cpu.c revision 1.55 1 /* $NetBSD: cpu.c,v 1.55 2011/02/24 19:00:58 jruoho Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.55 2011/02/24 19:00:58 jruoho Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88
89 #include <uvm/uvm.h>
90
91 #include <machine/cpufunc.h>
92 #include <machine/cpuvar.h>
93 #include <machine/pmap.h>
94 #include <machine/vmparam.h>
95 #include <machine/mpbiosvar.h>
96 #include <machine/pcb.h>
97 #include <machine/specialreg.h>
98 #include <machine/segments.h>
99 #include <machine/gdt.h>
100 #include <machine/mtrr.h>
101 #include <machine/pio.h>
102
103 #include <xen/vcpuvar.h>
104
105 #if NLAPIC > 0
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109 #endif
110
111 #include <dev/ic/mc146818reg.h>
112 #include <dev/isa/isareg.h>
113
114 #if MAXCPUS > 32
115 #error cpu_info contains 32bit bitmasks
116 #endif
117
118 int cpu_match(device_t, cfdata_t, void *);
119 void cpu_attach(device_t, device_t, void *);
120 int cpu_rescan(device_t, const char *, const int *);
121 void cpu_childdetached(device_t, device_t);
122 int vcpu_match(device_t, cfdata_t, void *);
123 void vcpu_attach(device_t, device_t, void *);
124 void cpu_attach_common(device_t, device_t, void *);
125 void cpu_offline_md(void);
126
127 struct cpu_softc {
128 device_t sc_dev; /* device tree glue */
129 struct cpu_info *sc_info; /* pointer to CPU info */
130 bool sc_wasonline;
131 };
132
133 int mp_cpu_start(struct cpu_info *, paddr_t);
134 void mp_cpu_start_cleanup(struct cpu_info *);
135 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
136 mp_cpu_start_cleanup };
137
138 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
139 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
140
141 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
142 vcpu_match, vcpu_attach, NULL, NULL);
143
144 /*
145 * Statically-allocated CPU info for the primary CPU (or the only
146 * CPU, on uniprocessors). The CPU info list is initialized to
147 * point at it.
148 */
149 #ifdef TRAPLOG
150 #include <machine/tlog.h>
151 struct tlog tlog_primary;
152 #endif
153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 .ci_dev = 0,
155 .ci_self = &cpu_info_primary,
156 .ci_idepth = -1,
157 .ci_curlwp = &lwp0,
158 .ci_curldt = -1,
159 #ifdef TRAPLOG
160 .ci_tlog = &tlog_primary,
161 #endif
162
163 };
164 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 .ci_dev = 0,
166 .ci_self = &phycpu_info_primary,
167 };
168
169 struct cpu_info *cpu_info_list = &cpu_info_primary;
170 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
171
172 static void cpu_set_tss_gates(struct cpu_info *ci);
173
174 uint32_t cpus_attached = 0;
175 uint32_t cpus_running = 0;
176
177 uint32_t phycpus_attached = 0;
178 uint32_t phycpus_running = 0;
179
180 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
181 * [0] basic features %edx
182 * [1] basic features %ecx
183 * [2] extended features %edx
184 * [3] extended features %ecx
185 * [4] VIA padlock features
186 */
187
188 bool x86_mp_online;
189 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
190
191 #if defined(MULTIPROCESSOR)
192 void cpu_hatch(void *);
193 static void cpu_boot_secondary(struct cpu_info *ci);
194 static void cpu_start_secondary(struct cpu_info *ci);
195 static void cpu_copy_trampoline(void);
196
197 /*
198 * Runs once per boot once multiprocessor goo has been detected and
199 * the local APIC on the boot processor has been mapped.
200 *
201 * Called from lapic_boot_init() (from mpbios_scan()).
202 */
203 void
204 cpu_init_first(void)
205 {
206
207 cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 cpu_copy_trampoline();
209 }
210 #endif /* MULTIPROCESSOR */
211
212 int
213 cpu_match(device_t parent, cfdata_t match, void *aux)
214 {
215
216 return 1;
217 }
218
219 void
220 cpu_attach(device_t parent, device_t self, void *aux)
221 {
222 struct cpu_softc *sc = device_private(self);
223 struct cpu_attach_args *caa = aux;
224 struct cpu_info *ci;
225 uintptr_t ptr;
226 static int nphycpu = 0;
227
228 sc->sc_dev = self;
229
230 if (phycpus_attached == ~0) {
231 aprint_error(": increase MAXCPUS\n");
232 return;
233 }
234
235 /*
236 * If we're an Application Processor, allocate a cpu_info
237 * If we're the first attached CPU use the primary cpu_info,
238 * otherwise allocate a new one
239 */
240 aprint_naive("\n");
241 aprint_normal("\n");
242 if (nphycpu > 0) {
243 struct cpu_info *tmp;
244 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
245 KM_SLEEP);
246 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
247 ci->ci_curldt = -1;
248
249 tmp = phycpu_info_list;
250 while (tmp->ci_next)
251 tmp = tmp->ci_next;
252
253 tmp->ci_next = ci;
254 } else {
255 ci = &phycpu_info_primary;
256 }
257
258 ci->ci_self = ci;
259 sc->sc_info = ci;
260
261 ci->ci_dev = self;
262 ci->ci_acpiid = caa->cpu_id;
263 ci->ci_cpuid = caa->cpu_number;
264 ci->ci_vcpu = NULL;
265 ci->ci_index = nphycpu++;
266 ci->ci_cpumask = (1 << cpu_index(ci));
267
268 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
269
270 if (!pmf_device_register(self, NULL, NULL))
271 aprint_error_dev(self, "couldn't establish power handler\n");
272
273 return;
274 }
275
276 int
277 cpu_rescan(device_t self, const char *ifattr, const int *locators)
278 {
279 struct cpu_softc *sc = device_private(self);
280 struct cpufeature_attach_args cfaa;
281 struct cpu_info *ci = sc->sc_info;
282
283 memset(&cfaa, 0, sizeof(cfaa));
284 cfaa.ci = ci;
285
286 if (ifattr_match(ifattr, "cpufeaturebus")) {
287
288 if (ci->ci_frequency == NULL) {
289 cfaa.name = "frequency";
290 ci->ci_frequency = config_found_ia(self,
291 "cpufeaturebus", &cfaa, NULL);
292 }
293 }
294
295 return 0;
296 }
297
298 void
299 cpu_childdetached(device_t self, device_t child)
300 {
301 struct cpu_softc *sc = device_private(self);
302 struct cpu_info *ci = sc->sc_info;
303
304 if (ci->ci_frequency == child)
305 ci->ci_frequency = NULL;
306 }
307
308 int
309 vcpu_match(device_t parent, cfdata_t match, void *aux)
310 {
311 struct vcpu_attach_args *vcaa = aux;
312
313 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
314 return 1;
315 return 0;
316 }
317
318 void
319 vcpu_attach(device_t parent, device_t self, void *aux)
320 {
321 struct vcpu_attach_args *vcaa = aux;
322
323 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
324 }
325
326 static void
327 cpu_vm_init(struct cpu_info *ci)
328 {
329 int ncolors = 2, i;
330
331 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
332 struct x86_cache_info *cai;
333 int tcolors;
334
335 cai = &ci->ci_cinfo[i];
336
337 tcolors = atop(cai->cai_totalsize);
338 switch(cai->cai_associativity) {
339 case 0xff:
340 tcolors = 1; /* fully associative */
341 break;
342 case 0:
343 case 1:
344 break;
345 default:
346 tcolors /= cai->cai_associativity;
347 }
348 ncolors = max(ncolors, tcolors);
349 }
350
351 /*
352 * Knowing the size of the largest cache on this CPU, re-color
353 * our pages.
354 */
355 if (ncolors <= uvmexp.ncolors)
356 return;
357 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
358 uvm_page_recolor(ncolors);
359 }
360
361 void
362 cpu_attach_common(device_t parent, device_t self, void *aux)
363 {
364 struct cpu_softc *sc = device_private(self);
365 struct cpu_attach_args *caa = aux;
366 struct cpu_info *ci;
367 uintptr_t ptr;
368 int cpunum = caa->cpu_number;
369 static bool again = false;
370
371 sc->sc_dev = self;
372
373 /*
374 * If we're an Application Processor, allocate a cpu_info
375 * structure, otherwise use the primary's.
376 */
377 if (caa->cpu_role == CPU_ROLE_AP) {
378 aprint_naive(": Application Processor\n");
379 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
380 KM_SLEEP);
381 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
382 memset(ci, 0, sizeof(*ci));
383 #ifdef TRAPLOG
384 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
385 #endif
386 } else {
387 aprint_naive(": %s Processor\n",
388 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
389 ci = &cpu_info_primary;
390 #if NLAPIC > 0
391 if (cpunum != lapic_cpu_number()) {
392 /* XXX should be done earlier */
393 uint32_t reg;
394 aprint_verbose("\n");
395 aprint_verbose_dev(self, "running CPU at apic %d"
396 " instead of at expected %d", lapic_cpu_number(),
397 cpunum);
398 reg = i82489_readreg(LAPIC_ID);
399 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
400 (cpunum << LAPIC_ID_SHIFT));
401 }
402 if (cpunum != lapic_cpu_number()) {
403 aprint_error_dev(self, "unable to reset apic id\n");
404 }
405 #endif
406 }
407
408 ci->ci_self = ci;
409 sc->sc_info = ci;
410 ci->ci_dev = self;
411 ci->ci_cpuid = cpunum;
412
413 KASSERT(HYPERVISOR_shared_info != NULL);
414 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
415
416 ci->ci_func = caa->cpu_func;
417
418 /* Must be called before mi_cpu_attach(). */
419 cpu_vm_init(ci);
420
421 if (caa->cpu_role == CPU_ROLE_AP) {
422 int error;
423
424 error = mi_cpu_attach(ci);
425 if (error != 0) {
426 aprint_normal("\n");
427 aprint_error_dev(self,
428 "mi_cpu_attach failed with %d\n", error);
429 return;
430 }
431 } else {
432 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
433 }
434
435 ci->ci_cpumask = (1 << cpu_index(ci));
436 pmap_reference(pmap_kernel());
437 ci->ci_pmap = pmap_kernel();
438 ci->ci_tlbstate = TLBSTATE_STALE;
439
440 /*
441 * Boot processor may not be attached first, but the below
442 * must be done to allow booting other processors.
443 */
444 if (!again) {
445 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
446 /* Basic init. */
447 cpu_intr_init(ci);
448 cpu_get_tsc_freq(ci);
449 cpu_init(ci);
450 cpu_set_tss_gates(ci);
451 pmap_cpu_init_late(ci);
452 #if NLAPIC > 0
453 if (caa->cpu_role != CPU_ROLE_SP) {
454 /* Enable lapic. */
455 lapic_enable();
456 lapic_set_lvt();
457 lapic_calibrate_timer();
458 }
459 #endif
460 /* Make sure DELAY() is initialized. */
461 DELAY(1);
462 again = true;
463 }
464
465 /* further PCB init done later. */
466
467 switch (caa->cpu_role) {
468 case CPU_ROLE_SP:
469 atomic_or_32(&ci->ci_flags, CPUF_SP);
470 cpu_identify(ci);
471 #if 0
472 x86_errata();
473 #endif
474 x86_cpu_idle_init();
475 break;
476
477 case CPU_ROLE_BP:
478 atomic_or_32(&ci->ci_flags, CPUF_BSP);
479 cpu_identify(ci);
480 cpu_init(ci);
481 #if 0
482 x86_errata();
483 #endif
484 x86_cpu_idle_init();
485 break;
486
487 case CPU_ROLE_AP:
488 /*
489 * report on an AP
490 */
491
492 #if defined(MULTIPROCESSOR)
493 cpu_intr_init(ci);
494 gdt_alloc_cpu(ci);
495 cpu_set_tss_gates(ci);
496 pmap_cpu_init_early(ci);
497 pmap_cpu_init_late(ci);
498 cpu_start_secondary(ci);
499 if (ci->ci_flags & CPUF_PRESENT) {
500 struct cpu_info *tmp;
501
502 identifycpu(ci);
503 tmp = cpu_info_list;
504 while (tmp->ci_next)
505 tmp = tmp->ci_next;
506
507 tmp->ci_next = ci;
508 }
509 #else
510 aprint_error_dev(self, "not started\n");
511 #endif
512 break;
513
514 default:
515 aprint_normal("\n");
516 panic("unknown processor type??\n");
517 }
518
519 pat_init(ci);
520 atomic_or_32(&cpus_attached, ci->ci_cpumask);
521
522 #if 0
523 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
524 aprint_error_dev(self, "couldn't establish power handler\n");
525 #endif
526
527 #if defined(MULTIPROCESSOR)
528 if (mp_verbose) {
529 struct lwp *l = ci->ci_data.cpu_idlelwp;
530 struct pcb *pcb = lwp_getpcb(l);
531
532 aprint_verbose_dev(self,
533 "idle lwp at %p, idle sp at 0x%p\n",
534 l,
535 #ifdef i386
536 (void *)pcb->pcb_esp
537 #else
538 (void *)pcb->pcb_rsp
539 #endif
540 );
541
542 }
543 #endif
544 }
545
546 /*
547 * Initialize the processor appropriately.
548 */
549
550 void
551 cpu_init(struct cpu_info *ci)
552 {
553
554 /*
555 * On a P6 or above, enable global TLB caching if the
556 * hardware supports it.
557 */
558 if (cpu_feature[0] & CPUID_PGE)
559 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
560
561 #ifdef XXXMTRR
562 /*
563 * On a P6 or above, initialize MTRR's if the hardware supports them.
564 */
565 if (cpu_feature[0] & CPUID_MTRR) {
566 if ((ci->ci_flags & CPUF_AP) == 0)
567 i686_mtrr_init_first();
568 mtrr_init_cpu(ci);
569 }
570 #endif
571 /*
572 * If we have FXSAVE/FXRESTOR, use them.
573 */
574 if (cpu_feature[0] & CPUID_FXSR) {
575 lcr4(rcr4() | CR4_OSFXSR);
576
577 /*
578 * If we have SSE/SSE2, enable XMM exceptions.
579 */
580 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
581 lcr4(rcr4() | CR4_OSXMMEXCPT);
582 }
583
584 #ifdef __x86_64__
585 /* No user PGD mapped for this CPU yet */
586 ci->ci_xen_current_user_pgd = 0;
587 #endif
588
589 atomic_or_32(&cpus_running, ci->ci_cpumask);
590 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
591 }
592
593
594 #ifdef MULTIPROCESSOR
595 void
596 cpu_boot_secondary_processors(void)
597 {
598 struct cpu_info *ci;
599 u_long i;
600
601 for (i = 0; i < maxcpus; i++) {
602 ci = cpu_lookup(i);
603 if (ci == NULL)
604 continue;
605 if (ci->ci_data.cpu_idlelwp == NULL)
606 continue;
607 if ((ci->ci_flags & CPUF_PRESENT) == 0)
608 continue;
609 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
610 continue;
611 cpu_boot_secondary(ci);
612 }
613
614 x86_mp_online = true;
615 }
616
617 static void
618 cpu_init_idle_lwp(struct cpu_info *ci)
619 {
620 struct lwp *l = ci->ci_data.cpu_idlelwp;
621 struct pcb *pcb = lwp_getpcb(l);
622
623 pcb->pcb_cr0 = rcr0();
624 }
625
626 void
627 cpu_init_idle_lwps(void)
628 {
629 struct cpu_info *ci;
630 u_long i;
631
632 for (i = 0; i < maxcpus; i++) {
633 ci = cpu_lookup(i);
634 if (ci == NULL)
635 continue;
636 if (ci->ci_data.cpu_idlelwp == NULL)
637 continue;
638 if ((ci->ci_flags & CPUF_PRESENT) == 0)
639 continue;
640 cpu_init_idle_lwp(ci);
641 }
642 }
643
644 void
645 cpu_start_secondary(struct cpu_info *ci)
646 {
647 int i;
648 struct pmap *kpm = pmap_kernel();
649 extern uint32_t mp_pdirpa;
650
651 mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
652
653 atomic_or_32(&ci->ci_flags, CPUF_AP);
654
655 aprint_debug_dev(ci->ci_dev, "starting\n");
656
657 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
658 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
659 return;
660
661 /*
662 * wait for it to become ready
663 */
664 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
665 #ifdef MPDEBUG
666 extern int cpu_trace[3];
667 static int otrace[3];
668 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
669 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
670 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
671 memcpy(otrace, cpu_trace, sizeof(otrace));
672 }
673 #endif
674 delay(10);
675 }
676 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
677 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
678 #if defined(MPDEBUG) && defined(DDB)
679 printf("dropping into debugger; continue from here to resume boot\n");
680 Debugger();
681 #endif
682 }
683
684 CPU_START_CLEANUP(ci);
685 }
686
687 void
688 cpu_boot_secondary(struct cpu_info *ci)
689 {
690 int i;
691
692 atomic_or_32(&ci->ci_flags, CPUF_GO);
693 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
694 delay(10);
695 }
696 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
697 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
698 #if defined(MPDEBUG) && defined(DDB)
699 printf("dropping into debugger; continue from here to resume boot\n");
700 Debugger();
701 #endif
702 }
703 }
704
705 /*
706 * The CPU ends up here when its ready to run
707 * This is called from code in mptramp.s; at this point, we are running
708 * in the idle pcb/idle stack of the new CPU. When this function returns,
709 * this processor will enter the idle loop and start looking for work.
710 *
711 * XXX should share some of this with init386 in machdep.c
712 */
713 void
714 cpu_hatch(void *v)
715 {
716 struct cpu_info *ci = (struct cpu_info *)v;
717 struct pcb *pcb;
718 int s, i;
719
720 cpu_probe(ci);
721
722 cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
723 cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
724
725 cpu_init_msrs(ci, true);
726
727 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
728 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
729 while ((ci->ci_flags & CPUF_GO) == 0) {
730 /* Don't use delay, boot CPU may be patching the text. */
731 for (i = 10000; i != 0; i--)
732 x86_pause();
733 }
734
735 /* Because the text may have been patched in x86_patch(). */
736 wbinvd();
737 x86_flush();
738
739 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
740
741 pcb = lwp_getpcb(curlwp);
742 lcr3(pmap_kernel()->pm_pdirpa);
743 pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
744 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
745 lcr0(pcb->pcb_cr0);
746
747 cpu_init_idt();
748 gdt_init_cpu(ci);
749 lapic_enable();
750 lapic_set_lvt();
751 lapic_initclocks();
752
753 #ifdef i386
754 npxinit(ci);
755 #else
756 fpuinit(ci);
757 #endif
758
759 lldt(GSEL(GLDT_SEL, SEL_KPL));
760 ltr(ci->ci_tss_sel);
761
762 cpu_init(ci);
763 cpu_get_tsc_freq(ci);
764
765 s = splhigh();
766 #ifdef i386
767 lapic_tpr = 0;
768 #else
769 lcr8(0);
770 #endif
771 x86_enable_intr();
772 splx(s);
773 #if 0
774 x86_errata();
775 #endif
776
777 aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
778 (long)ci->ci_cpuid);
779 }
780
781 #if defined(DDB)
782
783 #include <ddb/db_output.h>
784 #include <machine/db_machdep.h>
785
786 /*
787 * Dump CPU information from ddb.
788 */
789 void
790 cpu_debug_dump(void)
791 {
792 struct cpu_info *ci;
793 CPU_INFO_ITERATOR cii;
794
795 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
796 for (CPU_INFO_FOREACH(cii, ci)) {
797 db_printf("%p %s %ld %x %x %10p %10p\n",
798 ci,
799 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
800 (long)ci->ci_cpuid,
801 ci->ci_flags, ci->ci_ipis,
802 ci->ci_curlwp,
803 ci->ci_fpcurlwp);
804 }
805 }
806 #endif /* DDB */
807
808 static void
809 cpu_copy_trampoline(void)
810 {
811 /*
812 * Copy boot code.
813 */
814 extern u_char cpu_spinup_trampoline[];
815 extern u_char cpu_spinup_trampoline_end[];
816
817 vaddr_t mp_trampoline_vaddr;
818
819 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
820 UVM_KMF_VAONLY);
821
822 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
823 VM_PROT_READ | VM_PROT_WRITE, 0);
824 pmap_update(pmap_kernel());
825 memcpy((void *)mp_trampoline_vaddr,
826 cpu_spinup_trampoline,
827 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
828
829 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
830 pmap_update(pmap_kernel());
831 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
832 }
833
834 #endif /* MULTIPROCESSOR */
835
836 #ifdef i386
837 #if 0
838 static void
839 tss_init(struct i386tss *tss, void *stack, void *func)
840 {
841 memset(tss, 0, sizeof *tss);
842 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
843 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
844 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
845 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
846 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
847 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
848 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
849 tss->tss_esp = (int)((char *)stack + USPACE - 16);
850 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
851 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
852 tss->__tss_eip = (int)func;
853 }
854 #endif
855
856 /* XXX */
857 #define IDTVEC(name) __CONCAT(X, name)
858 typedef void (vector)(void);
859 extern vector IDTVEC(tss_trap08);
860 #ifdef DDB
861 extern vector Xintrddbipi;
862 extern int ddb_vec;
863 #endif
864
865 static void
866 cpu_set_tss_gates(struct cpu_info *ci)
867 {
868 #if 0
869 struct segment_descriptor sd;
870
871 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
872 UVM_KMF_WIRED);
873 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
874 IDTVEC(tss_trap08));
875 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
876 SDT_SYS386TSS, SEL_KPL, 0, 0);
877 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
878 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
879 GSEL(GTRAPTSS_SEL, SEL_KPL));
880 #endif
881
882 #if defined(DDB) && defined(MULTIPROCESSOR)
883 /*
884 * Set up separate handler for the DDB IPI, so that it doesn't
885 * stomp on a possibly corrupted stack.
886 *
887 * XXX overwriting the gate set in db_machine_init.
888 * Should rearrange the code so that it's set only once.
889 */
890 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
891 UVM_KMF_WIRED);
892 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
893 Xintrddbipi);
894
895 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
896 SDT_SYS386TSS, SEL_KPL, 0, 0);
897 ci->ci_gdt[GIPITSS_SEL].sd = sd;
898
899 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
900 GSEL(GIPITSS_SEL, SEL_KPL));
901 #endif
902 }
903 #else
904 static void
905 cpu_set_tss_gates(struct cpu_info *ci)
906 {
907
908 }
909 #endif /* i386 */
910
911 int
912 mp_cpu_start(struct cpu_info *ci, paddr_t target)
913 {
914 #if 0
915 #if NLAPIC > 0
916 int error;
917 #endif
918 unsigned short dwordptr[2];
919
920 /*
921 * Bootstrap code must be addressable in real mode
922 * and it must be page aligned.
923 */
924 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
925
926 /*
927 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
928 */
929
930 outb(IO_RTC, NVRAM_RESET);
931 outb(IO_RTC+1, NVRAM_RESET_JUMP);
932
933 /*
934 * "and the warm reset vector (DWORD based at 40:67) to point
935 * to the AP startup code ..."
936 */
937
938 dwordptr[0] = 0;
939 dwordptr[1] = target >> 4;
940
941 pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
942 pmap_update(pmap_kernel());
943
944 memcpy ((uint8_t *) 0x467, dwordptr, 4);
945
946 pmap_kremove (0, PAGE_SIZE);
947 pmap_update(pmap_kernel());
948
949 #if NLAPIC > 0
950 /*
951 * ... prior to executing the following sequence:"
952 */
953
954 if (ci->ci_flags & CPUF_AP) {
955 if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
956 return error;
957
958 delay(10000);
959
960 if (cpu_feature & CPUID_APIC) {
961 error = x86_ipi_init(ci->ci_cpuid);
962 if (error != 0) {
963 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
964 __func__);
965 return error;
966 }
967
968 delay(10000);
969
970 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
971 LAPIC_DLMODE_STARTUP);
972 if (error != 0) {
973 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
974 __func__);
975 return error;
976 }
977 delay(200);
978
979 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
980 LAPIC_DLMODE_STARTUP);
981 if (error != 0) {
982 aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
983 __func__);
984 return error;
985 }
986 delay(200);
987 }
988 }
989 #endif
990 #endif /* 0 */
991 return 0;
992 }
993
994 void
995 mp_cpu_start_cleanup(struct cpu_info *ci)
996 {
997 #if 0
998 /*
999 * Ensure the NVRAM reset byte contains something vaguely sane.
1000 */
1001
1002 outb(IO_RTC, NVRAM_RESET);
1003 outb(IO_RTC+1, NVRAM_RESET_RST);
1004 #endif
1005 }
1006
1007 void
1008 cpu_init_msrs(struct cpu_info *ci, bool full)
1009 {
1010 #ifdef __x86_64__
1011 if (full) {
1012 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1013 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1014 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1015 }
1016 #endif /* __x86_64__ */
1017
1018 if (cpu_feature[2] & CPUID_NOX)
1019 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1020 }
1021
1022 void
1023 cpu_offline_md(void)
1024 {
1025 int s;
1026
1027 s = splhigh();
1028 #ifdef __i386__
1029 npxsave_cpu(true);
1030 #else
1031 fpusave_cpu(true);
1032 #endif
1033 splx(s);
1034 }
1035
1036 #if 0
1037 /* XXX joerg restructure and restart CPUs individually */
1038 static bool
1039 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1040 {
1041 struct cpu_softc *sc = device_private(dv);
1042 struct cpu_info *ci = sc->sc_info;
1043 int err;
1044
1045 if (ci->ci_flags & CPUF_PRIMARY)
1046 return true;
1047 if (ci->ci_data.cpu_idlelwp == NULL)
1048 return true;
1049 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1050 return true;
1051
1052 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1053
1054 if (sc->sc_wasonline) {
1055 mutex_enter(&cpu_lock);
1056 err = cpu_setstate(ci, false);
1057 mutex_exit(&cpu_lock);
1058
1059 if (err)
1060 return false;
1061 }
1062
1063 return true;
1064 }
1065
1066 static bool
1067 cpu_resume(device_t dv, const pmf_qual_t *qual)
1068 {
1069 struct cpu_softc *sc = device_private(dv);
1070 struct cpu_info *ci = sc->sc_info;
1071 int err = 0;
1072
1073 if (ci->ci_flags & CPUF_PRIMARY)
1074 return true;
1075 if (ci->ci_data.cpu_idlelwp == NULL)
1076 return true;
1077 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1078 return true;
1079
1080 if (sc->sc_wasonline) {
1081 mutex_enter(&cpu_lock);
1082 err = cpu_setstate(ci, true);
1083 mutex_exit(&cpu_lock);
1084 }
1085
1086 return err == 0;
1087 }
1088 #endif
1089
1090 void
1091 cpu_get_tsc_freq(struct cpu_info *ci)
1092 {
1093 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1094 delay(1000000);
1095 uint64_t freq = 1000000000ULL << 32;
1096 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1097 if ( tinfo->tsc_shift < 0 )
1098 freq = freq << -tinfo->tsc_shift;
1099 else
1100 freq = freq >> tinfo->tsc_shift;
1101 ci->ci_data.cpu_cc_freq = freq;
1102 }
1103
1104 void
1105 x86_cpu_idle_xen(void)
1106 {
1107 struct cpu_info *ci = curcpu();
1108
1109 KASSERT(ci->ci_ilevel == IPL_NONE);
1110
1111 x86_disable_intr();
1112 if (!__predict_false(ci->ci_want_resched)) {
1113 idle_block();
1114 } else {
1115 x86_enable_intr();
1116 }
1117 }
1118
1119 /*
1120 * Loads pmap for the current CPU.
1121 */
1122 void
1123 cpu_load_pmap(struct pmap *pmap)
1124 {
1125 #ifdef i386
1126 #ifdef PAE
1127 int i, s;
1128 struct cpu_info *ci;
1129
1130 s = splvm(); /* just to be safe */
1131 ci = curcpu();
1132 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1133 /* don't update the kernel L3 slot */
1134 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1135 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1136 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1137 }
1138 splx(s);
1139 tlbflush();
1140 #else /* PAE */
1141 lcr3(pmap_pdirpa(pmap, 0));
1142 #endif /* PAE */
1143 #endif /* i386 */
1144
1145 #ifdef __x86_64__
1146 int i, s;
1147 pd_entry_t *old_pgd, *new_pgd;
1148 paddr_t addr;
1149 struct cpu_info *ci;
1150
1151 /* kernel pmap always in cr3 and should never go in user cr3 */
1152 if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1153 ci = curcpu();
1154 /*
1155 * Map user space address in kernel space and load
1156 * user cr3
1157 */
1158 s = splvm();
1159 new_pgd = pmap->pm_pdir;
1160 old_pgd = pmap_kernel()->pm_pdir;
1161 addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1162 for (i = 0; i < PDIR_SLOT_PTE;
1163 i++, addr += sizeof(pd_entry_t)) {
1164 if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1165 xpq_queue_pte_update(addr, new_pgd[i]);
1166 }
1167 tlbflush();
1168 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1169 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1170 splx(s);
1171 }
1172 #endif /* __x86_64__ */
1173 }
1174