cpu.c revision 1.56 1 /* $NetBSD: cpu.c,v 1.56 2011/02/26 14:43:18 jruoho Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56 2011/02/26 14:43:18 jruoho Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88
89 #include <uvm/uvm.h>
90
91 #include <machine/cpufunc.h>
92 #include <machine/cpuvar.h>
93 #include <machine/pmap.h>
94 #include <machine/vmparam.h>
95 #include <machine/mpbiosvar.h>
96 #include <machine/pcb.h>
97 #include <machine/specialreg.h>
98 #include <machine/segments.h>
99 #include <machine/gdt.h>
100 #include <machine/mtrr.h>
101 #include <machine/pio.h>
102
103 #include <xen/vcpuvar.h>
104
105 #if NLAPIC > 0
106 #include <machine/apicvar.h>
107 #include <machine/i82489reg.h>
108 #include <machine/i82489var.h>
109 #endif
110
111 #include <dev/ic/mc146818reg.h>
112 #include <dev/isa/isareg.h>
113
114 #if MAXCPUS > 32
115 #error cpu_info contains 32bit bitmasks
116 #endif
117
118 static int cpu_match(device_t, cfdata_t, void *);
119 static void cpu_attach(device_t, device_t, void *);
120 static void cpu_defer(device_t);
121 static int cpu_rescan(device_t, const char *, const int *);
122 static void cpu_childdetached(device_t, device_t);
123 static int vcpu_match(device_t, cfdata_t, void *);
124 static void vcpu_attach(device_t, device_t, void *);
125 static void cpu_attach_common(device_t, device_t, void *);
126 void cpu_offline_md(void);
127
128 struct cpu_softc {
129 device_t sc_dev; /* device tree glue */
130 struct cpu_info *sc_info; /* pointer to CPU info */
131 bool sc_wasonline;
132 };
133
134 int mp_cpu_start(struct cpu_info *, paddr_t);
135 void mp_cpu_start_cleanup(struct cpu_info *);
136 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
137 mp_cpu_start_cleanup };
138
139 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
140 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
141
142 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
143 vcpu_match, vcpu_attach, NULL, NULL);
144
145 /*
146 * Statically-allocated CPU info for the primary CPU (or the only
147 * CPU, on uniprocessors). The CPU info list is initialized to
148 * point at it.
149 */
150 #ifdef TRAPLOG
151 #include <machine/tlog.h>
152 struct tlog tlog_primary;
153 #endif
154 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
155 .ci_dev = 0,
156 .ci_self = &cpu_info_primary,
157 .ci_idepth = -1,
158 .ci_curlwp = &lwp0,
159 .ci_curldt = -1,
160 #ifdef TRAPLOG
161 .ci_tlog = &tlog_primary,
162 #endif
163
164 };
165 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
166 .ci_dev = 0,
167 .ci_self = &phycpu_info_primary,
168 };
169
170 struct cpu_info *cpu_info_list = &cpu_info_primary;
171 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
172
173 static void cpu_set_tss_gates(struct cpu_info *ci);
174
175 uint32_t cpus_attached = 0;
176 uint32_t cpus_running = 0;
177
178 uint32_t phycpus_attached = 0;
179 uint32_t phycpus_running = 0;
180
181 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
182 * [0] basic features %edx
183 * [1] basic features %ecx
184 * [2] extended features %edx
185 * [3] extended features %ecx
186 * [4] VIA padlock features
187 */
188
189 bool x86_mp_online;
190 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
191
192 #if defined(MULTIPROCESSOR)
193 void cpu_hatch(void *);
194 static void cpu_boot_secondary(struct cpu_info *ci);
195 static void cpu_start_secondary(struct cpu_info *ci);
196 static void cpu_copy_trampoline(void);
197
198 /*
199 * Runs once per boot once multiprocessor goo has been detected and
200 * the local APIC on the boot processor has been mapped.
201 *
202 * Called from lapic_boot_init() (from mpbios_scan()).
203 */
204 void
205 cpu_init_first(void)
206 {
207
208 cpu_info_primary.ci_cpuid = lapic_cpu_number();
209 cpu_copy_trampoline();
210 }
211 #endif /* MULTIPROCESSOR */
212
213 static int
214 cpu_match(device_t parent, cfdata_t match, void *aux)
215 {
216
217 return 1;
218 }
219
220 static void
221 cpu_attach(device_t parent, device_t self, void *aux)
222 {
223 struct cpu_softc *sc = device_private(self);
224 struct cpu_attach_args *caa = aux;
225 struct cpu_info *ci;
226 uintptr_t ptr;
227 static int nphycpu = 0;
228
229 sc->sc_dev = self;
230
231 if (phycpus_attached == ~0) {
232 aprint_error(": increase MAXCPUS\n");
233 return;
234 }
235
236 /*
237 * If we're an Application Processor, allocate a cpu_info
238 * If we're the first attached CPU use the primary cpu_info,
239 * otherwise allocate a new one
240 */
241 aprint_naive("\n");
242 aprint_normal("\n");
243 if (nphycpu > 0) {
244 struct cpu_info *tmp;
245 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
246 KM_SLEEP);
247 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
248 ci->ci_curldt = -1;
249
250 tmp = phycpu_info_list;
251 while (tmp->ci_next)
252 tmp = tmp->ci_next;
253
254 tmp->ci_next = ci;
255 } else {
256 ci = &phycpu_info_primary;
257 }
258
259 ci->ci_self = ci;
260 sc->sc_info = ci;
261
262 ci->ci_dev = self;
263 ci->ci_acpiid = caa->cpu_id;
264 ci->ci_cpuid = caa->cpu_number;
265 ci->ci_vcpu = NULL;
266 ci->ci_index = nphycpu++;
267 ci->ci_cpumask = (1 << cpu_index(ci));
268
269 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
270
271 if (!pmf_device_register(self, NULL, NULL))
272 aprint_error_dev(self, "couldn't establish power handler\n");
273
274 (void)config_defer(self, cpu_defer);
275 }
276
277 static void
278 cpu_defer(device_t self)
279 {
280 cpu_rescan(self, NULL, NULL);
281 }
282
283 static int
284 cpu_rescan(device_t self, const char *ifattr, const int *locators)
285 {
286 struct cpu_softc *sc = device_private(self);
287 struct cpufeature_attach_args cfaa;
288 struct cpu_info *ci = sc->sc_info;
289
290 memset(&cfaa, 0, sizeof(cfaa));
291 cfaa.ci = ci;
292
293 if (ifattr_match(ifattr, "cpufeaturebus")) {
294
295 if (ci->ci_frequency == NULL) {
296 cfaa.name = "frequency";
297 ci->ci_frequency = config_found_ia(self,
298 "cpufeaturebus", &cfaa, NULL);
299 }
300 }
301
302 return 0;
303 }
304
305 static void
306 cpu_childdetached(device_t self, device_t child)
307 {
308 struct cpu_softc *sc = device_private(self);
309 struct cpu_info *ci = sc->sc_info;
310
311 if (ci->ci_frequency == child)
312 ci->ci_frequency = NULL;
313 }
314
315 static int
316 vcpu_match(device_t parent, cfdata_t match, void *aux)
317 {
318 struct vcpu_attach_args *vcaa = aux;
319
320 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
321 return 1;
322 return 0;
323 }
324
325 static void
326 vcpu_attach(device_t parent, device_t self, void *aux)
327 {
328 struct vcpu_attach_args *vcaa = aux;
329
330 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
331 }
332
333 static void
334 cpu_vm_init(struct cpu_info *ci)
335 {
336 int ncolors = 2, i;
337
338 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
339 struct x86_cache_info *cai;
340 int tcolors;
341
342 cai = &ci->ci_cinfo[i];
343
344 tcolors = atop(cai->cai_totalsize);
345 switch(cai->cai_associativity) {
346 case 0xff:
347 tcolors = 1; /* fully associative */
348 break;
349 case 0:
350 case 1:
351 break;
352 default:
353 tcolors /= cai->cai_associativity;
354 }
355 ncolors = max(ncolors, tcolors);
356 }
357
358 /*
359 * Knowing the size of the largest cache on this CPU, re-color
360 * our pages.
361 */
362 if (ncolors <= uvmexp.ncolors)
363 return;
364 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
365 uvm_page_recolor(ncolors);
366 }
367
368 static void
369 cpu_attach_common(device_t parent, device_t self, void *aux)
370 {
371 struct cpu_softc *sc = device_private(self);
372 struct cpu_attach_args *caa = aux;
373 struct cpu_info *ci;
374 uintptr_t ptr;
375 int cpunum = caa->cpu_number;
376 static bool again = false;
377
378 sc->sc_dev = self;
379
380 /*
381 * If we're an Application Processor, allocate a cpu_info
382 * structure, otherwise use the primary's.
383 */
384 if (caa->cpu_role == CPU_ROLE_AP) {
385 aprint_naive(": Application Processor\n");
386 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
387 KM_SLEEP);
388 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
389 memset(ci, 0, sizeof(*ci));
390 #ifdef TRAPLOG
391 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
392 #endif
393 } else {
394 aprint_naive(": %s Processor\n",
395 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
396 ci = &cpu_info_primary;
397 #if NLAPIC > 0
398 if (cpunum != lapic_cpu_number()) {
399 /* XXX should be done earlier */
400 uint32_t reg;
401 aprint_verbose("\n");
402 aprint_verbose_dev(self, "running CPU at apic %d"
403 " instead of at expected %d", lapic_cpu_number(),
404 cpunum);
405 reg = i82489_readreg(LAPIC_ID);
406 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
407 (cpunum << LAPIC_ID_SHIFT));
408 }
409 if (cpunum != lapic_cpu_number()) {
410 aprint_error_dev(self, "unable to reset apic id\n");
411 }
412 #endif
413 }
414
415 ci->ci_self = ci;
416 sc->sc_info = ci;
417 ci->ci_dev = self;
418 ci->ci_cpuid = cpunum;
419
420 KASSERT(HYPERVISOR_shared_info != NULL);
421 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
422
423 ci->ci_func = caa->cpu_func;
424
425 /* Must be called before mi_cpu_attach(). */
426 cpu_vm_init(ci);
427
428 if (caa->cpu_role == CPU_ROLE_AP) {
429 int error;
430
431 error = mi_cpu_attach(ci);
432 if (error != 0) {
433 aprint_normal("\n");
434 aprint_error_dev(self,
435 "mi_cpu_attach failed with %d\n", error);
436 return;
437 }
438 } else {
439 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
440 }
441
442 ci->ci_cpumask = (1 << cpu_index(ci));
443 pmap_reference(pmap_kernel());
444 ci->ci_pmap = pmap_kernel();
445 ci->ci_tlbstate = TLBSTATE_STALE;
446
447 /*
448 * Boot processor may not be attached first, but the below
449 * must be done to allow booting other processors.
450 */
451 if (!again) {
452 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
453 /* Basic init. */
454 cpu_intr_init(ci);
455 cpu_get_tsc_freq(ci);
456 cpu_init(ci);
457 cpu_set_tss_gates(ci);
458 pmap_cpu_init_late(ci);
459 #if NLAPIC > 0
460 if (caa->cpu_role != CPU_ROLE_SP) {
461 /* Enable lapic. */
462 lapic_enable();
463 lapic_set_lvt();
464 lapic_calibrate_timer();
465 }
466 #endif
467 /* Make sure DELAY() is initialized. */
468 DELAY(1);
469 again = true;
470 }
471
472 /* further PCB init done later. */
473
474 switch (caa->cpu_role) {
475 case CPU_ROLE_SP:
476 atomic_or_32(&ci->ci_flags, CPUF_SP);
477 cpu_identify(ci);
478 #if 0
479 x86_errata();
480 #endif
481 x86_cpu_idle_init();
482 break;
483
484 case CPU_ROLE_BP:
485 atomic_or_32(&ci->ci_flags, CPUF_BSP);
486 cpu_identify(ci);
487 cpu_init(ci);
488 #if 0
489 x86_errata();
490 #endif
491 x86_cpu_idle_init();
492 break;
493
494 case CPU_ROLE_AP:
495 /*
496 * report on an AP
497 */
498
499 #if defined(MULTIPROCESSOR)
500 cpu_intr_init(ci);
501 gdt_alloc_cpu(ci);
502 cpu_set_tss_gates(ci);
503 pmap_cpu_init_early(ci);
504 pmap_cpu_init_late(ci);
505 cpu_start_secondary(ci);
506 if (ci->ci_flags & CPUF_PRESENT) {
507 struct cpu_info *tmp;
508
509 identifycpu(ci);
510 tmp = cpu_info_list;
511 while (tmp->ci_next)
512 tmp = tmp->ci_next;
513
514 tmp->ci_next = ci;
515 }
516 #else
517 aprint_error_dev(self, "not started\n");
518 #endif
519 break;
520
521 default:
522 aprint_normal("\n");
523 panic("unknown processor type??\n");
524 }
525
526 pat_init(ci);
527 atomic_or_32(&cpus_attached, ci->ci_cpumask);
528
529 #if 0
530 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
531 aprint_error_dev(self, "couldn't establish power handler\n");
532 #endif
533
534 #if defined(MULTIPROCESSOR)
535 if (mp_verbose) {
536 struct lwp *l = ci->ci_data.cpu_idlelwp;
537 struct pcb *pcb = lwp_getpcb(l);
538
539 aprint_verbose_dev(self,
540 "idle lwp at %p, idle sp at 0x%p\n",
541 l,
542 #ifdef i386
543 (void *)pcb->pcb_esp
544 #else
545 (void *)pcb->pcb_rsp
546 #endif
547 );
548
549 }
550 #endif
551 }
552
553 /*
554 * Initialize the processor appropriately.
555 */
556
557 void
558 cpu_init(struct cpu_info *ci)
559 {
560
561 /*
562 * On a P6 or above, enable global TLB caching if the
563 * hardware supports it.
564 */
565 if (cpu_feature[0] & CPUID_PGE)
566 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
567
568 #ifdef XXXMTRR
569 /*
570 * On a P6 or above, initialize MTRR's if the hardware supports them.
571 */
572 if (cpu_feature[0] & CPUID_MTRR) {
573 if ((ci->ci_flags & CPUF_AP) == 0)
574 i686_mtrr_init_first();
575 mtrr_init_cpu(ci);
576 }
577 #endif
578 /*
579 * If we have FXSAVE/FXRESTOR, use them.
580 */
581 if (cpu_feature[0] & CPUID_FXSR) {
582 lcr4(rcr4() | CR4_OSFXSR);
583
584 /*
585 * If we have SSE/SSE2, enable XMM exceptions.
586 */
587 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
588 lcr4(rcr4() | CR4_OSXMMEXCPT);
589 }
590
591 #ifdef __x86_64__
592 /* No user PGD mapped for this CPU yet */
593 ci->ci_xen_current_user_pgd = 0;
594 #endif
595
596 atomic_or_32(&cpus_running, ci->ci_cpumask);
597 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
598 }
599
600
601 #ifdef MULTIPROCESSOR
602 void
603 cpu_boot_secondary_processors(void)
604 {
605 struct cpu_info *ci;
606 u_long i;
607
608 for (i = 0; i < maxcpus; i++) {
609 ci = cpu_lookup(i);
610 if (ci == NULL)
611 continue;
612 if (ci->ci_data.cpu_idlelwp == NULL)
613 continue;
614 if ((ci->ci_flags & CPUF_PRESENT) == 0)
615 continue;
616 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
617 continue;
618 cpu_boot_secondary(ci);
619 }
620
621 x86_mp_online = true;
622 }
623
624 static void
625 cpu_init_idle_lwp(struct cpu_info *ci)
626 {
627 struct lwp *l = ci->ci_data.cpu_idlelwp;
628 struct pcb *pcb = lwp_getpcb(l);
629
630 pcb->pcb_cr0 = rcr0();
631 }
632
633 void
634 cpu_init_idle_lwps(void)
635 {
636 struct cpu_info *ci;
637 u_long i;
638
639 for (i = 0; i < maxcpus; i++) {
640 ci = cpu_lookup(i);
641 if (ci == NULL)
642 continue;
643 if (ci->ci_data.cpu_idlelwp == NULL)
644 continue;
645 if ((ci->ci_flags & CPUF_PRESENT) == 0)
646 continue;
647 cpu_init_idle_lwp(ci);
648 }
649 }
650
651 void
652 cpu_start_secondary(struct cpu_info *ci)
653 {
654 int i;
655 struct pmap *kpm = pmap_kernel();
656 extern uint32_t mp_pdirpa;
657
658 mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
659
660 atomic_or_32(&ci->ci_flags, CPUF_AP);
661
662 aprint_debug_dev(ci->ci_dev, "starting\n");
663
664 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
665 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
666 return;
667
668 /*
669 * wait for it to become ready
670 */
671 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
672 #ifdef MPDEBUG
673 extern int cpu_trace[3];
674 static int otrace[3];
675 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
676 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
677 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
678 memcpy(otrace, cpu_trace, sizeof(otrace));
679 }
680 #endif
681 delay(10);
682 }
683 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
684 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
685 #if defined(MPDEBUG) && defined(DDB)
686 printf("dropping into debugger; continue from here to resume boot\n");
687 Debugger();
688 #endif
689 }
690
691 CPU_START_CLEANUP(ci);
692 }
693
694 void
695 cpu_boot_secondary(struct cpu_info *ci)
696 {
697 int i;
698
699 atomic_or_32(&ci->ci_flags, CPUF_GO);
700 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
701 delay(10);
702 }
703 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
704 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
705 #if defined(MPDEBUG) && defined(DDB)
706 printf("dropping into debugger; continue from here to resume boot\n");
707 Debugger();
708 #endif
709 }
710 }
711
712 /*
713 * The CPU ends up here when its ready to run
714 * This is called from code in mptramp.s; at this point, we are running
715 * in the idle pcb/idle stack of the new CPU. When this function returns,
716 * this processor will enter the idle loop and start looking for work.
717 *
718 * XXX should share some of this with init386 in machdep.c
719 */
720 void
721 cpu_hatch(void *v)
722 {
723 struct cpu_info *ci = (struct cpu_info *)v;
724 struct pcb *pcb;
725 int s, i;
726
727 cpu_probe(ci);
728
729 cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
730 cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
731
732 cpu_init_msrs(ci, true);
733
734 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
735 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
736 while ((ci->ci_flags & CPUF_GO) == 0) {
737 /* Don't use delay, boot CPU may be patching the text. */
738 for (i = 10000; i != 0; i--)
739 x86_pause();
740 }
741
742 /* Because the text may have been patched in x86_patch(). */
743 wbinvd();
744 x86_flush();
745
746 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
747
748 pcb = lwp_getpcb(curlwp);
749 lcr3(pmap_kernel()->pm_pdirpa);
750 pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
751 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
752 lcr0(pcb->pcb_cr0);
753
754 cpu_init_idt();
755 gdt_init_cpu(ci);
756 lapic_enable();
757 lapic_set_lvt();
758 lapic_initclocks();
759
760 #ifdef i386
761 npxinit(ci);
762 #else
763 fpuinit(ci);
764 #endif
765
766 lldt(GSEL(GLDT_SEL, SEL_KPL));
767 ltr(ci->ci_tss_sel);
768
769 cpu_init(ci);
770 cpu_get_tsc_freq(ci);
771
772 s = splhigh();
773 #ifdef i386
774 lapic_tpr = 0;
775 #else
776 lcr8(0);
777 #endif
778 x86_enable_intr();
779 splx(s);
780 #if 0
781 x86_errata();
782 #endif
783
784 aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
785 (long)ci->ci_cpuid);
786 }
787
788 #if defined(DDB)
789
790 #include <ddb/db_output.h>
791 #include <machine/db_machdep.h>
792
793 /*
794 * Dump CPU information from ddb.
795 */
796 void
797 cpu_debug_dump(void)
798 {
799 struct cpu_info *ci;
800 CPU_INFO_ITERATOR cii;
801
802 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
803 for (CPU_INFO_FOREACH(cii, ci)) {
804 db_printf("%p %s %ld %x %x %10p %10p\n",
805 ci,
806 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
807 (long)ci->ci_cpuid,
808 ci->ci_flags, ci->ci_ipis,
809 ci->ci_curlwp,
810 ci->ci_fpcurlwp);
811 }
812 }
813 #endif /* DDB */
814
815 static void
816 cpu_copy_trampoline(void)
817 {
818 /*
819 * Copy boot code.
820 */
821 extern u_char cpu_spinup_trampoline[];
822 extern u_char cpu_spinup_trampoline_end[];
823
824 vaddr_t mp_trampoline_vaddr;
825
826 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
827 UVM_KMF_VAONLY);
828
829 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
830 VM_PROT_READ | VM_PROT_WRITE, 0);
831 pmap_update(pmap_kernel());
832 memcpy((void *)mp_trampoline_vaddr,
833 cpu_spinup_trampoline,
834 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
835
836 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
837 pmap_update(pmap_kernel());
838 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
839 }
840
841 #endif /* MULTIPROCESSOR */
842
843 #ifdef i386
844 #if 0
845 static void
846 tss_init(struct i386tss *tss, void *stack, void *func)
847 {
848 memset(tss, 0, sizeof *tss);
849 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
850 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
851 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
852 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
853 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
854 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
855 tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
856 tss->tss_esp = (int)((char *)stack + USPACE - 16);
857 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
858 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
859 tss->__tss_eip = (int)func;
860 }
861 #endif
862
863 /* XXX */
864 #define IDTVEC(name) __CONCAT(X, name)
865 typedef void (vector)(void);
866 extern vector IDTVEC(tss_trap08);
867 #ifdef DDB
868 extern vector Xintrddbipi;
869 extern int ddb_vec;
870 #endif
871
872 static void
873 cpu_set_tss_gates(struct cpu_info *ci)
874 {
875 #if 0
876 struct segment_descriptor sd;
877
878 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
879 UVM_KMF_WIRED);
880 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
881 IDTVEC(tss_trap08));
882 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
883 SDT_SYS386TSS, SEL_KPL, 0, 0);
884 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
885 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
886 GSEL(GTRAPTSS_SEL, SEL_KPL));
887 #endif
888
889 #if defined(DDB) && defined(MULTIPROCESSOR)
890 /*
891 * Set up separate handler for the DDB IPI, so that it doesn't
892 * stomp on a possibly corrupted stack.
893 *
894 * XXX overwriting the gate set in db_machine_init.
895 * Should rearrange the code so that it's set only once.
896 */
897 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
898 UVM_KMF_WIRED);
899 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
900 Xintrddbipi);
901
902 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
903 SDT_SYS386TSS, SEL_KPL, 0, 0);
904 ci->ci_gdt[GIPITSS_SEL].sd = sd;
905
906 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
907 GSEL(GIPITSS_SEL, SEL_KPL));
908 #endif
909 }
910 #else
911 static void
912 cpu_set_tss_gates(struct cpu_info *ci)
913 {
914
915 }
916 #endif /* i386 */
917
918 int
919 mp_cpu_start(struct cpu_info *ci, paddr_t target)
920 {
921 #if 0
922 #if NLAPIC > 0
923 int error;
924 #endif
925 unsigned short dwordptr[2];
926
927 /*
928 * Bootstrap code must be addressable in real mode
929 * and it must be page aligned.
930 */
931 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
932
933 /*
934 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
935 */
936
937 outb(IO_RTC, NVRAM_RESET);
938 outb(IO_RTC+1, NVRAM_RESET_JUMP);
939
940 /*
941 * "and the warm reset vector (DWORD based at 40:67) to point
942 * to the AP startup code ..."
943 */
944
945 dwordptr[0] = 0;
946 dwordptr[1] = target >> 4;
947
948 pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
949 pmap_update(pmap_kernel());
950
951 memcpy ((uint8_t *) 0x467, dwordptr, 4);
952
953 pmap_kremove (0, PAGE_SIZE);
954 pmap_update(pmap_kernel());
955
956 #if NLAPIC > 0
957 /*
958 * ... prior to executing the following sequence:"
959 */
960
961 if (ci->ci_flags & CPUF_AP) {
962 if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
963 return error;
964
965 delay(10000);
966
967 if (cpu_feature & CPUID_APIC) {
968 error = x86_ipi_init(ci->ci_cpuid);
969 if (error != 0) {
970 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
971 __func__);
972 return error;
973 }
974
975 delay(10000);
976
977 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
978 LAPIC_DLMODE_STARTUP);
979 if (error != 0) {
980 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
981 __func__);
982 return error;
983 }
984 delay(200);
985
986 error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
987 LAPIC_DLMODE_STARTUP);
988 if (error != 0) {
989 aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
990 __func__);
991 return error;
992 }
993 delay(200);
994 }
995 }
996 #endif
997 #endif /* 0 */
998 return 0;
999 }
1000
1001 void
1002 mp_cpu_start_cleanup(struct cpu_info *ci)
1003 {
1004 #if 0
1005 /*
1006 * Ensure the NVRAM reset byte contains something vaguely sane.
1007 */
1008
1009 outb(IO_RTC, NVRAM_RESET);
1010 outb(IO_RTC+1, NVRAM_RESET_RST);
1011 #endif
1012 }
1013
1014 void
1015 cpu_init_msrs(struct cpu_info *ci, bool full)
1016 {
1017 #ifdef __x86_64__
1018 if (full) {
1019 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1020 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1021 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1022 }
1023 #endif /* __x86_64__ */
1024
1025 if (cpu_feature[2] & CPUID_NOX)
1026 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1027 }
1028
1029 void
1030 cpu_offline_md(void)
1031 {
1032 int s;
1033
1034 s = splhigh();
1035 #ifdef __i386__
1036 npxsave_cpu(true);
1037 #else
1038 fpusave_cpu(true);
1039 #endif
1040 splx(s);
1041 }
1042
1043 #if 0
1044 /* XXX joerg restructure and restart CPUs individually */
1045 static bool
1046 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1047 {
1048 struct cpu_softc *sc = device_private(dv);
1049 struct cpu_info *ci = sc->sc_info;
1050 int err;
1051
1052 if (ci->ci_flags & CPUF_PRIMARY)
1053 return true;
1054 if (ci->ci_data.cpu_idlelwp == NULL)
1055 return true;
1056 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1057 return true;
1058
1059 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1060
1061 if (sc->sc_wasonline) {
1062 mutex_enter(&cpu_lock);
1063 err = cpu_setstate(ci, false);
1064 mutex_exit(&cpu_lock);
1065
1066 if (err)
1067 return false;
1068 }
1069
1070 return true;
1071 }
1072
1073 static bool
1074 cpu_resume(device_t dv, const pmf_qual_t *qual)
1075 {
1076 struct cpu_softc *sc = device_private(dv);
1077 struct cpu_info *ci = sc->sc_info;
1078 int err = 0;
1079
1080 if (ci->ci_flags & CPUF_PRIMARY)
1081 return true;
1082 if (ci->ci_data.cpu_idlelwp == NULL)
1083 return true;
1084 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1085 return true;
1086
1087 if (sc->sc_wasonline) {
1088 mutex_enter(&cpu_lock);
1089 err = cpu_setstate(ci, true);
1090 mutex_exit(&cpu_lock);
1091 }
1092
1093 return err == 0;
1094 }
1095 #endif
1096
1097 void
1098 cpu_get_tsc_freq(struct cpu_info *ci)
1099 {
1100 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1101 delay(1000000);
1102 uint64_t freq = 1000000000ULL << 32;
1103 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1104 if ( tinfo->tsc_shift < 0 )
1105 freq = freq << -tinfo->tsc_shift;
1106 else
1107 freq = freq >> tinfo->tsc_shift;
1108 ci->ci_data.cpu_cc_freq = freq;
1109 }
1110
1111 void
1112 x86_cpu_idle_xen(void)
1113 {
1114 struct cpu_info *ci = curcpu();
1115
1116 KASSERT(ci->ci_ilevel == IPL_NONE);
1117
1118 x86_disable_intr();
1119 if (!__predict_false(ci->ci_want_resched)) {
1120 idle_block();
1121 } else {
1122 x86_enable_intr();
1123 }
1124 }
1125
1126 /*
1127 * Loads pmap for the current CPU.
1128 */
1129 void
1130 cpu_load_pmap(struct pmap *pmap)
1131 {
1132 #ifdef i386
1133 #ifdef PAE
1134 int i, s;
1135 struct cpu_info *ci;
1136
1137 s = splvm(); /* just to be safe */
1138 ci = curcpu();
1139 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1140 /* don't update the kernel L3 slot */
1141 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1142 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1143 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1144 }
1145 splx(s);
1146 tlbflush();
1147 #else /* PAE */
1148 lcr3(pmap_pdirpa(pmap, 0));
1149 #endif /* PAE */
1150 #endif /* i386 */
1151
1152 #ifdef __x86_64__
1153 int i, s;
1154 pd_entry_t *old_pgd, *new_pgd;
1155 paddr_t addr;
1156 struct cpu_info *ci;
1157
1158 /* kernel pmap always in cr3 and should never go in user cr3 */
1159 if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1160 ci = curcpu();
1161 /*
1162 * Map user space address in kernel space and load
1163 * user cr3
1164 */
1165 s = splvm();
1166 new_pgd = pmap->pm_pdir;
1167 old_pgd = pmap_kernel()->pm_pdir;
1168 addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1169 for (i = 0; i < PDIR_SLOT_PTE;
1170 i++, addr += sizeof(pd_entry_t)) {
1171 if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1172 xpq_queue_pte_update(addr, new_pgd[i]);
1173 }
1174 tlbflush();
1175 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1176 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1177 splx(s);
1178 }
1179 #endif /* __x86_64__ */
1180 }
1181