Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.60
      1 /*	$NetBSD: cpu.c,v 1.60 2011/07/16 14:46:18 rmind Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.60 2011/07/16 14:46:18 rmind Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include <machine/cpufunc.h>
     92 #include <machine/cpuvar.h>
     93 #include <machine/pmap.h>
     94 #include <machine/vmparam.h>
     95 #include <machine/mpbiosvar.h>
     96 #include <machine/pcb.h>
     97 #include <machine/specialreg.h>
     98 #include <machine/segments.h>
     99 #include <machine/gdt.h>
    100 #include <machine/mtrr.h>
    101 #include <machine/pio.h>
    102 
    103 #include <xen/vcpuvar.h>
    104 
    105 #if NLAPIC > 0
    106 #include <machine/apicvar.h>
    107 #include <machine/i82489reg.h>
    108 #include <machine/i82489var.h>
    109 #endif
    110 
    111 #include <dev/ic/mc146818reg.h>
    112 #include <dev/isa/isareg.h>
    113 
    114 #if MAXCPUS > 32
    115 #error cpu_info contains 32bit bitmasks
    116 #endif
    117 
    118 static int	cpu_match(device_t, cfdata_t, void *);
    119 static void	cpu_attach(device_t, device_t, void *);
    120 static void	cpu_defer(device_t);
    121 static int	cpu_rescan(device_t, const char *, const int *);
    122 static void	cpu_childdetached(device_t, device_t);
    123 static int	vcpu_match(device_t, cfdata_t, void *);
    124 static void	vcpu_attach(device_t, device_t, void *);
    125 static void	cpu_attach_common(device_t, device_t, void *);
    126 void		cpu_offline_md(void);
    127 
    128 struct cpu_softc {
    129 	device_t sc_dev;		/* device tree glue */
    130 	struct cpu_info *sc_info;	/* pointer to CPU info */
    131 	bool sc_wasonline;
    132 };
    133 
    134 int mp_cpu_start(struct cpu_info *, paddr_t);
    135 void mp_cpu_start_cleanup(struct cpu_info *);
    136 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    137 				      mp_cpu_start_cleanup };
    138 
    139 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    140     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    141 
    142 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    143     vcpu_match, vcpu_attach, NULL, NULL);
    144 
    145 /*
    146  * Statically-allocated CPU info for the primary CPU (or the only
    147  * CPU, on uniprocessors).  The CPU info list is initialized to
    148  * point at it.
    149  */
    150 #ifdef TRAPLOG
    151 #include <machine/tlog.h>
    152 struct tlog tlog_primary;
    153 #endif
    154 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    155 	.ci_dev = 0,
    156 	.ci_self = &cpu_info_primary,
    157 	.ci_idepth = -1,
    158 	.ci_curlwp = &lwp0,
    159 	.ci_curldt = -1,
    160 	.ci_cpumask = 1,
    161 #ifdef TRAPLOG
    162 	.ci_tlog = &tlog_primary,
    163 #endif
    164 
    165 };
    166 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    167 	.ci_dev = 0,
    168 	.ci_self = &phycpu_info_primary,
    169 };
    170 
    171 struct cpu_info *cpu_info_list = &cpu_info_primary;
    172 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    173 
    174 static void	cpu_set_tss_gates(struct cpu_info *ci);
    175 
    176 uint32_t cpus_attached = 1;
    177 uint32_t cpus_running = 1;
    178 
    179 uint32_t phycpus_attached = 0;
    180 uint32_t phycpus_running = 0;
    181 
    182 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    183 			  *	[0] basic features %edx
    184 			  *	[1] basic features %ecx
    185 			  *	[2] extended features %edx
    186 			  *	[3] extended features %ecx
    187 			  *	[4] VIA padlock features
    188 			  */
    189 
    190 bool x86_mp_online;
    191 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    192 
    193 #if defined(MULTIPROCESSOR)
    194 void    	cpu_hatch(void *);
    195 static void    	cpu_boot_secondary(struct cpu_info *ci);
    196 static void    	cpu_start_secondary(struct cpu_info *ci);
    197 static void	cpu_copy_trampoline(void);
    198 
    199 /*
    200  * Runs once per boot once multiprocessor goo has been detected and
    201  * the local APIC on the boot processor has been mapped.
    202  *
    203  * Called from lapic_boot_init() (from mpbios_scan()).
    204  */
    205 void
    206 cpu_init_first(void)
    207 {
    208 
    209 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    210 	cpu_copy_trampoline();
    211 }
    212 #endif	/* MULTIPROCESSOR */
    213 
    214 static int
    215 cpu_match(device_t parent, cfdata_t match, void *aux)
    216 {
    217 
    218 	return 1;
    219 }
    220 
    221 static void
    222 cpu_attach(device_t parent, device_t self, void *aux)
    223 {
    224 	struct cpu_softc *sc = device_private(self);
    225 	struct cpu_attach_args *caa = aux;
    226 	struct cpu_info *ci;
    227 	uintptr_t ptr;
    228 	static int nphycpu = 0;
    229 
    230 	sc->sc_dev = self;
    231 
    232 	if (phycpus_attached == ~0) {
    233 		aprint_error(": increase MAXCPUS\n");
    234 		return;
    235 	}
    236 
    237 	/*
    238 	 * If we're an Application Processor, allocate a cpu_info
    239 	 * If we're the first attached CPU use the primary cpu_info,
    240 	 * otherwise allocate a new one
    241 	 */
    242 	aprint_naive("\n");
    243 	aprint_normal("\n");
    244 	if (nphycpu > 0) {
    245 		struct cpu_info *tmp;
    246 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    247 		    KM_SLEEP);
    248 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    249 		ci->ci_curldt = -1;
    250 
    251 		tmp = phycpu_info_list;
    252 		while (tmp->ci_next)
    253 			tmp = tmp->ci_next;
    254 
    255 		tmp->ci_next = ci;
    256 	} else {
    257 		ci = &phycpu_info_primary;
    258 	}
    259 
    260 	ci->ci_self = ci;
    261 	sc->sc_info = ci;
    262 
    263 	ci->ci_dev = self;
    264 	ci->ci_acpiid = caa->cpu_id;
    265 	ci->ci_cpuid = caa->cpu_number;
    266 	ci->ci_vcpu = NULL;
    267 	ci->ci_index = nphycpu++;
    268 	ci->ci_cpumask = (1 << cpu_index(ci));
    269 
    270 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    271 
    272 	if (!pmf_device_register(self, NULL, NULL))
    273 		aprint_error_dev(self, "couldn't establish power handler\n");
    274 
    275 	(void)config_defer(self, cpu_defer);
    276 }
    277 
    278 static void
    279 cpu_defer(device_t self)
    280 {
    281 	cpu_rescan(self, NULL, NULL);
    282 }
    283 
    284 static int
    285 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    286 {
    287 	struct cpu_softc *sc = device_private(self);
    288 	struct cpufeature_attach_args cfaa;
    289 	struct cpu_info *ci = sc->sc_info;
    290 
    291 	memset(&cfaa, 0, sizeof(cfaa));
    292 	cfaa.ci = ci;
    293 
    294 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    295 
    296 		if (ci->ci_frequency == NULL) {
    297 			cfaa.name = "frequency";
    298 			ci->ci_frequency = config_found_ia(self,
    299 			    "cpufeaturebus", &cfaa, NULL);
    300 		}
    301 	}
    302 
    303 	return 0;
    304 }
    305 
    306 static void
    307 cpu_childdetached(device_t self, device_t child)
    308 {
    309 	struct cpu_softc *sc = device_private(self);
    310 	struct cpu_info *ci = sc->sc_info;
    311 
    312 	if (ci->ci_frequency == child)
    313 		ci->ci_frequency = NULL;
    314 }
    315 
    316 static int
    317 vcpu_match(device_t parent, cfdata_t match, void *aux)
    318 {
    319 	struct vcpu_attach_args *vcaa = aux;
    320 
    321 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
    322 		return 1;
    323 	return 0;
    324 }
    325 
    326 static void
    327 vcpu_attach(device_t parent, device_t self, void *aux)
    328 {
    329 	struct vcpu_attach_args *vcaa = aux;
    330 
    331 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    332 }
    333 
    334 static void
    335 cpu_vm_init(struct cpu_info *ci)
    336 {
    337 	int ncolors = 2, i;
    338 
    339 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    340 		struct x86_cache_info *cai;
    341 		int tcolors;
    342 
    343 		cai = &ci->ci_cinfo[i];
    344 
    345 		tcolors = atop(cai->cai_totalsize);
    346 		switch(cai->cai_associativity) {
    347 		case 0xff:
    348 			tcolors = 1; /* fully associative */
    349 			break;
    350 		case 0:
    351 		case 1:
    352 			break;
    353 		default:
    354 			tcolors /= cai->cai_associativity;
    355 		}
    356 		ncolors = max(ncolors, tcolors);
    357 	}
    358 
    359 	/*
    360 	 * Knowing the size of the largest cache on this CPU, re-color
    361 	 * our pages.
    362 	 */
    363 	if (ncolors <= uvmexp.ncolors)
    364 		return;
    365 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    366 	uvm_page_recolor(ncolors);
    367 }
    368 
    369 static void
    370 cpu_attach_common(device_t parent, device_t self, void *aux)
    371 {
    372 	struct cpu_softc *sc = device_private(self);
    373 	struct cpu_attach_args *caa = aux;
    374 	struct cpu_info *ci;
    375 	uintptr_t ptr;
    376 	int cpunum = caa->cpu_number;
    377 	static bool again = false;
    378 
    379 	sc->sc_dev = self;
    380 
    381 	/*
    382 	 * If we're an Application Processor, allocate a cpu_info
    383 	 * structure, otherwise use the primary's.
    384 	 */
    385 	if (caa->cpu_role == CPU_ROLE_AP) {
    386 		aprint_naive(": Application Processor\n");
    387 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    388 		    KM_SLEEP);
    389 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    390 		memset(ci, 0, sizeof(*ci));
    391 #ifdef TRAPLOG
    392 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    393 #endif
    394 	} else {
    395 		aprint_naive(": %s Processor\n",
    396 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    397 		ci = &cpu_info_primary;
    398 #if NLAPIC > 0
    399 		if (cpunum != lapic_cpu_number()) {
    400 			/* XXX should be done earlier */
    401 			uint32_t reg;
    402 			aprint_verbose("\n");
    403 			aprint_verbose_dev(self, "running CPU at apic %d"
    404 			    " instead of at expected %d", lapic_cpu_number(),
    405 			    cpunum);
    406 			reg = i82489_readreg(LAPIC_ID);
    407 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    408 			    (cpunum << LAPIC_ID_SHIFT));
    409 		}
    410 		if (cpunum != lapic_cpu_number()) {
    411 			aprint_error_dev(self, "unable to reset apic id\n");
    412 		}
    413 #endif
    414 	}
    415 
    416 	ci->ci_self = ci;
    417 	sc->sc_info = ci;
    418 	ci->ci_dev = self;
    419 	ci->ci_cpuid = cpunum;
    420 
    421 	KASSERT(HYPERVISOR_shared_info != NULL);
    422 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    423 
    424 	ci->ci_func = caa->cpu_func;
    425 
    426 	/* Must be called before mi_cpu_attach(). */
    427 	cpu_vm_init(ci);
    428 
    429 	if (caa->cpu_role == CPU_ROLE_AP) {
    430 		int error;
    431 
    432 		error = mi_cpu_attach(ci);
    433 		if (error != 0) {
    434 			aprint_normal("\n");
    435 			aprint_error_dev(self,
    436 			    "mi_cpu_attach failed with %d\n", error);
    437 			return;
    438 		}
    439 	} else {
    440 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    441 	}
    442 
    443 	ci->ci_cpumask = (1 << cpu_index(ci));
    444 	pmap_reference(pmap_kernel());
    445 	ci->ci_pmap = pmap_kernel();
    446 	ci->ci_tlbstate = TLBSTATE_STALE;
    447 
    448 	/*
    449 	 * Boot processor may not be attached first, but the below
    450 	 * must be done to allow booting other processors.
    451 	 */
    452 	if (!again) {
    453 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    454 		/* Basic init. */
    455 		cpu_intr_init(ci);
    456 		cpu_get_tsc_freq(ci);
    457 		cpu_init(ci);
    458 		cpu_set_tss_gates(ci);
    459 #if NLAPIC > 0
    460 		if (caa->cpu_role != CPU_ROLE_SP) {
    461 			/* Enable lapic. */
    462 			lapic_enable();
    463 			lapic_set_lvt();
    464 			lapic_calibrate_timer();
    465 		}
    466 #endif
    467 		/* Make sure DELAY() is initialized. */
    468 		DELAY(1);
    469 		again = true;
    470 	}
    471 
    472 	/* further PCB init done later. */
    473 
    474 	switch (caa->cpu_role) {
    475 	case CPU_ROLE_SP:
    476 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    477 		cpu_identify(ci);
    478 #if 0
    479 		x86_errata();
    480 #endif
    481 		x86_cpu_idle_init();
    482 		break;
    483 
    484 	case CPU_ROLE_BP:
    485 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    486 		cpu_identify(ci);
    487 		cpu_init(ci);
    488 #if 0
    489 		x86_errata();
    490 #endif
    491 		x86_cpu_idle_init();
    492 		break;
    493 
    494 	case CPU_ROLE_AP:
    495 		/*
    496 		 * report on an AP
    497 		 */
    498 
    499 #if defined(MULTIPROCESSOR)
    500 		cpu_intr_init(ci);
    501 		gdt_alloc_cpu(ci);
    502 		cpu_set_tss_gates(ci);
    503 		cpu_start_secondary(ci);
    504 		if (ci->ci_flags & CPUF_PRESENT) {
    505 			struct cpu_info *tmp;
    506 
    507 			identifycpu(ci);
    508 			tmp = cpu_info_list;
    509 			while (tmp->ci_next)
    510 				tmp = tmp->ci_next;
    511 
    512 			tmp->ci_next = ci;
    513 		}
    514 #else
    515 		aprint_error_dev(self, "not started\n");
    516 #endif
    517 		break;
    518 
    519 	default:
    520 		aprint_normal("\n");
    521 		panic("unknown processor type??\n");
    522 	}
    523 
    524 	pat_init(ci);
    525 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    526 
    527 #if 0
    528 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    529 		aprint_error_dev(self, "couldn't establish power handler\n");
    530 #endif
    531 
    532 #if defined(MULTIPROCESSOR)
    533 	if (mp_verbose) {
    534 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    535 		struct pcb *pcb = lwp_getpcb(l);
    536 
    537 		aprint_verbose_dev(self,
    538 		    "idle lwp at %p, idle sp at 0x%p\n",
    539 		    l,
    540 #ifdef i386
    541 		    (void *)pcb->pcb_esp
    542 #else
    543 		    (void *)pcb->pcb_rsp
    544 #endif
    545 		);
    546 
    547 	}
    548 #endif
    549 }
    550 
    551 /*
    552  * Initialize the processor appropriately.
    553  */
    554 
    555 void
    556 cpu_init(struct cpu_info *ci)
    557 {
    558 
    559 	/*
    560 	 * On a P6 or above, enable global TLB caching if the
    561 	 * hardware supports it.
    562 	 */
    563 	if (cpu_feature[0] & CPUID_PGE)
    564 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    565 
    566 #ifdef XXXMTRR
    567 	/*
    568 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    569 	 */
    570 	if (cpu_feature[0] & CPUID_MTRR) {
    571 		if ((ci->ci_flags & CPUF_AP) == 0)
    572 			i686_mtrr_init_first();
    573 		mtrr_init_cpu(ci);
    574 	}
    575 #endif
    576 	/*
    577 	 * If we have FXSAVE/FXRESTOR, use them.
    578 	 */
    579 	if (cpu_feature[0] & CPUID_FXSR) {
    580 		lcr4(rcr4() | CR4_OSFXSR);
    581 
    582 		/*
    583 		 * If we have SSE/SSE2, enable XMM exceptions.
    584 		 */
    585 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    586 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    587 	}
    588 
    589 #ifdef __x86_64__
    590 	/* No user PGD mapped for this CPU yet */
    591 	ci->ci_xen_current_user_pgd = 0;
    592 #endif
    593 
    594 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    595 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    596 }
    597 
    598 
    599 #ifdef MULTIPROCESSOR
    600 void
    601 cpu_boot_secondary_processors(void)
    602 {
    603 	struct cpu_info *ci;
    604 	u_long i;
    605 
    606 	for (i = 0; i < maxcpus; i++) {
    607 		ci = cpu_lookup(i);
    608 		if (ci == NULL)
    609 			continue;
    610 		if (ci->ci_data.cpu_idlelwp == NULL)
    611 			continue;
    612 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    613 			continue;
    614 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    615 			continue;
    616 		cpu_boot_secondary(ci);
    617 	}
    618 
    619 	x86_mp_online = true;
    620 }
    621 
    622 static void
    623 cpu_init_idle_lwp(struct cpu_info *ci)
    624 {
    625 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    626 	struct pcb *pcb = lwp_getpcb(l);
    627 
    628 	pcb->pcb_cr0 = rcr0();
    629 }
    630 
    631 void
    632 cpu_init_idle_lwps(void)
    633 {
    634 	struct cpu_info *ci;
    635 	u_long i;
    636 
    637 	for (i = 0; i < maxcpus; i++) {
    638 		ci = cpu_lookup(i);
    639 		if (ci == NULL)
    640 			continue;
    641 		if (ci->ci_data.cpu_idlelwp == NULL)
    642 			continue;
    643 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    644 			continue;
    645 		cpu_init_idle_lwp(ci);
    646 	}
    647 }
    648 
    649 void
    650 cpu_start_secondary(struct cpu_info *ci)
    651 {
    652 	int i;
    653 	struct pmap *kpm = pmap_kernel();
    654 	extern uint32_t mp_pdirpa;
    655 
    656 	mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
    657 
    658 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    659 
    660 	aprint_debug_dev(ci->ci_dev, "starting\n");
    661 
    662 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    663 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
    664 		return;
    665 
    666 	/*
    667 	 * wait for it to become ready
    668 	 */
    669 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    670 #ifdef MPDEBUG
    671 		extern int cpu_trace[3];
    672 		static int otrace[3];
    673 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    674 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    675 				cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    676 			memcpy(otrace, cpu_trace, sizeof(otrace));
    677 		}
    678 #endif
    679 		delay(10);
    680 	}
    681 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    682 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    683 #if defined(MPDEBUG) && defined(DDB)
    684 		printf("dropping into debugger; continue from here to resume boot\n");
    685 		Debugger();
    686 #endif
    687 	}
    688 
    689 	CPU_START_CLEANUP(ci);
    690 }
    691 
    692 void
    693 cpu_boot_secondary(struct cpu_info *ci)
    694 {
    695 	int i;
    696 
    697 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    698 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    699 		delay(10);
    700 	}
    701 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    702 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    703 #if defined(MPDEBUG) && defined(DDB)
    704 		printf("dropping into debugger; continue from here to resume boot\n");
    705 		Debugger();
    706 #endif
    707 	}
    708 }
    709 
    710 /*
    711  * The CPU ends up here when its ready to run
    712  * This is called from code in mptramp.s; at this point, we are running
    713  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    714  * this processor will enter the idle loop and start looking for work.
    715  *
    716  * XXX should share some of this with init386 in machdep.c
    717  */
    718 void
    719 cpu_hatch(void *v)
    720 {
    721 	struct cpu_info *ci = (struct cpu_info *)v;
    722 	struct pcb *pcb;
    723 	int s, i;
    724 
    725 	cpu_probe(ci);
    726 
    727 	cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
    728 	cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
    729 
    730         cpu_init_msrs(ci, true);
    731 
    732 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    733 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    734 	while ((ci->ci_flags & CPUF_GO) == 0) {
    735 		/* Don't use delay, boot CPU may be patching the text. */
    736 		for (i = 10000; i != 0; i--)
    737 			x86_pause();
    738 	}
    739 
    740 	/* Because the text may have been patched in x86_patch(). */
    741 	wbinvd();
    742 	x86_flush();
    743 	tlbflushg();
    744 
    745 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    746 
    747 	pcb = lwp_getpcb(curlwp);
    748 	lcr3(pmap_kernel()->pm_pdirpa);
    749 	pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
    750 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    751 	lcr0(pcb->pcb_cr0);
    752 
    753 	cpu_init_idt();
    754 	gdt_init_cpu(ci);
    755 	lapic_enable();
    756 	lapic_set_lvt();
    757 	lapic_initclocks();
    758 
    759 #ifdef i386
    760 	npxinit(ci);
    761 #else
    762 	fpuinit(ci);
    763 #endif
    764 
    765 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    766 	ltr(ci->ci_tss_sel);
    767 
    768 	cpu_init(ci);
    769 	cpu_get_tsc_freq(ci);
    770 
    771 	s = splhigh();
    772 #ifdef i386
    773 	lapic_tpr = 0;
    774 #else
    775 	lcr8(0);
    776 #endif
    777 	x86_enable_intr();
    778 	splx(s);
    779 #if 0
    780 	x86_errata();
    781 #endif
    782 
    783 	aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
    784 		(long)ci->ci_cpuid);
    785 }
    786 
    787 #if defined(DDB)
    788 
    789 #include <ddb/db_output.h>
    790 #include <machine/db_machdep.h>
    791 
    792 /*
    793  * Dump CPU information from ddb.
    794  */
    795 void
    796 cpu_debug_dump(void)
    797 {
    798 	struct cpu_info *ci;
    799 	CPU_INFO_ITERATOR cii;
    800 
    801 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    802 	for (CPU_INFO_FOREACH(cii, ci)) {
    803 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    804 		    ci,
    805 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    806 		    (long)ci->ci_cpuid,
    807 		    ci->ci_flags, ci->ci_ipis,
    808 		    ci->ci_curlwp,
    809 		    ci->ci_fpcurlwp);
    810 	}
    811 }
    812 #endif /* DDB */
    813 
    814 static void
    815 cpu_copy_trampoline(void)
    816 {
    817 	/*
    818 	 * Copy boot code.
    819 	 */
    820 	extern u_char cpu_spinup_trampoline[];
    821 	extern u_char cpu_spinup_trampoline_end[];
    822 
    823 	vaddr_t mp_trampoline_vaddr;
    824 
    825 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    826 		UVM_KMF_VAONLY);
    827 
    828 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    829 		VM_PROT_READ | VM_PROT_WRITE, 0);
    830 	pmap_update(pmap_kernel());
    831 	memcpy((void *)mp_trampoline_vaddr,
    832 		cpu_spinup_trampoline,
    833 		cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    834 
    835 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    836 	pmap_update(pmap_kernel());
    837 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    838 }
    839 
    840 #endif /* MULTIPROCESSOR */
    841 
    842 #ifdef i386
    843 #if 0
    844 static void
    845 tss_init(struct i386tss *tss, void *stack, void *func)
    846 {
    847 	memset(tss, 0, sizeof *tss);
    848 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    849 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    850 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    851 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    852 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    853 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    854 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    855 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    856 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    857 	tss->__tss_eflags = PSL_MBO | PSL_NT;   /* XXX not needed? */
    858 	tss->__tss_eip = (int)func;
    859 }
    860 #endif
    861 
    862 /* XXX */
    863 #define IDTVEC(name)	__CONCAT(X, name)
    864 typedef void (vector)(void);
    865 extern vector IDTVEC(tss_trap08);
    866 #ifdef DDB
    867 extern vector Xintrddbipi;
    868 extern int ddb_vec;
    869 #endif
    870 
    871 static void
    872 cpu_set_tss_gates(struct cpu_info *ci)
    873 {
    874 #if 0
    875 	struct segment_descriptor sd;
    876 
    877 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    878 	    UVM_KMF_WIRED);
    879 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    880 	    IDTVEC(tss_trap08));
    881 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    882 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    883 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    884 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    885 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    886 #endif
    887 
    888 #if defined(DDB) && defined(MULTIPROCESSOR)
    889 	/*
    890 	 * Set up separate handler for the DDB IPI, so that it doesn't
    891 	 * stomp on a possibly corrupted stack.
    892 	 *
    893 	 * XXX overwriting the gate set in db_machine_init.
    894 	 * Should rearrange the code so that it's set only once.
    895 	 */
    896 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    897 	    UVM_KMF_WIRED);
    898 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
    899 	    Xintrddbipi);
    900 
    901 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    902 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    903 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    904 
    905 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    906 	    GSEL(GIPITSS_SEL, SEL_KPL));
    907 #endif
    908 }
    909 #else
    910 static void
    911 cpu_set_tss_gates(struct cpu_info *ci)
    912 {
    913 
    914 }
    915 #endif	/* i386 */
    916 
    917 int
    918 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    919 {
    920 #if 0
    921 #if NLAPIC > 0
    922 	int error;
    923 #endif
    924 	unsigned short dwordptr[2];
    925 
    926 	/*
    927 	 * Bootstrap code must be addressable in real mode
    928 	 * and it must be page aligned.
    929 	 */
    930 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    931 
    932 	/*
    933 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    934 	 */
    935 
    936 	outb(IO_RTC, NVRAM_RESET);
    937 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    938 
    939 	/*
    940 	 * "and the warm reset vector (DWORD based at 40:67) to point
    941 	 * to the AP startup code ..."
    942 	 */
    943 
    944 	dwordptr[0] = 0;
    945 	dwordptr[1] = target >> 4;
    946 
    947 	pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    948 	pmap_update(pmap_kernel());
    949 
    950 	memcpy ((uint8_t *) 0x467, dwordptr, 4);
    951 
    952 	pmap_kremove (0, PAGE_SIZE);
    953 	pmap_update(pmap_kernel());
    954 
    955 #if NLAPIC > 0
    956 	/*
    957 	 * ... prior to executing the following sequence:"
    958 	 */
    959 
    960 	if (ci->ci_flags & CPUF_AP) {
    961 		if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
    962 			return error;
    963 
    964 		delay(10000);
    965 
    966 		if (cpu_feature & CPUID_APIC) {
    967 			error = x86_ipi_init(ci->ci_cpuid);
    968 			if (error != 0) {
    969 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    970 						__func__);
    971 				return error;
    972 			}
    973 
    974 			delay(10000);
    975 
    976 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    977 					LAPIC_DLMODE_STARTUP);
    978 			if (error != 0) {
    979 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    980 						__func__);
    981 				return error;
    982 			}
    983 			delay(200);
    984 
    985 			error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
    986 					LAPIC_DLMODE_STARTUP);
    987 			if (error != 0) {
    988 				aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
    989 						__func__);
    990 				return error;
    991 			}
    992 			delay(200);
    993 		}
    994 	}
    995 #endif
    996 #endif /* 0 */
    997 	return 0;
    998 }
    999 
   1000 void
   1001 mp_cpu_start_cleanup(struct cpu_info *ci)
   1002 {
   1003 #if 0
   1004 	/*
   1005 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1006 	 */
   1007 
   1008 	outb(IO_RTC, NVRAM_RESET);
   1009 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1010 #endif
   1011 }
   1012 
   1013 void
   1014 cpu_init_msrs(struct cpu_info *ci, bool full)
   1015 {
   1016 #ifdef __x86_64__
   1017 	if (full) {
   1018 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1019 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1020 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1021 	}
   1022 #endif	/* __x86_64__ */
   1023 
   1024 	if (cpu_feature[2] & CPUID_NOX)
   1025 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1026 }
   1027 
   1028 void
   1029 cpu_offline_md(void)
   1030 {
   1031         int s;
   1032 
   1033         s = splhigh();
   1034 #ifdef __i386__
   1035         npxsave_cpu(true);
   1036 #else
   1037         fpusave_cpu(true);
   1038 #endif
   1039         splx(s);
   1040 }
   1041 
   1042 #if 0
   1043 /* XXX joerg restructure and restart CPUs individually */
   1044 static bool
   1045 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1046 {
   1047 	struct cpu_softc *sc = device_private(dv);
   1048 	struct cpu_info *ci = sc->sc_info;
   1049 	int err;
   1050 
   1051 	if (ci->ci_flags & CPUF_PRIMARY)
   1052 		return true;
   1053 	if (ci->ci_data.cpu_idlelwp == NULL)
   1054 		return true;
   1055 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1056 		return true;
   1057 
   1058 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1059 
   1060 	if (sc->sc_wasonline) {
   1061 		mutex_enter(&cpu_lock);
   1062 		err = cpu_setstate(ci, false);
   1063 		mutex_exit(&cpu_lock);
   1064 
   1065 		if (err)
   1066 			return false;
   1067 	}
   1068 
   1069 	return true;
   1070 }
   1071 
   1072 static bool
   1073 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1074 {
   1075 	struct cpu_softc *sc = device_private(dv);
   1076 	struct cpu_info *ci = sc->sc_info;
   1077 	int err = 0;
   1078 
   1079 	if (ci->ci_flags & CPUF_PRIMARY)
   1080 		return true;
   1081 	if (ci->ci_data.cpu_idlelwp == NULL)
   1082 		return true;
   1083 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1084 		return true;
   1085 
   1086 	if (sc->sc_wasonline) {
   1087 		mutex_enter(&cpu_lock);
   1088 		err = cpu_setstate(ci, true);
   1089 		mutex_exit(&cpu_lock);
   1090 	}
   1091 
   1092 	return err == 0;
   1093 }
   1094 #endif
   1095 
   1096 void
   1097 cpu_get_tsc_freq(struct cpu_info *ci)
   1098 {
   1099 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1100 	delay(1000000);
   1101 	uint64_t freq = 1000000000ULL << 32;
   1102 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1103 	if ( tinfo->tsc_shift < 0 )
   1104 		freq = freq << -tinfo->tsc_shift;
   1105 	else
   1106 		freq = freq >> tinfo->tsc_shift;
   1107 	ci->ci_data.cpu_cc_freq = freq;
   1108 }
   1109 
   1110 void
   1111 x86_cpu_idle_xen(void)
   1112 {
   1113 	struct cpu_info *ci = curcpu();
   1114 
   1115 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1116 
   1117 	x86_disable_intr();
   1118 	if (!__predict_false(ci->ci_want_resched)) {
   1119 		idle_block();
   1120 	} else {
   1121 		x86_enable_intr();
   1122 	}
   1123 }
   1124 
   1125 /*
   1126  * Loads pmap for the current CPU.
   1127  */
   1128 void
   1129 cpu_load_pmap(struct pmap *pmap)
   1130 {
   1131 #ifdef i386
   1132 #ifdef PAE
   1133 	int i, s;
   1134 	struct cpu_info *ci;
   1135 
   1136 	s = splvm(); /* just to be safe */
   1137 	ci = curcpu();
   1138 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1139 	/* don't update the kernel L3 slot */
   1140 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1141 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1142 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1143 	}
   1144 	splx(s);
   1145 	tlbflush();
   1146 #else /* PAE */
   1147 	lcr3(pmap_pdirpa(pmap, 0));
   1148 #endif /* PAE */
   1149 #endif /* i386 */
   1150 
   1151 #ifdef __x86_64__
   1152 	int i, s;
   1153 	pd_entry_t *old_pgd, *new_pgd;
   1154 	paddr_t addr;
   1155 	struct cpu_info *ci;
   1156 
   1157 	/* kernel pmap always in cr3 and should never go in user cr3 */
   1158 	if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
   1159 		ci = curcpu();
   1160 		/*
   1161 		 * Map user space address in kernel space and load
   1162 		 * user cr3
   1163 		 */
   1164 		s = splvm();
   1165 		new_pgd = pmap->pm_pdir;
   1166 		old_pgd = pmap_kernel()->pm_pdir;
   1167 		addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
   1168 		for (i = 0; i < PDIR_SLOT_PTE;
   1169 		    i++, addr += sizeof(pd_entry_t)) {
   1170 			if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
   1171 				xpq_queue_pte_update(addr, new_pgd[i]);
   1172 		}
   1173 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1174 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1175 		tlbflush();
   1176 		splx(s);
   1177 	}
   1178 #endif /* __x86_64__ */
   1179 }
   1180