
    176 };
    177 
    178 struct cpu_info *cpu_info_list = &cpu_info_primary;
    179 
    180 static void	cpu_set_tss_gates(struct cpu_info *ci);
    181 
    182 u_int32_t cpus_attached = 0;
    183 
    184 struct cpu_info *phycpu_info[X86_MAXPROCS] = { &cpu_info_primary };
    185 
    186 #ifdef MULTIPROCESSOR
    187 /*
    188  * Array of CPU info structures.  Must be statically-allocated because
    189  * curproc, etc. are used early.
    190  */
    191 struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary };
    192 
    193 u_int32_t cpus_running = 0;
    194 
    195 void    	cpu_hatch(void *);
    196 static void    	cpu_boot_secondary(struct cpu_info *ci);
    197 static void    	cpu_start_secondary(struct cpu_info *ci);
    198 static void	cpu_copy_trampoline(void);
    199 
    200 /*
    201  * Runs once per boot once multiprocessor goo has been detected and
    202  * the local APIC on the boot processor has been mapped.
    203  *
    204  * Called from lapic_boot_init() (from mpbios_scan()).
    205  */
    206 void
    207 cpu_init_first()
    208 {
    209 	int cpunum = lapic_cpu_number();
    210 
    211 	if (cpunum != 0) {
    212 		cpu_info[0] = NULL;
    213 		cpu_info[cpunum] = &cpu_info_primary;
    214 	}
    215 
    216 	cpu_copy_trampoline();
    217 }
    218 #endif
    219 
    220 int
    221 cpu_match(parent, match, aux)
    222 	struct device *parent;
    223 	struct cfdata *match;
    224 	void *aux;
    225 {
    226 
    227 	return 1;
    228 }
    229 
    230 void
    231 cpu_attach(parent, self, aux)
    232 	struct device *parent, *self;
    233 	void *aux;
    234 {
    235 #ifdef XEN3
    236 	struct cpu_softc *sc = (void *) self;
    237 	struct cpu_attach_args *caa = aux;
    238 	struct cpu_info *ci;
    239 	int cpunum = caa->cpu_number;
    240 
    241 	/*
    242 	 * If we're an Application Processor, allocate a cpu_info
    243 	 * structure, otherwise use the primary's.
    244 	 */
    245 	if (caa->cpu_role == CPU_ROLE_AP) {
    246 		ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK | M_ZERO);
    247 		if (phycpu_info[cpunum] != NULL)
    248 			panic("cpu at apic id %d already attached?", cpunum);
    249 		phycpu_info[cpunum] = ci;
    250 	} else {
    251 		ci = &phycpu_info_primary;
    252 		if (cpunum != 0) {
    253 			phycpu_info[0] = NULL;
    254 			phycpu_info[cpunum] = ci;
    255 		}
    256 	}
    257 
    258 	ci->ci_self = ci;
    259 	sc->sc_info = ci;
    260 
    261 	ci->ci_dev = self;
    262 	ci->ci_apicid = caa->cpu_number;
    263 	ci->ci_cpuid = ci->ci_apicid;
    264 
    265 	printf(": ");
    266 	switch (caa->cpu_role) {
    267 	case CPU_ROLE_SP:
    268 		printf("(uniprocessor)\n");
    269 		ci->ci_flags |= CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY;
    270 		break;
    271 
    272 	case CPU_ROLE_BP:
    273 		printf("(boot processor)\n");
    274 		ci->ci_flags |= CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY;
    275 #if NIOAPIC > 0
    276 		ioapic_bsp_id = caa->cpu_number;
    277 #endif
    278 		break;
    279 
    280 	case CPU_ROLE_AP:
    281 		/*
    282 		 * report on an AP
    283 		 */
    284 		printf("(application processor)\n");
    285 		break;
    286 
    287 	default:
    288 		panic("unknown processor type??\n");
    289 	}
    290 	return;
    291 #else
    292 	cpu_attach_common(parent, self, aux);
    293 #endif
    294 }
    295 
    296 #ifdef XEN3
    297 int
    298 vcpu_match(parent, match, aux)
    299 	struct device *parent;
    300 	struct cfdata *match;
    301 	void *aux;
    302 {
    303 	struct vcpu_attach_args *vcaa = aux;
    304 
    305 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
    306 		return 1;
    307 	return 0;
    308 }
    309 
    310 void
    311 vcpu_attach(parent, self, aux)
    312 	struct device *parent, *self;
    313 	void *aux;
    314 {
    315 	struct vcpu_attach_args *vcaa = aux;
    316 
    317 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    318 }
    319 #endif
    320 
    321 static void
    322 cpu_vm_init(struct cpu_info *ci)
    323 {
    324 	int ncolors = 2, i;
    325 
    326 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    327 		struct x86_cache_info *cai;
    328 		int tcolors;
    329 
    330 		cai = &ci->ci_cinfo[i];
    331 
    332 		tcolors = atop(cai->cai_totalsize);
    333 		switch(cai->cai_associativity) {
    334 		case 0xff:
    335 			tcolors = 1; /* fully associative */
    336 			break;
    337 		case 0:
    338 		case 1:
    339 			break;
    340 		default:
    341 			tcolors /= cai->cai_associativity;
    342 		}
    343 		ncolors = max(ncolors, tcolors);
    344 	}
    345 
    346 	/*
    347 	 * Knowing the size of the largest cache on this CPU, re-color
    348 	 * our pages.
    349 	 */
    350 	if (ncolors <= uvmexp.ncolors)
    351 		return;
    352 	printf("%s: %d page colors\n", ci->ci_dev->dv_xname, ncolors);
    353 	uvm_page_recolor(ncolors);
    354 }
    355 
    356 void
    357 cpu_attach_common(parent, self, aux)
    358 	struct device *parent, *self;
    359 	void *aux;
    360 {
    361 	struct cpu_softc *sc = (void *) self;
    362 	struct cpu_attach_args *caa = aux;
    363 	struct cpu_info *ci;
    364 #if defined(MULTIPROCESSOR)
    365 	int cpunum = caa->cpu_number;
    366 #endif
    367 
    368 	/*
    369 	 * If we're an Application Processor, allocate a cpu_info
    370 	 * structure, otherwise use the primary's.
    371 	 */
    372 	if (caa->cpu_role == CPU_ROLE_AP) {
    373 		ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK | M_ZERO);
    374 #if defined(MULTIPROCESSOR)
    375 		if (cpu_info[cpunum] != NULL)
    376 			panic("cpu at apic id %d already attached?", cpunum);
    377 		cpu_info[cpunum] = ci;
    378 #endif
    379 #ifdef TRAPLOG
    380 		ci->ci_tlog_base = malloc(sizeof(struct tlog),
    381 		    M_DEVBUF, M_WAITOK);
    382 #endif
    383 	} else {
    384 		ci = &cpu_info_primary;
    385 #if defined(MULTIPROCESSOR)
    386 		if (cpunum != lapic_cpu_number()) {
    387 			panic("%s: running CPU is at apic %d"
    388 			    " instead of at expected %d",
    389 			    sc->sc_dev.dv_xname, lapic_cpu_number(), cpunum);
    390 		}
    391 #endif
    392 	}
    393 
    394 	ci->ci_self = ci;
    395 	sc->sc_info = ci;
    396 
    397 	ci->ci_dev = self;
    398 	ci->ci_apicid = caa->cpu_number;
    399 #ifdef MULTIPROCESSOR
    400 	ci->ci_cpuid = ci->ci_apicid;
    401 #else
    402 	ci->ci_cpuid = 0;	/* False for APs, but they're not used anyway */
    403 #endif
    404 	ci->ci_cpumask = (1 << ci->ci_cpuid);
    405 	ci->ci_func = caa->cpu_func;
    406 
    407 #ifndef __x86_64__
    408 	simple_lock_init(&ci->ci_slock);
    409 #endif
    410 
    411 	if (caa->cpu_role == CPU_ROLE_AP) {
    412 #if defined(MULTIPROCESSOR)
    413 		int error;
    414 
    415 		error = mi_cpu_attach(ci);
    416 		if (error != 0) {
    417 			aprint_normal("\n");
    418 			aprint_error("%s: mi_cpu_attach failed with %d\n",
    419 			    sc->sc_dev.dv_xname, error);
    420 			return;
    421 		}
    422 #endif
    423 	} else {
    424 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    425 	}
    426 
    427 	pmap_reference(pmap_kernel());
    428 	ci->ci_pmap = pmap_kernel();
    429 	ci->ci_tlbstate = TLBSTATE_STALE;
    430 
    431 	/* further PCB init done later. */
    432 
    433 	printf(": ");
    434 
    435 	switch (caa->cpu_role) {
    436 	case CPU_ROLE_SP:
    437 		printf("(uniprocessor)\n");
    438 		ci->ci_flags |= CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY;
    439 		cpu_intr_init(ci);
    440 		identifycpu(ci);
    441 		cpu_init(ci);
    442 		cpu_set_tss_gates(ci);
    443 		break;
    444 
    445 	case CPU_ROLE_BP:
    446 		printf("apid %d (boot processor)\n", caa->cpu_number);
    447 		ci->ci_flags |= CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY;
    448 		cpu_intr_init(ci);
    449 		identifycpu(ci);
    450 		cpu_init(ci);
    451 		cpu_set_tss_gates(ci);
    452 		break;
    453 
    454 	case CPU_ROLE_AP:
    455 		/*
    456 		 * report on an AP
    457 		 */
    458 		printf("apid %d (application processor)\n", caa->cpu_number);
    459 
    460 #if defined(MULTIPROCESSOR)
    461 		cpu_intr_init(ci);
    462 		gdt_alloc_cpu(ci);
    463 		cpu_set_tss_gates(ci);
    464 		cpu_start_secondary(ci);
    465 		if (ci->ci_flags & CPUF_PRESENT) {
    466 			identifycpu(ci);
    467 			ci->ci_next = cpu_info_list->ci_next;
    468 			cpu_info_list->ci_next = ci;
    469 		}
    470 #else
    471 		printf("%s: not started\n", sc->sc_dev.dv_xname);
    472 #endif
    473 		break;
    474 
    475 	default:
    476 		panic("unknown processor type??\n");
    477 	}
    478 	cpu_vm_init(ci);
    479 
    480 	cpus_attached |= (1 << ci->ci_cpuid);
    481 
    482 #if defined(MULTIPROCESSOR)
    483 	if (mp_verbose) {
    484 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    485 
    486 		aprint_verbose("%s: idle lwp at %p, idle sp at 0x%x\n",
    487 		    sc->sc_dev.dv_xname, l, l->l_addr->u_pcb.pcb_esp);
    488 	}
    489 #endif
    490 }
    491 
    492 /*
    493  * Initialize the processor appropriately.
    494  */
    495 
    496 void
    497 cpu_init(ci)
    498 	struct cpu_info *ci;
    499 {
    500 	/* configure the CPU if needed */
    501 	if (ci->cpu_setup != NULL)
    502 		(*ci->cpu_setup)(ci);
    503 
    504 	/*
    505 	 * On a P6 or above, enable global TLB caching if the
    506 	 * hardware supports it.
    507 	 */
    508 	if (cpu_feature & CPUID_PGE)
    509 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    510 
    511 #ifdef XXXMTRR
    512 	/*
    513 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    514 	 */
    515 	if (cpu_feature & CPUID_MTRR) {
    516 		if ((ci->ci_flags & CPUF_AP) == 0)
    517 			i686_mtrr_init_first();
    518 		mtrr_init_cpu(ci);
    519 	}
    520 #endif
    521 	/*
    522 	 * If we have FXSAVE/FXRESTOR, use them.
    523 	 */
    524 	if (cpu_feature & CPUID_FXSR) {
    525 		lcr4(rcr4() | CR4_OSFXSR);
    526 
    527 		/*
    528 		 * If we have SSE/SSE2, enable XMM exceptions.
    529 		 */
    530 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    531 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    532 	}
    533 
    534 #ifdef MULTIPROCESSOR
    535 	ci->ci_flags |= CPUF_RUNNING;
    536 	cpus_running |= 1 << ci->ci_cpuid;
    537 #endif
    538 }
    539 
    540 
    541 #ifdef MULTIPROCESSOR
    542 void
    543 cpu_boot_secondary_processors()
    544 {
    545 	struct cpu_info *ci;
    546 	u_long i;
    547 
    548 	for (i=0; i < X86_MAXPROCS; i++) {
    549 		ci = cpu_info[i];
    550 		if (ci == NULL)
    551 			continue;
    552 		if (ci->ci_data.cpu_idlelwp == NULL)
    553 			continue;
    554 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    555 			continue;
    556 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    557 			continue;
    558 		cpu_boot_secondary(ci);
    559 	}
    560 }
    561 
    562 static void
    563 cpu_init_idle_lwp(struct cpu_info *ci)
    564 {
    565 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    566 	struct pcb *pcb = &l->l_addr->u_pcb;
    567 
    568 	pcb->pcb_cr0 = rcr0();
    569 }
    570 
    571 void
    572 cpu_init_idle_lwps()
    573 {
    574 	struct cpu_info *ci;
    575 	u_long i;
    576 
    577 	for (i = 0; i < X86_MAXPROCS; i++) {
    578 		ci = cpu_info[i];
    579 		if (ci == NULL)
    580 			continue;
    581 		if (ci->ci_data.cpu_idlelwp == NULL)
    582 			continue;
    583 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    584 			continue;
    585 		cpu_init_idle_lwp(ci);
    586 	}
    587 }
    588 
    589 void
    590 cpu_start_secondary (ci)
    591 	struct cpu_info *ci;
    592 {
    593 	int i;
    594 	struct pmap *kpm = pmap_kernel();
    595 	extern u_int32_t mp_pdirpa;
    596 
    597 	mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
    598 
    599 	ci->ci_flags |= CPUF_AP;
    600 
    601 	printf("%s: starting\n", ci->ci_dev->dv_xname);
    602 
    603 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    604 	CPU_STARTUP(ci);
    605 
    606 	/*
    607 	 * wait for it to become ready
    608 	 */
    609 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i>0;i--) {
    610 		delay(10);
    611 	}
    612 	if (! (ci->ci_flags & CPUF_PRESENT)) {
    613 		printf("%s: failed to become ready\n", ci->ci_dev->dv_xname);
    614 #if defined(MPDEBUG) && defined(DDB)
    615 		printf("dropping into debugger; continue from here to resume boot\n");
    616 		Debugger();
    617 #endif
    618 	}
    619 
    620 	CPU_START_CLEANUP(ci);
    621 }
    622 
    623 void
    624 cpu_boot_secondary(ci)
    625 	struct cpu_info *ci;
    626 {
    627 	int i;
    628 
    629 	ci->ci_flags |= CPUF_GO; /* XXX atomic */
    630 
    631 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i>0;i--) {
    632 		delay(10);
    633 	}
    634 	if (! (ci->ci_flags & CPUF_RUNNING)) {
    635 		printf("CPU failed to start\n");
    636 #if defined(MPDEBUG) && defined(DDB)
    637 		printf("dropping into debugger; continue from here to resume boot\n");
    638 		Debugger();
    639 #endif
    640 	}
    641 }
    642 
    643 /*
    644  * The CPU ends up here when its ready to run
    645  * This is called from code in mptramp.s; at this point, we are running
    646  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    647  * this processor will enter the idle loop and start looking for work.
    648  *
    649  * XXX should share some of this with init386 in machdep.c
    650  */
    651 void
    652 cpu_hatch(void *v)
    653 {
    654 	struct cpu_info *ci = (struct cpu_info *)v;
    655 	int s;
    656 #ifdef __x86_64__
    657         cpu_init_msrs(ci);
    658 #endif
    659 
    660 	cpu_probe_features(ci);
    661 	cpu_feature &= ci->ci_feature_flags;
    662 	/* not on Xen... */
    663 	cpu_feature &= ~(CPUID_PGE|CPUID_PSE|CPUID_MTRR|CPUID_FXSR|CPUID_NOX);
    664 
    665 #ifdef DEBUG
    666 	if (ci->ci_flags & CPUF_PRESENT)
    667 		panic("%s: already running!?", ci->ci_dev->dv_xname);
    668 #endif
    669 
    670 	ci->ci_flags |= CPUF_PRESENT;
    671 
    672 	lapic_enable();
    673 	lapic_initclocks();
    674 
    675 	while ((ci->ci_flags & CPUF_GO) == 0)
    676 		delay(10);
    677 #ifdef DEBUG
    678 	if (ci->ci_flags & CPUF_RUNNING)
    679 		panic("%s: already running!?", ci->ci_dev->dv_xname);
    680 #endif
    681 
    682 	lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
    683 	cpu_init_idt();
    684 	lapic_set_lvt();
    685 	gdt_init_cpu(ci);
    686 	npxinit(ci);
    687 
    688 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    689 
    690 	cpu_init(ci);
    691 
    692 	s = splhigh();
    693 	lapic_tpr = 0;
    694 	enable_intr();
    695 
    696 	printf("%s: CPU %ld running\n",ci->ci_dev->dv_xname, ci->ci_cpuid);
    697 	if (ci->ci_feature_flags & CPUID_TSC)
    698 		cc_microset(ci);
    699 	splx(s);
    700 }
    701 
    702 #if defined(DDB)
    703 
    704 #include <ddb/db_output.h>
    705 #include <machine/db_machdep.h>
    706 
    707 /*
    708  * Dump CPU information from ddb.
    709  */
    710 void
    711 cpu_debug_dump(void)
    712 {
    713 	struct cpu_info *ci;
    714 	CPU_INFO_ITERATOR cii;
    715 
    716 	db_printf("addr		dev	id	flags	ipis	curproc		fpcurproc\n");
    717 	for (CPU_INFO_FOREACH(cii, ci)) {
    718 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    719 		    ci,
    720 		    ci->ci_dev == NULL ? "BOOT" : ci->ci_dev->dv_xname,
    721 		    ci->ci_cpuid,
    722 		    ci->ci_flags, ci->ci_ipis,
    723 		    ci->ci_curlwp,
    724 		    ci->ci_fpcurlwp);
    725 	}
    726 }
    727 #endif
    728 
    729 static void
    730 cpu_copy_trampoline()
    731 {
    732 	/*
    733 	 * Copy boot code.
    734 	 */
    735 	extern u_char cpu_spinup_trampoline[];
    736 	extern u_char cpu_spinup_trampoline_end[];
    737 	pmap_kenter_pa((vaddr_t)MP_TRAMPOLINE,	/* virtual */
    738 	    (paddr_t)MP_TRAMPOLINE,	/* physical */
    739 	    VM_PROT_ALL);		/* protection */
    740 	memcpy((void *)MP_TRAMPOLINE,
    741 	    cpu_spinup_trampoline,
    742 	    cpu_spinup_trampoline_end-cpu_spinup_trampoline);
    743 }
    744 
    745 #endif
    746 
    747 
    748 /* XXX */
    749 #define IDTVEC(name)	__CONCAT(X, name)
    750 typedef void (vector)(void);
    751 extern vector IDTVEC(tss_trap08);
    752 #ifdef DDB
    753 extern vector Xintrddbipi;
    754 extern int ddb_vec;
    755 #endif
    756 
    757 static void
    758 cpu_set_tss_gates(struct cpu_info *ci)
    759 {
    760 #if defined(DDB) && defined(MULTIPROCESSOR)
    761 	/*
    762 	 * Set up separate handler for the DDB IPI, so that it doesn't
    763 	 * stomp on a possibly corrupted stack.
    764 	 *
    765 	 * XXX overwriting the gate set in db_machine_init.
    766 	 * Should rearrange the code so that it's set only once.
    767 	 */
    768 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    769 	    UVM_KMF_WIRED);
    770 	cpu_init_tss(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    771 	    Xintrddbipi);
    772 
    773 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    774 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    775 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    776 
    777 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    778 	    GSEL(GIPITSS_SEL, SEL_KPL));
    779 #endif
    780 }
    781 
    782 int
    783 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    784 {
    785 #if 0
    786 #if NLAPIC > 0
    787 	int error;
    788 #endif
    789 	unsigned short dwordptr[2];
    790 
    791 	/*
    792 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    793 	 */
    794 
    795 	outb(IO_RTC, NVRAM_RESET);
    796 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    797 
    798 	/*
    799 	 * "and the warm reset vector (DWORD based at 40:67) to point
    800 	 * to the AP startup code ..."
    801 	 */
    802 
    803 	dwordptr[0] = 0;
    804 	dwordptr[1] = target >> 4;
    805 
    806 	pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE);
    807 	memcpy ((u_int8_t *) 0x467, dwordptr, 4);
    808 	pmap_kremove (0, PAGE_SIZE);
    809 
    810 #if NLAPIC > 0
    811 	/*
    812 	 * ... prior to executing the following sequence:"
    813 	 */
    814 
    815 	if (ci->ci_flags & CPUF_AP) {
    816 		if ((error = x86_ipi_init(ci->ci_apicid)) != 0)
    817 			return error;
    818 
    819 		delay(10000);
    820 
    821 		if (cpu_feature & CPUID_APIC) {
    822 
    823 			if ((error = x86_ipi(target/PAGE_SIZE,
    824 					     ci->ci_apicid,
    825 					     LAPIC_DLMODE_STARTUP)) != 0)
    826 				return error;
    827 			delay(200);
    828 
    829 			if ((error = x86_ipi(target/PAGE_SIZE,
    830 					     ci->ci_apicid,
    831 					     LAPIC_DLMODE_STARTUP)) != 0)
    832 				return error;
    833 			delay(200);
    834 		}
    835 	}
    836 #endif
    837 #endif /* 0 */
    838 	return 0;
    839 }
    840 
    841 void
    842 mp_cpu_start_cleanup(struct cpu_info *ci)
    843 {
    844 #if 0
    845 	/*
    846 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    847 	 */
    848 
    849 	outb(IO_RTC, NVRAM_RESET);
    850 	outb(IO_RTC+1, NVRAM_RESET_RST);
    851 #endif
    852 }
    853 
    854 #ifdef __x86_64__
    855 
    856 void
    857 cpu_init_msrs(struct cpu_info *ci, bool full)
    858 {
    859 	if (full) {
    860 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
    861 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (u_int64_t) ci);
    862 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
    863 	}
    864 }
    865 #endif	/* __x86_64__ */
    866 
    867 void
    868 cpu_get_tsc_freq(struct cpu_info *ci)
    869 {
    870 #ifdef XEN3
    871 	const volatile vcpu_time_info_t *tinfo =
    872 		   &HYPERVISOR_shared_info->vcpu_info[0].time;
    873 	delay(1000000);
    874 	uint64_t freq = 1000000000ULL << 32;
    875 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
    876 	if ( tinfo->tsc_shift < 0 )
    877 		freq = freq << -tinfo->tsc_shift;
    878 	else
    879 		freq = freq >> tinfo->tsc_shift;
    880 	ci->ci_tsc_freq = freq;
    881 #else
    882 	/* XXX this needs to read the shared_info of the CPU being probed.. */
    883 	ci->ci_tsc_freq = HYPERVISOR_shared_info->cpu_freq;
    884 #endif /* XEN3 */
    885 }
    886