Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.52
      1 /*	$NetBSD: cpu.c,v 1.52 2010/11/14 13:43:04 bouyer Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.52 2010/11/14 13:43:04 bouyer Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include <machine/cpufunc.h>
     92 #include <machine/cpuvar.h>
     93 #include <machine/pmap.h>
     94 #include <machine/vmparam.h>
     95 #include <machine/mpbiosvar.h>
     96 #include <machine/pcb.h>
     97 #include <machine/specialreg.h>
     98 #include <machine/segments.h>
     99 #include <machine/gdt.h>
    100 #include <machine/mtrr.h>
    101 #include <machine/pio.h>
    102 
    103 #include <xen/vcpuvar.h>
    104 
    105 #if NLAPIC > 0
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 #endif
    110 
    111 #include <dev/ic/mc146818reg.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #if MAXCPUS > 32
    115 #error cpu_info contains 32bit bitmasks
    116 #endif
    117 
    118 int     cpu_match(device_t, cfdata_t, void *);
    119 void    cpu_attach(device_t, device_t, void *);
    120 int     vcpu_match(device_t, cfdata_t, void *);
    121 void    vcpu_attach(device_t, device_t, void *);
    122 void    cpu_attach_common(device_t, device_t, void *);
    123 void	cpu_offline_md(void);
    124 
    125 struct cpu_softc {
    126 	device_t sc_dev;		/* device tree glue */
    127 	struct cpu_info *sc_info;	/* pointer to CPU info */
    128 	bool sc_wasonline;
    129 };
    130 
    131 int mp_cpu_start(struct cpu_info *, paddr_t);
    132 void mp_cpu_start_cleanup(struct cpu_info *);
    133 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    134 				      mp_cpu_start_cleanup };
    135 
    136 CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    137     cpu_match, cpu_attach, NULL, NULL);
    138 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    139     vcpu_match, vcpu_attach, NULL, NULL);
    140 
    141 /*
    142  * Statically-allocated CPU info for the primary CPU (or the only
    143  * CPU, on uniprocessors).  The CPU info list is initialized to
    144  * point at it.
    145  */
    146 #ifdef TRAPLOG
    147 #include <machine/tlog.h>
    148 struct tlog tlog_primary;
    149 #endif
    150 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    151 	.ci_dev = 0,
    152 	.ci_self = &cpu_info_primary,
    153 	.ci_idepth = -1,
    154 	.ci_curlwp = &lwp0,
    155 	.ci_curldt = -1,
    156 #ifdef TRAPLOG
    157 	.ci_tlog = &tlog_primary,
    158 #endif
    159 
    160 };
    161 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    162 	.ci_dev = 0,
    163 	.ci_self = &phycpu_info_primary,
    164 };
    165 
    166 struct cpu_info *cpu_info_list = &cpu_info_primary;
    167 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    168 
    169 static void	cpu_set_tss_gates(struct cpu_info *ci);
    170 
    171 uint32_t cpus_attached = 0;
    172 uint32_t cpus_running = 0;
    173 
    174 uint32_t phycpus_attached = 0;
    175 uint32_t phycpus_running = 0;
    176 
    177 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    178 			  *	[0] basic features %edx
    179 			  *	[1] basic features %ecx
    180 			  *	[2] extended features %edx
    181 			  *	[3] extended features %ecx
    182 			  *	[4] VIA padlock features
    183 			  */
    184 
    185 bool x86_mp_online;
    186 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    187 
    188 #if defined(MULTIPROCESSOR)
    189 void    	cpu_hatch(void *);
    190 static void    	cpu_boot_secondary(struct cpu_info *ci);
    191 static void    	cpu_start_secondary(struct cpu_info *ci);
    192 static void	cpu_copy_trampoline(void);
    193 
    194 /*
    195  * Runs once per boot once multiprocessor goo has been detected and
    196  * the local APIC on the boot processor has been mapped.
    197  *
    198  * Called from lapic_boot_init() (from mpbios_scan()).
    199  */
    200 void
    201 cpu_init_first(void)
    202 {
    203 
    204 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    205 	cpu_copy_trampoline();
    206 }
    207 #endif	/* MULTIPROCESSOR */
    208 
    209 int
    210 cpu_match(device_t parent, cfdata_t match, void *aux)
    211 {
    212 
    213 	return 1;
    214 }
    215 
    216 void
    217 cpu_attach(device_t parent, device_t self, void *aux)
    218 {
    219 	struct cpu_softc *sc = device_private(self);
    220 	struct cpu_attach_args *caa = aux;
    221 	struct cpu_info *ci;
    222 	uintptr_t ptr;
    223 	static int nphycpu = 0;
    224 
    225 	sc->sc_dev = self;
    226 
    227 	if (phycpus_attached == ~0) {
    228 		aprint_error(": increase MAXCPUS\n");
    229 		return;
    230 	}
    231 
    232 	/*
    233 	 * If we're an Application Processor, allocate a cpu_info
    234 	 * If we're the first attached CPU use the primary cpu_info,
    235 	 * otherwise allocate a new one
    236 	 */
    237 	aprint_naive("\n");
    238 	aprint_normal("\n");
    239 	if (nphycpu > 0) {
    240 		struct cpu_info *tmp;
    241 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    242 		    KM_SLEEP);
    243 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    244 		ci->ci_curldt = -1;
    245 
    246 		tmp = phycpu_info_list;
    247 		while (tmp->ci_next)
    248 			tmp = tmp->ci_next;
    249 
    250 		tmp->ci_next = ci;
    251 	} else {
    252 		ci = &phycpu_info_primary;
    253 	}
    254 
    255 	ci->ci_self = ci;
    256 	sc->sc_info = ci;
    257 
    258 	ci->ci_dev = self;
    259 	ci->ci_acpiid = caa->cpu_id;
    260 	ci->ci_cpuid = caa->cpu_number;
    261 	ci->ci_vcpu = NULL;
    262 	ci->ci_index = nphycpu++;
    263 	ci->ci_cpumask = (1 << cpu_index(ci));
    264 
    265 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    266 
    267 	if (!pmf_device_register(self, NULL, NULL))
    268 		aprint_error_dev(self, "couldn't establish power handler\n");
    269 
    270 	return;
    271 }
    272 
    273 int
    274 vcpu_match(device_t parent, cfdata_t match, void *aux)
    275 {
    276 	struct vcpu_attach_args *vcaa = aux;
    277 
    278 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
    279 		return 1;
    280 	return 0;
    281 }
    282 
    283 void
    284 vcpu_attach(device_t parent, device_t self, void *aux)
    285 {
    286 	struct vcpu_attach_args *vcaa = aux;
    287 
    288 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    289 }
    290 
    291 static void
    292 cpu_vm_init(struct cpu_info *ci)
    293 {
    294 	int ncolors = 2, i;
    295 
    296 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    297 		struct x86_cache_info *cai;
    298 		int tcolors;
    299 
    300 		cai = &ci->ci_cinfo[i];
    301 
    302 		tcolors = atop(cai->cai_totalsize);
    303 		switch(cai->cai_associativity) {
    304 		case 0xff:
    305 			tcolors = 1; /* fully associative */
    306 			break;
    307 		case 0:
    308 		case 1:
    309 			break;
    310 		default:
    311 			tcolors /= cai->cai_associativity;
    312 		}
    313 		ncolors = max(ncolors, tcolors);
    314 	}
    315 
    316 	/*
    317 	 * Knowing the size of the largest cache on this CPU, re-color
    318 	 * our pages.
    319 	 */
    320 	if (ncolors <= uvmexp.ncolors)
    321 		return;
    322 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    323 	uvm_page_recolor(ncolors);
    324 }
    325 
    326 void
    327 cpu_attach_common(device_t parent, device_t self, void *aux)
    328 {
    329 	struct cpu_softc *sc = device_private(self);
    330 	struct cpu_attach_args *caa = aux;
    331 	struct cpu_info *ci;
    332 	uintptr_t ptr;
    333 	int cpunum = caa->cpu_number;
    334 	static bool again = false;
    335 
    336 	sc->sc_dev = self;
    337 
    338 	/*
    339 	 * If we're an Application Processor, allocate a cpu_info
    340 	 * structure, otherwise use the primary's.
    341 	 */
    342 	if (caa->cpu_role == CPU_ROLE_AP) {
    343 		aprint_naive(": Application Processor\n");
    344 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    345 		    KM_SLEEP);
    346 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    347 		memset(ci, 0, sizeof(*ci));
    348 #ifdef TRAPLOG
    349 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    350 #endif
    351 	} else {
    352 		aprint_naive(": %s Processor\n",
    353 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    354 		ci = &cpu_info_primary;
    355 #if NLAPIC > 0
    356 		if (cpunum != lapic_cpu_number()) {
    357 			/* XXX should be done earlier */
    358 			uint32_t reg;
    359 			aprint_verbose("\n");
    360 			aprint_verbose_dev(self, "running CPU at apic %d"
    361 			    " instead of at expected %d", lapic_cpu_number(),
    362 			    cpunum);
    363 			reg = i82489_readreg(LAPIC_ID);
    364 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    365 			    (cpunum << LAPIC_ID_SHIFT));
    366 		}
    367 		if (cpunum != lapic_cpu_number()) {
    368 			aprint_error_dev(self, "unable to reset apic id\n");
    369 		}
    370 #endif
    371 	}
    372 
    373 	ci->ci_self = ci;
    374 	sc->sc_info = ci;
    375 	ci->ci_dev = self;
    376 	ci->ci_cpuid = cpunum;
    377 
    378 	KASSERT(HYPERVISOR_shared_info != NULL);
    379 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    380 
    381 	ci->ci_func = caa->cpu_func;
    382 
    383 	/* Must be called before mi_cpu_attach(). */
    384 	cpu_vm_init(ci);
    385 
    386 	if (caa->cpu_role == CPU_ROLE_AP) {
    387 		int error;
    388 
    389 		error = mi_cpu_attach(ci);
    390 		if (error != 0) {
    391 			aprint_normal("\n");
    392 			aprint_error_dev(self,
    393 			    "mi_cpu_attach failed with %d\n", error);
    394 			return;
    395 		}
    396 	} else {
    397 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    398 	}
    399 
    400 	ci->ci_cpumask = (1 << cpu_index(ci));
    401 	pmap_reference(pmap_kernel());
    402 	ci->ci_pmap = pmap_kernel();
    403 	ci->ci_tlbstate = TLBSTATE_STALE;
    404 
    405 	/*
    406 	 * Boot processor may not be attached first, but the below
    407 	 * must be done to allow booting other processors.
    408 	 */
    409 	if (!again) {
    410 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    411 		/* Basic init. */
    412 		cpu_intr_init(ci);
    413 		cpu_get_tsc_freq(ci);
    414 		cpu_init(ci);
    415 		cpu_set_tss_gates(ci);
    416 		pmap_cpu_init_late(ci);
    417 #if NLAPIC > 0
    418 		if (caa->cpu_role != CPU_ROLE_SP) {
    419 			/* Enable lapic. */
    420 			lapic_enable();
    421 			lapic_set_lvt();
    422 			lapic_calibrate_timer();
    423 		}
    424 #endif
    425 		/* Make sure DELAY() is initialized. */
    426 		DELAY(1);
    427 		again = true;
    428 	}
    429 
    430 	/* further PCB init done later. */
    431 
    432 	switch (caa->cpu_role) {
    433 	case CPU_ROLE_SP:
    434 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    435 		cpu_identify(ci);
    436 #if 0
    437 		x86_errata();
    438 #endif
    439 		x86_cpu_idle_init();
    440 		break;
    441 
    442 	case CPU_ROLE_BP:
    443 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    444 		cpu_identify(ci);
    445 		cpu_init(ci);
    446 #if 0
    447 		x86_errata();
    448 #endif
    449 		x86_cpu_idle_init();
    450 		break;
    451 
    452 	case CPU_ROLE_AP:
    453 		/*
    454 		 * report on an AP
    455 		 */
    456 
    457 #if defined(MULTIPROCESSOR)
    458 		cpu_intr_init(ci);
    459 		gdt_alloc_cpu(ci);
    460 		cpu_set_tss_gates(ci);
    461 		pmap_cpu_init_early(ci);
    462 		pmap_cpu_init_late(ci);
    463 		cpu_start_secondary(ci);
    464 		if (ci->ci_flags & CPUF_PRESENT) {
    465 			struct cpu_info *tmp;
    466 
    467 			identifycpu(ci);
    468 			tmp = cpu_info_list;
    469 			while (tmp->ci_next)
    470 				tmp = tmp->ci_next;
    471 
    472 			tmp->ci_next = ci;
    473 		}
    474 #else
    475 		aprint_error_dev(self, "not started\n");
    476 #endif
    477 		break;
    478 
    479 	default:
    480 		aprint_normal("\n");
    481 		panic("unknown processor type??\n");
    482 	}
    483 
    484 	pat_init(ci);
    485 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    486 
    487 #if 0
    488 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    489 		aprint_error_dev(self, "couldn't establish power handler\n");
    490 #endif
    491 
    492 #if defined(MULTIPROCESSOR)
    493 	if (mp_verbose) {
    494 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    495 		struct pcb *pcb = lwp_getpcb(l);
    496 
    497 		aprint_verbose_dev(self,
    498 		    "idle lwp at %p, idle sp at 0x%p\n",
    499 		    l,
    500 #ifdef i386
    501 		    (void *)pcb->pcb_esp
    502 #else
    503 		    (void *)pcb->pcb_rsp
    504 #endif
    505 		);
    506 
    507 	}
    508 #endif
    509 }
    510 
    511 /*
    512  * Initialize the processor appropriately.
    513  */
    514 
    515 void
    516 cpu_init(struct cpu_info *ci)
    517 {
    518 
    519 	/*
    520 	 * On a P6 or above, enable global TLB caching if the
    521 	 * hardware supports it.
    522 	 */
    523 	if (cpu_feature[0] & CPUID_PGE)
    524 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    525 
    526 #ifdef XXXMTRR
    527 	/*
    528 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    529 	 */
    530 	if (cpu_feature[0] & CPUID_MTRR) {
    531 		if ((ci->ci_flags & CPUF_AP) == 0)
    532 			i686_mtrr_init_first();
    533 		mtrr_init_cpu(ci);
    534 	}
    535 #endif
    536 	/*
    537 	 * If we have FXSAVE/FXRESTOR, use them.
    538 	 */
    539 	if (cpu_feature[0] & CPUID_FXSR) {
    540 		lcr4(rcr4() | CR4_OSFXSR);
    541 
    542 		/*
    543 		 * If we have SSE/SSE2, enable XMM exceptions.
    544 		 */
    545 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    546 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    547 	}
    548 
    549 #ifdef __x86_64__
    550 	/* No user PGD mapped for this CPU yet */
    551 	ci->ci_xen_current_user_pgd = 0;
    552 #endif
    553 
    554 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    555 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    556 }
    557 
    558 
    559 #ifdef MULTIPROCESSOR
    560 void
    561 cpu_boot_secondary_processors(void)
    562 {
    563 	struct cpu_info *ci;
    564 	u_long i;
    565 
    566 	for (i = 0; i < maxcpus; i++) {
    567 		ci = cpu_lookup(i);
    568 		if (ci == NULL)
    569 			continue;
    570 		if (ci->ci_data.cpu_idlelwp == NULL)
    571 			continue;
    572 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    573 			continue;
    574 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    575 			continue;
    576 		cpu_boot_secondary(ci);
    577 	}
    578 
    579 	x86_mp_online = true;
    580 }
    581 
    582 static void
    583 cpu_init_idle_lwp(struct cpu_info *ci)
    584 {
    585 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    586 	struct pcb *pcb = lwp_getpcb(l);
    587 
    588 	pcb->pcb_cr0 = rcr0();
    589 }
    590 
    591 void
    592 cpu_init_idle_lwps(void)
    593 {
    594 	struct cpu_info *ci;
    595 	u_long i;
    596 
    597 	for (i = 0; i < maxcpus; i++) {
    598 		ci = cpu_lookup(i);
    599 		if (ci == NULL)
    600 			continue;
    601 		if (ci->ci_data.cpu_idlelwp == NULL)
    602 			continue;
    603 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    604 			continue;
    605 		cpu_init_idle_lwp(ci);
    606 	}
    607 }
    608 
    609 void
    610 cpu_start_secondary(struct cpu_info *ci)
    611 {
    612 	int i;
    613 	struct pmap *kpm = pmap_kernel();
    614 	extern uint32_t mp_pdirpa;
    615 
    616 	mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
    617 
    618 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    619 
    620 	aprint_debug_dev(ci->ci_dev, "starting\n");
    621 
    622 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    623 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
    624 		return;
    625 
    626 	/*
    627 	 * wait for it to become ready
    628 	 */
    629 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    630 #ifdef MPDEBUG
    631 		extern int cpu_trace[3];
    632 		static int otrace[3];
    633 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    634 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    635 				cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    636 			memcpy(otrace, cpu_trace, sizeof(otrace));
    637 		}
    638 #endif
    639 		delay(10);
    640 	}
    641 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    642 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    643 #if defined(MPDEBUG) && defined(DDB)
    644 		printf("dropping into debugger; continue from here to resume boot\n");
    645 		Debugger();
    646 #endif
    647 	}
    648 
    649 	CPU_START_CLEANUP(ci);
    650 }
    651 
    652 void
    653 cpu_boot_secondary(struct cpu_info *ci)
    654 {
    655 	int i;
    656 
    657 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    658 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    659 		delay(10);
    660 	}
    661 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    662 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    663 #if defined(MPDEBUG) && defined(DDB)
    664 		printf("dropping into debugger; continue from here to resume boot\n");
    665 		Debugger();
    666 #endif
    667 	}
    668 }
    669 
    670 /*
    671  * The CPU ends up here when its ready to run
    672  * This is called from code in mptramp.s; at this point, we are running
    673  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    674  * this processor will enter the idle loop and start looking for work.
    675  *
    676  * XXX should share some of this with init386 in machdep.c
    677  */
    678 void
    679 cpu_hatch(void *v)
    680 {
    681 	struct cpu_info *ci = (struct cpu_info *)v;
    682 	struct pcb *pcb;
    683 	int s, i;
    684 
    685 	cpu_probe(ci);
    686 
    687 	cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
    688 	cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
    689 
    690         cpu_init_msrs(ci, true);
    691 
    692 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    693 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    694 	while ((ci->ci_flags & CPUF_GO) == 0) {
    695 		/* Don't use delay, boot CPU may be patching the text. */
    696 		for (i = 10000; i != 0; i--)
    697 			x86_pause();
    698 	}
    699 
    700 	/* Because the text may have been patched in x86_patch(). */
    701 	wbinvd();
    702 	x86_flush();
    703 
    704 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    705 
    706 	pcb = lwp_getpcb(curlwp);
    707 	lcr3(pmap_kernel()->pm_pdirpa);
    708 	pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
    709 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    710 	lcr0(pcb->pcb_cr0);
    711 
    712 	cpu_init_idt();
    713 	gdt_init_cpu(ci);
    714 	lapic_enable();
    715 	lapic_set_lvt();
    716 	lapic_initclocks();
    717 
    718 #ifdef i386
    719 	npxinit(ci);
    720 #else
    721 	fpuinit(ci);
    722 #endif
    723 
    724 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    725 	ltr(ci->ci_tss_sel);
    726 
    727 	cpu_init(ci);
    728 	cpu_get_tsc_freq(ci);
    729 
    730 	s = splhigh();
    731 #ifdef i386
    732 	lapic_tpr = 0;
    733 #else
    734 	lcr8(0);
    735 #endif
    736 	x86_enable_intr();
    737 	splx(s);
    738 #if 0
    739 	x86_errata();
    740 #endif
    741 
    742 	aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
    743 		(long)ci->ci_cpuid);
    744 }
    745 
    746 #if defined(DDB)
    747 
    748 #include <ddb/db_output.h>
    749 #include <machine/db_machdep.h>
    750 
    751 /*
    752  * Dump CPU information from ddb.
    753  */
    754 void
    755 cpu_debug_dump(void)
    756 {
    757 	struct cpu_info *ci;
    758 	CPU_INFO_ITERATOR cii;
    759 
    760 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    761 	for (CPU_INFO_FOREACH(cii, ci)) {
    762 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    763 		    ci,
    764 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    765 		    (long)ci->ci_cpuid,
    766 		    ci->ci_flags, ci->ci_ipis,
    767 		    ci->ci_curlwp,
    768 		    ci->ci_fpcurlwp);
    769 	}
    770 }
    771 #endif /* DDB */
    772 
    773 static void
    774 cpu_copy_trampoline(void)
    775 {
    776 	/*
    777 	 * Copy boot code.
    778 	 */
    779 	extern u_char cpu_spinup_trampoline[];
    780 	extern u_char cpu_spinup_trampoline_end[];
    781 
    782 	vaddr_t mp_trampoline_vaddr;
    783 
    784 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    785 		UVM_KMF_VAONLY);
    786 
    787 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    788 		VM_PROT_READ | VM_PROT_WRITE, 0);
    789 	pmap_update(pmap_kernel());
    790 	memcpy((void *)mp_trampoline_vaddr,
    791 		cpu_spinup_trampoline,
    792 		cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    793 
    794 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    795 	pmap_update(pmap_kernel());
    796 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    797 }
    798 
    799 #endif /* MULTIPROCESSOR */
    800 
    801 #ifdef i386
    802 #if 0
    803 static void
    804 tss_init(struct i386tss *tss, void *stack, void *func)
    805 {
    806 	memset(tss, 0, sizeof *tss);
    807 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    808 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    809 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    810 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    811 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    812 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    813 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    814 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    815 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    816 	tss->__tss_eflags = PSL_MBO | PSL_NT;   /* XXX not needed? */
    817 	tss->__tss_eip = (int)func;
    818 }
    819 #endif
    820 
    821 /* XXX */
    822 #define IDTVEC(name)	__CONCAT(X, name)
    823 typedef void (vector)(void);
    824 extern vector IDTVEC(tss_trap08);
    825 #ifdef DDB
    826 extern vector Xintrddbipi;
    827 extern int ddb_vec;
    828 #endif
    829 
    830 static void
    831 cpu_set_tss_gates(struct cpu_info *ci)
    832 {
    833 #if 0
    834 	struct segment_descriptor sd;
    835 
    836 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    837 	    UVM_KMF_WIRED);
    838 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    839 	    IDTVEC(tss_trap08));
    840 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    841 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    842 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    843 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    844 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    845 #endif
    846 
    847 #if defined(DDB) && defined(MULTIPROCESSOR)
    848 	/*
    849 	 * Set up separate handler for the DDB IPI, so that it doesn't
    850 	 * stomp on a possibly corrupted stack.
    851 	 *
    852 	 * XXX overwriting the gate set in db_machine_init.
    853 	 * Should rearrange the code so that it's set only once.
    854 	 */
    855 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    856 	    UVM_KMF_WIRED);
    857 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    858 	    Xintrddbipi);
    859 
    860 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    861 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    862 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    863 
    864 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    865 	    GSEL(GIPITSS_SEL, SEL_KPL));
    866 #endif
    867 }
    868 #else
    869 static void
    870 cpu_set_tss_gates(struct cpu_info *ci)
    871 {
    872 
    873 }
    874 #endif	/* i386 */
    875 
    876 int
    877 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    878 {
    879 #if 0
    880 #if NLAPIC > 0
    881 	int error;
    882 #endif
    883 	unsigned short dwordptr[2];
    884 
    885 	/*
    886 	 * Bootstrap code must be addressable in real mode
    887 	 * and it must be page aligned.
    888 	 */
    889 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    890 
    891 	/*
    892 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    893 	 */
    894 
    895 	outb(IO_RTC, NVRAM_RESET);
    896 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    897 
    898 	/*
    899 	 * "and the warm reset vector (DWORD based at 40:67) to point
    900 	 * to the AP startup code ..."
    901 	 */
    902 
    903 	dwordptr[0] = 0;
    904 	dwordptr[1] = target >> 4;
    905 
    906 	pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    907 	pmap_update(pmap_kernel());
    908 
    909 	memcpy ((uint8_t *) 0x467, dwordptr, 4);
    910 
    911 	pmap_kremove (0, PAGE_SIZE);
    912 	pmap_update(pmap_kernel());
    913 
    914 #if NLAPIC > 0
    915 	/*
    916 	 * ... prior to executing the following sequence:"
    917 	 */
    918 
    919 	if (ci->ci_flags & CPUF_AP) {
    920 		if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
    921 			return error;
    922 
    923 		delay(10000);
    924 
    925 		if (cpu_feature & CPUID_APIC) {
    926 			error = x86_ipi_init(ci->ci_cpuid);
    927 			if (error != 0) {
    928 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    929 						__func__);
    930 				return error;
    931 			}
    932 
    933 			delay(10000);
    934 
    935 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    936 					LAPIC_DLMODE_STARTUP);
    937 			if (error != 0) {
    938 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    939 						__func__);
    940 				return error;
    941 			}
    942 			delay(200);
    943 
    944 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    945 					LAPIC_DLMODE_STARTUP);
    946 			if (error != 0) {
    947 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
    948 						__func__);
    949 				return error;
    950 			}
    951 			delay(200);
    952 		}
    953 	}
    954 #endif
    955 #endif /* 0 */
    956 	return 0;
    957 }
    958 
    959 void
    960 mp_cpu_start_cleanup(struct cpu_info *ci)
    961 {
    962 #if 0
    963 	/*
    964 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    965 	 */
    966 
    967 	outb(IO_RTC, NVRAM_RESET);
    968 	outb(IO_RTC+1, NVRAM_RESET_RST);
    969 #endif
    970 }
    971 
    972 void
    973 cpu_init_msrs(struct cpu_info *ci, bool full)
    974 {
    975 #ifdef __x86_64__
    976 	if (full) {
    977 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
    978 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
    979 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
    980 	}
    981 #endif	/* __x86_64__ */
    982 
    983 	if (cpu_feature[2] & CPUID_NOX)
    984 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    985 }
    986 
    987 void
    988 cpu_offline_md(void)
    989 {
    990         int s;
    991 
    992         s = splhigh();
    993 #ifdef __i386__
    994         npxsave_cpu(true);
    995 #else
    996         fpusave_cpu(true);
    997 #endif
    998         splx(s);
    999 }
   1000 
   1001 #if 0
   1002 /* XXX joerg restructure and restart CPUs individually */
   1003 static bool
   1004 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1005 {
   1006 	struct cpu_softc *sc = device_private(dv);
   1007 	struct cpu_info *ci = sc->sc_info;
   1008 	int err;
   1009 
   1010 	if (ci->ci_flags & CPUF_PRIMARY)
   1011 		return true;
   1012 	if (ci->ci_data.cpu_idlelwp == NULL)
   1013 		return true;
   1014 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1015 		return true;
   1016 
   1017 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1018 
   1019 	if (sc->sc_wasonline) {
   1020 		mutex_enter(&cpu_lock);
   1021 		err = cpu_setstate(ci, false);
   1022 		mutex_exit(&cpu_lock);
   1023 
   1024 		if (err)
   1025 			return false;
   1026 	}
   1027 
   1028 	return true;
   1029 }
   1030 
   1031 static bool
   1032 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1033 {
   1034 	struct cpu_softc *sc = device_private(dv);
   1035 	struct cpu_info *ci = sc->sc_info;
   1036 	int err = 0;
   1037 
   1038 	if (ci->ci_flags & CPUF_PRIMARY)
   1039 		return true;
   1040 	if (ci->ci_data.cpu_idlelwp == NULL)
   1041 		return true;
   1042 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1043 		return true;
   1044 
   1045 	if (sc->sc_wasonline) {
   1046 		mutex_enter(&cpu_lock);
   1047 		err = cpu_setstate(ci, true);
   1048 		mutex_exit(&cpu_lock);
   1049 	}
   1050 
   1051 	return err == 0;
   1052 }
   1053 #endif
   1054 
   1055 void
   1056 cpu_get_tsc_freq(struct cpu_info *ci)
   1057 {
   1058 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1059 	delay(1000000);
   1060 	uint64_t freq = 1000000000ULL << 32;
   1061 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1062 	if ( tinfo->tsc_shift < 0 )
   1063 		freq = freq << -tinfo->tsc_shift;
   1064 	else
   1065 		freq = freq >> tinfo->tsc_shift;
   1066 	ci->ci_data.cpu_cc_freq = freq;
   1067 }
   1068 
   1069 void
   1070 x86_cpu_idle_xen(void)
   1071 {
   1072 	struct cpu_info *ci = curcpu();
   1073 
   1074 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1075 
   1076 	x86_disable_intr();
   1077 	if (!__predict_false(ci->ci_want_resched)) {
   1078 		idle_block();
   1079 	} else {
   1080 		x86_enable_intr();
   1081 	}
   1082 }
   1083 
   1084 /*
   1085  * Loads pmap for the current CPU.
   1086  */
   1087 void
   1088 cpu_load_pmap(struct pmap *pmap)
   1089 {
   1090 #ifdef i386
   1091 #ifdef PAE
   1092 	int i, s;
   1093 	struct cpu_info *ci;
   1094 
   1095 	s = splvm(); /* just to be safe */
   1096 	ci = curcpu();
   1097 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1098 	/* don't update the kernel L3 slot */
   1099 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1100 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1101 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1102 	}
   1103 	splx(s);
   1104 	tlbflush();
   1105 #else /* PAE */
   1106 	lcr3(pmap_pdirpa(pmap, 0));
   1107 #endif /* PAE */
   1108 #endif /* i386 */
   1109 
   1110 #ifdef __x86_64__
   1111 	int i, s;
   1112 	pd_entry_t *old_pgd, *new_pgd;
   1113 	paddr_t addr;
   1114 	struct cpu_info *ci;
   1115 
   1116 	/* kernel pmap always in cr3 and should never go in user cr3 */
   1117 	if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
   1118 		ci = curcpu();
   1119 		/*
   1120 		 * Map user space address in kernel space and load
   1121 		 * user cr3
   1122 		 */
   1123 		s = splvm();
   1124 		new_pgd = pmap->pm_pdir;
   1125 		old_pgd = pmap_kernel()->pm_pdir;
   1126 		addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
   1127 		for (i = 0; i < PDIR_SLOT_PTE;
   1128 		    i++, addr += sizeof(pd_entry_t)) {
   1129 			if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
   1130 				xpq_queue_pte_update(addr, new_pgd[i]);
   1131 		}
   1132 		tlbflush();
   1133 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1134 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1135 		splx(s);
   1136 	}
   1137 #endif /* __x86_64__ */
   1138 }
   1139