Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.56.2.3
      1 /*	$NetBSD: cpu.c,v 1.56.2.3 2011/07/16 10:59:46 cherry Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56.2.3 2011/07/16 10:59:46 cherry Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpufunc.h>
     93 #include <machine/cpuvar.h>
     94 #include <machine/pmap.h>
     95 #include <machine/vmparam.h>
     96 #include <machine/mpbiosvar.h>
     97 #include <machine/pcb.h>
     98 #include <machine/specialreg.h>
     99 #include <machine/segments.h>
    100 #include <machine/gdt.h>
    101 #include <machine/mtrr.h>
    102 #include <machine/pio.h>
    103 #include <machine/fpu.h>
    104 
    105 #include <xen/xen.h>
    106 #include <xen/xen3-public/vcpu.h>
    107 #include <xen/vcpuvar.h>
    108 
    109 #if NLAPIC > 0
    110 #include <machine/apicvar.h>
    111 #include <machine/i82489reg.h>
    112 #include <machine/i82489var.h>
    113 #endif
    114 
    115 #include <dev/ic/mc146818reg.h>
    116 #include <dev/isa/isareg.h>
    117 
    118 #if MAXCPUS > 32
    119 #error cpu_info contains 32bit bitmasks
    120 #endif
    121 
    122 static int	cpu_match(device_t, cfdata_t, void *);
    123 static void	cpu_attach(device_t, device_t, void *);
    124 static void	cpu_defer(device_t);
    125 static int	cpu_rescan(device_t, const char *, const int *);
    126 static void	cpu_childdetached(device_t, device_t);
    127 static int	vcpu_match(device_t, cfdata_t, void *);
    128 static void	vcpu_attach(device_t, device_t, void *);
    129 static void	cpu_attach_common(device_t, device_t, void *);
    130 void		cpu_offline_md(void);
    131 
    132 struct cpu_softc {
    133 	device_t sc_dev;		/* device tree glue */
    134 	struct cpu_info *sc_info;	/* pointer to CPU info */
    135 	bool sc_wasonline;
    136 };
    137 
    138 int mp_cpu_start(struct cpu_info *, paddr_t);
    139 void mp_cpu_start_cleanup(struct cpu_info *);
    140 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    141 				      mp_cpu_start_cleanup };
    142 
    143 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    144     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    145 
    146 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    147     vcpu_match, vcpu_attach, NULL, NULL);
    148 
    149 /*
    150  * Statically-allocated CPU info for the primary CPU (or the only
    151  * CPU, on uniprocessors).  The CPU info list is initialized to
    152  * point at it.
    153  */
    154 #ifdef TRAPLOG
    155 #include <machine/tlog.h>
    156 struct tlog tlog_primary;
    157 #endif
    158 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    159 	.ci_dev = 0,
    160 	.ci_self = &cpu_info_primary,
    161 	.ci_idepth = -1,
    162 	.ci_curlwp = &lwp0,
    163 	.ci_curldt = -1,
    164 	.ci_cpumask = 1,
    165 #ifdef TRAPLOG
    166 	.ci_tlog = &tlog_primary,
    167 #endif
    168 
    169 };
    170 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    171 	.ci_dev = 0,
    172 	.ci_self = &phycpu_info_primary,
    173 };
    174 
    175 struct cpu_info *cpu_info_list = &cpu_info_primary;
    176 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    177 
    178 static void	cpu_set_tss_gates(struct cpu_info *ci);
    179 
    180 uint32_t cpus_attached = 1;
    181 uint32_t cpus_running = 0;
    182 
    183 uint32_t phycpus_attached = 0;
    184 uint32_t phycpus_running = 0;
    185 
    186 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    187 			  *	[0] basic features %edx
    188 			  *	[1] basic features %ecx
    189 			  *	[2] extended features %edx
    190 			  *	[3] extended features %ecx
    191 			  *	[4] VIA padlock features
    192 			  */
    193 
    194 bool x86_mp_online;
    195 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    196 
    197 #if defined(MULTIPROCESSOR)
    198 void    	cpu_hatch(void *);
    199 static void    	cpu_boot_secondary(struct cpu_info *ci);
    200 static void    	cpu_start_secondary(struct cpu_info *ci);
    201 #endif	/* MULTIPROCESSOR */
    202 
    203 static int
    204 cpu_match(device_t parent, cfdata_t match, void *aux)
    205 {
    206 
    207 	return 1;
    208 }
    209 
    210 static void
    211 cpu_attach(device_t parent, device_t self, void *aux)
    212 {
    213 	struct cpu_softc *sc = device_private(self);
    214 	struct cpu_attach_args *caa = aux;
    215 	struct cpu_info *ci;
    216 	uintptr_t ptr;
    217 	static int nphycpu = 0;
    218 
    219 	sc->sc_dev = self;
    220 
    221 	if (phycpus_attached == ~0) {
    222 		aprint_error(": increase MAXCPUS\n");
    223 		return;
    224 	}
    225 
    226 	/*
    227 	 * If we're an Application Processor, allocate a cpu_info
    228 	 * If we're the first attached CPU use the primary cpu_info,
    229 	 * otherwise allocate a new one
    230 	 */
    231 	aprint_naive("\n");
    232 	aprint_normal("\n");
    233 	if (nphycpu > 0) {
    234 		struct cpu_info *tmp;
    235 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    236 		    KM_SLEEP);
    237 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    238 		ci->ci_curldt = -1;
    239 
    240 		tmp = phycpu_info_list;
    241 		while (tmp->ci_next)
    242 			tmp = tmp->ci_next;
    243 
    244 		tmp->ci_next = ci;
    245 	} else {
    246 		ci = &phycpu_info_primary;
    247 	}
    248 
    249 	ci->ci_self = ci;
    250 	sc->sc_info = ci;
    251 
    252 	ci->ci_dev = self;
    253 	ci->ci_acpiid = caa->cpu_id;
    254 	ci->ci_cpuid = caa->cpu_number;
    255 	ci->ci_vcpu = NULL;
    256 	ci->ci_index = nphycpu++;
    257 	ci->ci_cpumask = (1 << cpu_index(ci));
    258 
    259 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    260 
    261 	if (!pmf_device_register(self, NULL, NULL))
    262 		aprint_error_dev(self, "couldn't establish power handler\n");
    263 
    264 	(void)config_defer(self, cpu_defer);
    265 }
    266 
    267 static void
    268 cpu_defer(device_t self)
    269 {
    270 	cpu_rescan(self, NULL, NULL);
    271 }
    272 
    273 static int
    274 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    275 {
    276 	struct cpu_softc *sc = device_private(self);
    277 	struct cpufeature_attach_args cfaa;
    278 	struct cpu_info *ci = sc->sc_info;
    279 
    280 	memset(&cfaa, 0, sizeof(cfaa));
    281 	cfaa.ci = ci;
    282 
    283 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    284 
    285 		if (ci->ci_frequency == NULL) {
    286 			cfaa.name = "frequency";
    287 			ci->ci_frequency = config_found_ia(self,
    288 			    "cpufeaturebus", &cfaa, NULL);
    289 		}
    290 	}
    291 
    292 	return 0;
    293 }
    294 
    295 static void
    296 cpu_childdetached(device_t self, device_t child)
    297 {
    298 	struct cpu_softc *sc = device_private(self);
    299 	struct cpu_info *ci = sc->sc_info;
    300 
    301 	if (ci->ci_frequency == child)
    302 		ci->ci_frequency = NULL;
    303 }
    304 
    305 static int
    306 vcpu_match(device_t parent, cfdata_t match, void *aux)
    307 {
    308 	struct vcpu_attach_args *vcaa = aux;
    309 	struct vcpu_runstate_info vcr;
    310 	int error;
    311 
    312 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    313 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    314 					   vcaa->vcaa_caa.cpu_number,
    315 					   &vcr);
    316 		switch (error) {
    317 		case 0:
    318 			return 1;
    319 		case -ENOENT:
    320 			return 0;
    321 		default:
    322 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    323 		}
    324 	}
    325 
    326 	return 0;
    327 }
    328 
    329 static void
    330 vcpu_attach(device_t parent, device_t self, void *aux)
    331 {
    332 	struct vcpu_attach_args *vcaa = aux;
    333 
    334 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    335 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    336 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    337 }
    338 
    339 static int
    340 vcpu_is_up(struct cpu_info *ci)
    341 {
    342 	KASSERT(ci != NULL);
    343 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    344 }
    345 
    346 static void
    347 cpu_vm_init(struct cpu_info *ci)
    348 {
    349 	int ncolors = 2, i;
    350 
    351 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    352 		struct x86_cache_info *cai;
    353 		int tcolors;
    354 
    355 		cai = &ci->ci_cinfo[i];
    356 
    357 		tcolors = atop(cai->cai_totalsize);
    358 		switch(cai->cai_associativity) {
    359 		case 0xff:
    360 			tcolors = 1; /* fully associative */
    361 			break;
    362 		case 0:
    363 		case 1:
    364 			break;
    365 		default:
    366 			tcolors /= cai->cai_associativity;
    367 		}
    368 		ncolors = max(ncolors, tcolors);
    369 	}
    370 
    371 	/*
    372 	 * Knowing the size of the largest cache on this CPU, re-color
    373 	 * our pages.
    374 	 */
    375 	if (ncolors <= uvmexp.ncolors)
    376 		return;
    377 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    378 	uvm_page_recolor(ncolors);
    379 }
    380 
    381 static void
    382 cpu_attach_common(device_t parent, device_t self, void *aux)
    383 {
    384 	struct cpu_softc *sc = device_private(self);
    385 	struct cpu_attach_args *caa = aux;
    386 	struct cpu_info *ci;
    387 	uintptr_t ptr;
    388 	int cpunum = caa->cpu_number;
    389 	static bool again = false;
    390 
    391 	sc->sc_dev = self;
    392 
    393 	/*
    394 	 * If we're an Application Processor, allocate a cpu_info
    395 	 * structure, otherwise use the primary's.
    396 	 */
    397 	if (caa->cpu_role == CPU_ROLE_AP) {
    398 		aprint_naive(": Application Processor\n");
    399 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    400 		    KM_SLEEP);
    401 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    402 		memset(ci, 0, sizeof(*ci));
    403 #ifdef TRAPLOG
    404 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    405 #endif
    406 	} else {
    407 		aprint_naive(": %s Processor\n",
    408 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    409 		ci = &cpu_info_primary;
    410 	}
    411 
    412 	ci->ci_self = ci;
    413 	sc->sc_info = ci;
    414 	ci->ci_dev = self;
    415 	ci->ci_cpuid = cpunum;
    416 
    417 	KASSERT(HYPERVISOR_shared_info != NULL);
    418 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    419 
    420 	KASSERT(ci->ci_func == 0);
    421 	ci->ci_func = caa->cpu_func;
    422 
    423 	/* Must be called before mi_cpu_attach(). */
    424 	cpu_vm_init(ci);
    425 
    426 	if (caa->cpu_role == CPU_ROLE_AP) {
    427 		int error;
    428 
    429 		error = mi_cpu_attach(ci);
    430 
    431 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    432 		if (error != 0) {
    433 			aprint_normal("\n");
    434 			aprint_error_dev(self,
    435 			    "mi_cpu_attach failed with %d\n", error);
    436 			return;
    437 		}
    438 
    439 	} else {
    440 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    441 	}
    442 
    443 	ci->ci_cpumask = (1 << cpu_index(ci));
    444 	pmap_reference(pmap_kernel());
    445 	ci->ci_pmap = pmap_kernel();
    446 	ci->ci_tlbstate = TLBSTATE_STALE;
    447 
    448 	/*
    449 	 * Boot processor may not be attached first, but the below
    450 	 * must be done to allow booting other processors.
    451 	 */
    452 	if (!again) {
    453 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    454 		/* Basic init. */
    455 		cpu_intr_init(ci);
    456 		cpu_get_tsc_freq(ci);
    457 		cpu_init(ci);
    458 		cpu_set_tss_gates(ci);
    459 		pmap_cpu_init_late(ci); /* XXX: cosmetic */
    460 
    461 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    462 		xen_ipi_init();
    463 		/* XXX: clock_init() */
    464 
    465 		/* Make sure DELAY() is initialized. */
    466 		DELAY(1);
    467 		again = true;
    468 	}
    469 
    470 	/* further PCB init done later. */
    471 
    472 	switch (caa->cpu_role) {
    473 	case CPU_ROLE_SP:
    474 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    475 		cpu_identify(ci);
    476 #if 0
    477 		x86_errata();
    478 #endif
    479 		x86_cpu_idle_init();
    480 
    481 		break;
    482 
    483 	case CPU_ROLE_BP:
    484 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    485 		cpu_identify(ci);
    486 		cpu_init(ci);
    487 #if 0
    488 		x86_errata();
    489 #endif
    490 		x86_cpu_idle_init();
    491 
    492 		break;
    493 
    494 	case CPU_ROLE_AP:
    495 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    496 
    497 		/*
    498 		 * report on an AP
    499 		 */
    500 
    501 #if defined(MULTIPROCESSOR)
    502 		/* interrupt handler stack */
    503 		cpu_intr_init(ci);
    504 
    505 		/* Setup gdt */
    506 		gdt_alloc_cpu(ci);
    507 		//gdt_init_cpu(ci);
    508 
    509 		cpu_set_tss_gates(ci);
    510 		pmap_cpu_init_late(ci);
    511 		cpu_start_secondary(ci);
    512 
    513 		if (ci->ci_flags & CPUF_PRESENT) {
    514 			struct cpu_info *tmp;
    515 
    516 			cpu_identify(ci);
    517 			tmp = cpu_info_list;
    518 			while (tmp->ci_next)
    519 				tmp = tmp->ci_next;
    520 
    521 			tmp->ci_next = ci;
    522 		}
    523 #else
    524 		aprint_error(": not started\n");
    525 #endif
    526 		break;
    527 
    528 	default:
    529 		aprint_normal("\n");
    530 		panic("unknown processor type??\n");
    531 	}
    532 
    533 	pat_init(ci);
    534 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    535 
    536 #if 0
    537 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    538 		aprint_error_dev(self, "couldn't establish power handler\n");
    539 #endif
    540 
    541 #ifdef MPVERBOSE
    542 	if (mp_verbose) {
    543 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    544 		struct pcb *pcb = lwp_getpcb(l);
    545 
    546 		aprint_verbose_dev(self,
    547 		    "idle lwp at %p, idle sp at 0x%p\n",
    548 		    l,
    549 #ifdef i386
    550 		    (void *)pcb->pcb_esp
    551 #else /* i386 */
    552 		    (void *)pcb->pcb_rsp
    553 #endif /* i386 */
    554 		);
    555 
    556 	}
    557 #endif /* MPVERBOSE */
    558 }
    559 
    560 /*
    561  * Initialize the processor appropriately.
    562  */
    563 
    564 void
    565 cpu_init(struct cpu_info *ci)
    566 {
    567 
    568 	/*
    569 	 * On a P6 or above, enable global TLB caching if the
    570 	 * hardware supports it.
    571 	 */
    572 	if (cpu_feature[0] & CPUID_PGE)
    573 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    574 
    575 #ifdef XXXMTRR
    576 	/*
    577 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    578 	 */
    579 	if (cpu_feature[0] & CPUID_MTRR) {
    580 		if ((ci->ci_flags & CPUF_AP) == 0)
    581 			i686_mtrr_init_first();
    582 		mtrr_init_cpu(ci);
    583 	}
    584 #endif
    585 	/*
    586 	 * If we have FXSAVE/FXRESTOR, use them.
    587 	 */
    588 	if (cpu_feature[0] & CPUID_FXSR) {
    589 		lcr4(rcr4() | CR4_OSFXSR);
    590 
    591 		/*
    592 		 * If we have SSE/SSE2, enable XMM exceptions.
    593 		 */
    594 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    595 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    596 	}
    597 
    598 #ifdef __x86_64__
    599 	/* No user PGD mapped for this CPU yet */
    600 	ci->ci_xen_current_user_pgd = 0;
    601 #endif
    602 
    603 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    604 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    605 
    606 	/* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
    607 }
    608 
    609 
    610 #ifdef MULTIPROCESSOR
    611 
    612 void
    613 cpu_boot_secondary_processors(void)
    614 {
    615 	struct cpu_info *ci;
    616 	u_long i;
    617 	for (i = 0; i < maxcpus; i++) {
    618 		ci = cpu_lookup(i);
    619 		if (ci == NULL)
    620 			continue;
    621 		if (ci->ci_data.cpu_idlelwp == NULL)
    622 			continue;
    623 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    624 			continue;
    625 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    626 			continue;
    627 		cpu_boot_secondary(ci);
    628 	}
    629 
    630 	x86_mp_online = true;
    631 }
    632 
    633 static void
    634 cpu_init_idle_lwp(struct cpu_info *ci)
    635 {
    636 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    637 	struct pcb *pcb = lwp_getpcb(l);
    638 
    639 	pcb->pcb_cr0 = rcr0();
    640 }
    641 
    642 void
    643 cpu_init_idle_lwps(void)
    644 {
    645 	struct cpu_info *ci;
    646 	u_long i;
    647 
    648 	for (i = 0; i < maxcpus; i++) {
    649 		ci = cpu_lookup(i);
    650 		if (ci == NULL)
    651 			continue;
    652 		if (ci->ci_data.cpu_idlelwp == NULL)
    653 			continue;
    654 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    655 			continue;
    656 		cpu_init_idle_lwp(ci);
    657 	}
    658 }
    659 
    660 static void
    661 cpu_start_secondary(struct cpu_info *ci)
    662 {
    663 	int i;
    664 
    665 	aprint_debug_dev(ci->ci_dev, "starting\n");
    666 
    667 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    668 
    669 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    670 		return;
    671 	}
    672 
    673 	/*
    674 	 * wait for it to become ready
    675 	 */
    676 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    677 #ifdef MPDEBUG
    678 		extern int cpu_trace[3];
    679 		static int otrace[3];
    680 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    681 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    682 				cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    683 			memcpy(otrace, cpu_trace, sizeof(otrace));
    684 		}
    685 #endif
    686 		delay(10);
    687 	}
    688 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    689 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    690 #if defined(MPDEBUG) && defined(DDB)
    691 		printf("dropping into debugger; continue from here to resume boot\n");
    692 		Debugger();
    693 #endif
    694 	}
    695 
    696 	CPU_START_CLEANUP(ci);
    697 }
    698 
    699 void
    700 cpu_boot_secondary(struct cpu_info *ci)
    701 {
    702 	int i;
    703 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    704 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    705 		delay(10);
    706 	}
    707 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    708 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    709 #if defined(MPDEBUG) && defined(DDB)
    710 		printf("dropping into debugger; continue from here to resume boot\n");
    711 		Debugger();
    712 #endif
    713 	}
    714 }
    715 
    716 /*
    717  * APs end up here immediately after initialisation and VCPUOP_up in
    718  * mp_cpu_start().
    719  * At this point, we are running in the idle pcb/idle stack of the new
    720  * CPU.  This function jumps to the idle loop and starts looking for
    721  * work.
    722  */
    723 extern void x86_64_tls_switch(struct lwp *);
    724 void
    725 cpu_hatch(void *v)
    726 {
    727 	struct cpu_info *ci = (struct cpu_info *)v;
    728 	struct pcb *pcb;
    729 	int s, i;
    730 
    731 	/* Setup TLS and kernel GS */
    732 	cpu_init_msrs(ci, true);
    733 	cpu_probe(ci);
    734 
    735 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    736 
    737 	while ((ci->ci_flags & CPUF_GO) == 0) {
    738 		/* Don't use delay, boot CPU may be patching the text. */
    739 		for (i = 10000; i != 0; i--)
    740 			x86_pause();
    741 	}
    742 
    743 	/* Because the text may have been patched in x86_patch(). */
    744 	x86_flush();
    745 	tlbflushg();
    746 
    747 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    748 
    749 	pcb = lwp_getpcb(curlwp);
    750 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
    751 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    752 	lcr0(pcb->pcb_cr0);
    753 
    754 	cpu_init_idt();
    755 	gdt_init_cpu(ci);
    756 	xen_ipi_init();
    757 
    758 	xen_initclocks();
    759 
    760 	/* XXX: lapic_initclocks(); */
    761 
    762 #ifdef i386
    763 #if NNPX > 0
    764 	npxinit(ci);
    765 #endif
    766 #else
    767 	fpuinit(ci);
    768 	/* XXX: fixme compile fpuinit(ci); */
    769 #endif
    770 
    771 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    772 	ltr(ci->ci_tss_sel);
    773 
    774 	cpu_init(ci);
    775 	cpu_get_tsc_freq(ci);
    776 
    777 	s = splhigh();
    778 	x86_enable_intr();
    779 	splx(s);
    780 #if 0
    781 	x86_errata();
    782 #endif
    783 
    784 	aprint_debug_dev(ci->ci_dev, "running\n");
    785 
    786 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    787 
    788 	panic("switch to idle_loop context returned!\n");
    789 	/* NOTREACHED */
    790 }
    791 
    792 #if defined(DDB)
    793 
    794 #include <ddb/db_output.h>
    795 #include <machine/db_machdep.h>
    796 
    797 /*
    798  * Dump CPU information from ddb.
    799  */
    800 void
    801 cpu_debug_dump(void)
    802 {
    803 	struct cpu_info *ci;
    804 	CPU_INFO_ITERATOR cii;
    805 
    806 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    807 	for (CPU_INFO_FOREACH(cii, ci)) {
    808 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    809 		    ci,
    810 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    811 		    (long)ci->ci_cpuid,
    812 		    ci->ci_flags, ci->ci_ipis,
    813 		    ci->ci_curlwp,
    814 		    ci->ci_fpcurlwp);
    815 	}
    816 }
    817 #endif /* DDB */
    818 
    819 #endif /* MULTIPROCESSOR */
    820 
    821 #ifdef i386
    822 #if 0
    823 static void
    824 tss_init(struct i386tss *tss, void *stack, void *func)
    825 {
    826 	memset(tss, 0, sizeof *tss);
    827 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    828 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    829 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    830 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    831 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    832 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    833 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    834 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    835 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    836 	tss->__tss_eflags = PSL_MBO | PSL_NT;   /* XXX not needed? */
    837 	tss->__tss_eip = (int)func;
    838 }
    839 #endif
    840 
    841 /* XXX */
    842 #define IDTVEC(name)	__CONCAT(X, name)
    843 typedef void (vector)(void);
    844 extern vector IDTVEC(tss_trap08);
    845 #ifdef DDB
    846 extern vector Xintrddbipi;
    847 extern int ddb_vec;
    848 #endif
    849 
    850 static void
    851 cpu_set_tss_gates(struct cpu_info *ci)
    852 {
    853 #if 0
    854 	struct segment_descriptor sd;
    855 
    856 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    857 	    UVM_KMF_WIRED);
    858 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    859 	    IDTVEC(tss_trap08));
    860 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    861 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    862 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    863 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    864 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    865 #endif
    866 
    867 #if defined(DDB) && defined(MULTIPROCESSOR)
    868 	/*
    869 	 * Set up separate handler for the DDB IPI, so that it doesn't
    870 	 * stomp on a possibly corrupted stack.
    871 	 *
    872 	 * XXX overwriting the gate set in db_machine_init.
    873 	 * Should rearrange the code so that it's set only once.
    874 	 */
    875 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    876 	    UVM_KMF_WIRED);
    877 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    878 	    Xintrddbipi);
    879 
    880 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    881 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    882 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    883 
    884 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    885 	    GSEL(GIPITSS_SEL, SEL_KPL));
    886 #endif
    887 }
    888 #else
    889 static void
    890 cpu_set_tss_gates(struct cpu_info *ci)
    891 {
    892 
    893 }
    894 #endif	/* i386 */
    895 
    896 extern void hypervisor_callback(void);
    897 extern void failsafe_callback(void);
    898 #ifdef __x86_64__
    899 typedef void (vector)(void);
    900 extern vector Xsyscall, Xsyscall32;
    901 #endif
    902 
    903 /*
    904  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    905  * outside a trampoline, so we prototype and call targetrip like so:
    906  * void targetrip(struct cpu_info *);
    907  */
    908 
    909 static void
    910 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    911 {
    912 	int i;
    913 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    914 
    915 		frames[i] = ((paddr_t) xpmap_ptetomach(
    916 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    917 			>> PAGE_SHIFT;
    918 
    919 		/* Mark Read-only */
    920 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    921 		    PG_RW);
    922 	}
    923 }
    924 
    925 extern char *ldtstore; /* XXX: Xen MP todo */
    926 
    927 static void
    928 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    929 			struct vcpu_guest_context *initctx,
    930 			void targetrip(struct cpu_info *))
    931 {
    932 	/* page frames to point at GDT */
    933 	extern int gdt_size;
    934 	paddr_t frames[16];
    935 	psize_t gdt_ents;
    936 
    937 	struct lwp *l;
    938 	struct pcb *pcb;
    939 
    940 	volatile struct vcpu_info *vci;
    941 
    942 	KASSERT(ci != NULL);
    943 	KASSERT(ci != &cpu_info_primary);
    944 	KASSERT(initctx != NULL);
    945 	KASSERT(targetrip != NULL);
    946 
    947 	memset(initctx, 0, sizeof *initctx);
    948 
    949 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    950 	KASSERT(gdt_ents <= 16);
    951 
    952 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    953 
    954 	/* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
    955 
    956 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    957 
    958 	l = ci->ci_data.cpu_idlelwp;
    959 
    960 	KASSERT(l != NULL);
    961 	pcb = lwp_getpcb(l);
    962 	KASSERT(pcb != NULL);
    963 
    964 	/* resume with interrupts off */
    965 	vci = ci->ci_vcpu;
    966 	vci->evtchn_upcall_mask = 1;
    967 	xen_mb();
    968 
    969 	/* resume in kernel-mode */
    970 	initctx->flags = VGCF_in_kernel | VGCF_online;
    971 
    972 	/* Stack and entry points */
    973 	initctx->user_regs.rbp = pcb->pcb_rbp;
    974 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    975 	initctx->user_regs.rip = (vaddr_t) targetrip;
    976 
    977 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    978 
    979 	initctx->user_regs.rflags = pcb->pcb_flags;
    980 	initctx->user_regs.rsp = pcb->pcb_rsp;
    981 
    982 	/* Data segments */
    983 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    984 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    985 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    986 
    987 	/* GDT */
    988 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    989 	initctx->gdt_ents = gdt_ents;
    990 
    991 	/* LDT */
    992 	initctx->ldt_base = (unsigned long) ldtstore;
    993 	initctx->ldt_ents = LDT_SIZE >> 3;
    994 
    995 	/* Kernel context state */
    996 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    997 	initctx->kernel_sp = pcb->pcb_rsp0;
    998 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    999 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
   1000 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
   1001 	/*
   1002 	 * Use pmap_kernel() L4 PD directly, until we setup the
   1003 	 * per-cpu L4 PD in pmap_cpu_init_late()
   1004 	 */
   1005 	initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
   1006 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
   1007 
   1008 
   1009 	/* Xen callbacks */
   1010 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
   1011 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
   1012 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
   1013 
   1014 	return;
   1015 }
   1016 
   1017 int
   1018 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1019 {
   1020 
   1021 	int hyperror;
   1022 	struct vcpu_guest_context vcpuctx;
   1023 
   1024 	KASSERT(ci != NULL);
   1025 	KASSERT(ci != &cpu_info_primary);
   1026 	KASSERT(ci->ci_flags & CPUF_AP);
   1027 
   1028 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1029 
   1030 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1031 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1032 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1033 		return hyperror;
   1034 	}
   1035 
   1036 	/* Start it up */
   1037 
   1038 	/* First bring it down - yay, thanks Xen documentation for omitting this slight detail - lost only about 1 week reading through crap */
   1039 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1040 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1041 		return hyperror;
   1042 	}
   1043 
   1044 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1045 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1046 		return hyperror;
   1047 	}
   1048 
   1049 	if (!vcpu_is_up(ci)) {
   1050 		aprint_error(": did not come up\n");
   1051 		return -1;
   1052 	}
   1053 
   1054 	return 0;
   1055 }
   1056 
   1057 void
   1058 mp_cpu_start_cleanup(struct cpu_info *ci)
   1059 {
   1060 #if 0
   1061 	/*
   1062 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1063 	 */
   1064 
   1065 	outb(IO_RTC, NVRAM_RESET);
   1066 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1067 #endif
   1068 	if (vcpu_is_up(ci)) {
   1069 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1070 	}
   1071 	else {
   1072 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1073 	}
   1074 
   1075 }
   1076 
   1077 void
   1078 cpu_init_msrs(struct cpu_info *ci, bool full)
   1079 {
   1080 #ifdef __x86_64__
   1081 	if (full) {
   1082 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1083 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1084 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1085 	}
   1086 #endif	/* __x86_64__ */
   1087 
   1088 	if (cpu_feature[2] & CPUID_NOX)
   1089 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1090 
   1091 }
   1092 
   1093 void
   1094 cpu_offline_md(void)
   1095 {
   1096         int s;
   1097 
   1098         s = splhigh();
   1099 #ifdef __i386__
   1100         npxsave_cpu(true);
   1101 #else
   1102         fpusave_cpu(true);
   1103 #endif
   1104         splx(s);
   1105 }
   1106 
   1107 #if 0
   1108 /* XXX joerg restructure and restart CPUs individually */
   1109 static bool
   1110 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1111 {
   1112 	struct cpu_softc *sc = device_private(dv);
   1113 	struct cpu_info *ci = sc->sc_info;
   1114 	int err;
   1115 
   1116 	if (ci->ci_flags & CPUF_PRIMARY)
   1117 		return true;
   1118 	if (ci->ci_data.cpu_idlelwp == NULL)
   1119 		return true;
   1120 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1121 		return true;
   1122 
   1123 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1124 
   1125 	if (sc->sc_wasonline) {
   1126 		mutex_enter(&cpu_lock);
   1127 		err = cpu_setstate(ci, false);
   1128 		mutex_exit(&cpu_lock);
   1129 
   1130 		if (err)
   1131 			return false;
   1132 	}
   1133 
   1134 	return true;
   1135 }
   1136 
   1137 static bool
   1138 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1139 {
   1140 	struct cpu_softc *sc = device_private(dv);
   1141 	struct cpu_info *ci = sc->sc_info;
   1142 	int err = 0;
   1143 
   1144 	if (ci->ci_flags & CPUF_PRIMARY)
   1145 		return true;
   1146 	if (ci->ci_data.cpu_idlelwp == NULL)
   1147 		return true;
   1148 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1149 		return true;
   1150 
   1151 	if (sc->sc_wasonline) {
   1152 		mutex_enter(&cpu_lock);
   1153 		err = cpu_setstate(ci, true);
   1154 		mutex_exit(&cpu_lock);
   1155 	}
   1156 
   1157 	return err == 0;
   1158 }
   1159 #endif
   1160 
   1161 void
   1162 cpu_get_tsc_freq(struct cpu_info *ci)
   1163 {
   1164 	uint32_t vcpu_tversion;
   1165 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1166 
   1167 	vcpu_tversion = tinfo->version;
   1168 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1169 
   1170 	uint64_t freq = 1000000000ULL << 32;
   1171 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1172 	if ( tinfo->tsc_shift < 0 )
   1173 		freq = freq << -tinfo->tsc_shift;
   1174 	else
   1175 		freq = freq >> tinfo->tsc_shift;
   1176 	ci->ci_data.cpu_cc_freq = freq;
   1177 }
   1178 
   1179 void
   1180 x86_cpu_idle_xen(void)
   1181 {
   1182 	struct cpu_info *ci = curcpu();
   1183 
   1184 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1185 
   1186 	x86_disable_intr();
   1187 	if (!__predict_false(ci->ci_want_resched)) {
   1188 		idle_block();
   1189 	} else {
   1190 		x86_enable_intr();
   1191 	}
   1192 }
   1193 
   1194 /*
   1195  * Loads pmap for the current CPU.
   1196  */
   1197 void
   1198 cpu_load_pmap(struct pmap *pmap)
   1199 {
   1200 #ifdef i386
   1201 #ifdef PAE
   1202 	int i, s;
   1203 	struct cpu_info *ci;
   1204 
   1205 	s = splvm(); /* just to be safe */
   1206 	xpq_queue_lock();
   1207 	ci = curcpu();
   1208 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1209 	/* don't update the kernel L3 slot */
   1210 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1211 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1212 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1213 	}
   1214 	xpq_queue_unlock();
   1215 	splx(s);
   1216 	tlbflush();
   1217 #else /* PAE */
   1218 	lcr3(pmap_pdirpa(pmap, 0));
   1219 #endif /* PAE */
   1220 #endif /* i386 */
   1221 
   1222 #ifdef __x86_64__
   1223 	int i, s;
   1224 	pd_entry_t *new_pgd;
   1225 	struct cpu_info *ci;
   1226 	paddr_t l3_shadow_pa;
   1227 
   1228 	ci = curcpu();
   1229 	l3_shadow_pa = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1230 
   1231 	/*
   1232 	 * Map user space address in kernel space and load
   1233 	 * user cr3
   1234 	 */
   1235 	s = splvm();
   1236 	new_pgd = pmap->pm_pdir;
   1237 
   1238 	xpq_queue_lock();
   1239 	/* Copy source pmap L4 PDEs (in user addr. range) to shadow */
   1240 	for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1241 		xpq_queue_pte_update(l3_shadow_pa + i * sizeof(pd_entry_t), new_pgd[i]);
   1242 	}
   1243 
   1244 	/* Copy kernel mappings */
   1245 	new_pgd = pmap_kernel()->pm_pdir;
   1246 	for (i = PDIR_SLOT_KERN; i < nkptp[PTP_LEVELS - 1]; i++) {
   1247 		xpq_queue_pte_update(l3_shadow_pa + i * sizeof(pd_entry_t), new_pgd[i]);
   1248 	}
   1249 
   1250 	xpq_queue_unlock();
   1251 	tlbflush();
   1252 	xpq_queue_lock();
   1253 	if (__predict_true(pmap != pmap_kernel())) {
   1254 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1255 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1256 	}
   1257 	else {
   1258 		xpq_queue_pt_switch(l3_shadow_pa);
   1259 		ci->ci_xen_current_user_pgd = 0;
   1260 	}
   1261 	xpq_queue_unlock();
   1262 	splx(s);
   1263 
   1264 #endif /* __x86_64__ */
   1265 }
   1266