x86_xpmap.c revision 1.26.2.8 1 /* $NetBSD: x86_xpmap.c,v 1.26.2.8 2011/08/30 12:53:46 cherry Exp $ */
2
3 /*
4 * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 /*
20 * Copyright (c) 2006, 2007 Manuel Bouyer.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
32 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
34 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 */
43
44 /*
45 *
46 * Copyright (c) 2004 Christian Limpach.
47 * All rights reserved.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
59 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
60 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
61 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
62 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
63 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
64 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
65 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
66 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
67 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68 */
69
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.26.2.8 2011/08/30 12:53:46 cherry Exp $");
73
74 #include "opt_xen.h"
75 #include "opt_ddb.h"
76 #include "ksyms.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/simplelock.h>
81
82 #include <uvm/uvm.h>
83
84 #include <machine/pmap.h>
85 #include <machine/gdt.h>
86 #include <xen/xenfunc.h>
87
88 #include <dev/isa/isareg.h>
89 #include <machine/isa_machdep.h>
90
91 #undef XENDEBUG
92 /* #define XENDEBUG_SYNC */
93 /* #define XENDEBUG_LOW */
94
95 #ifdef XENDEBUG
96 #define XENPRINTF(x) printf x
97 #define XENPRINTK(x) printk x
98 #define XENPRINTK2(x) /* printk x */
99
100 static char XBUF[256];
101 #else
102 #define XENPRINTF(x)
103 #define XENPRINTK(x)
104 #define XENPRINTK2(x)
105 #endif
106 #define PRINTF(x) printf x
107 #define PRINTK(x) printk x
108
109 /* on x86_64 kernel runs in ring 3 */
110 #ifdef __x86_64__
111 #define PG_k PG_u
112 #else
113 #define PG_k 0
114 #endif
115
116 volatile shared_info_t *HYPERVISOR_shared_info;
117 /* Xen requires the start_info struct to be page aligned */
118 union start_info_union start_info_union __aligned(PAGE_SIZE);
119 unsigned long *xpmap_phys_to_machine_mapping;
120
121 void xen_failsafe_handler(void);
122
123 #define HYPERVISOR_mmu_update_self(req, count, success_count) \
124 HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
125
126 void
127 xen_failsafe_handler(void)
128 {
129
130 panic("xen_failsafe_handler called!\n");
131 }
132
133
134 void
135 xen_set_ldt(vaddr_t base, uint32_t entries)
136 {
137 vaddr_t va;
138 vaddr_t end;
139 pt_entry_t *ptp;
140 int s;
141
142 #ifdef __x86_64__
143 end = base + (entries << 3);
144 #else
145 end = base + entries * sizeof(union descriptor);
146 #endif
147
148 for (va = base; va < end; va += PAGE_SIZE) {
149 KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
150 ptp = kvtopte(va);
151 XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
152 base, entries, ptp));
153 pmap_pte_clearbits(ptp, PG_RW);
154 }
155 s = splvm();
156 xpq_queue_lock();
157 xpq_queue_set_ldt(base, entries);
158 xpq_queue_unlock();
159 splx(s);
160 }
161
162 #ifdef XENDEBUG
163 void xpq_debug_dump(void);
164 #endif
165
166 #define XPQUEUE_SIZE 2048
167 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
168 static int xpq_idx_array[MAXCPUS];
169
170 #ifdef MULTIPROCESSOR
171 static struct simplelock xpq_lock = SIMPLELOCK_INITIALIZER;
172
173 extern struct cpu_info * (*xpq_cpu)(void);
174
175 void
176 xpq_queue_lock(void)
177 {
178 simple_lock(&xpq_lock);
179 }
180
181 void
182 xpq_queue_unlock(void)
183 {
184 simple_unlock(&xpq_lock);
185 }
186
187 bool
188 xpq_queue_locked(void)
189 {
190 return simple_lock_held(&xpq_lock);
191 }
192 #endif /* MULTIPROCESSOR */
193
194 /* Must be called with xpq_lock held */
195 void
196 xpq_flush_queue(void)
197 {
198 int i, ok, ret;
199
200 mmu_update_t *xpq_queue = xpq_queue_array[xpq_cpu()->ci_cpuid];
201 int xpq_idx = xpq_idx_array[xpq_cpu()->ci_cpuid];
202
203 KASSERT(xpq_queue_locked());
204
205 XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
206 for (i = 0; i < xpq_idx; i++)
207 XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
208 xpq_queue[i].ptr, xpq_queue[i].val));
209
210 ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
211
212 if (xpq_idx != 0 && ret < 0) {
213 printf("xpq_flush_queue: %d entries (%d successful)\n",
214 xpq_idx, ok);
215 for (i = 0; i < xpq_idx; i++)
216 printf("0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
217 xpq_queue[i].ptr, xpq_queue[i].val);
218 panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
219 }
220 xpq_idx_array[xpq_cpu()->ci_cpuid] = 0;
221 }
222
223 /* Must be called with xpq_lock held */
224 static inline void
225 xpq_increment_idx(void)
226 {
227
228 KASSERT(xpq_queue_locked());
229
230 if (__predict_false(++xpq_idx_array[xpq_cpu()->ci_cpuid] == XPQUEUE_SIZE))
231 xpq_flush_queue();
232 }
233
234 void
235 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
236 {
237 mmu_update_t *xpq_queue = xpq_queue_array[xpq_cpu()->ci_cpuid];
238 int xpq_idx = xpq_idx_array[xpq_cpu()->ci_cpuid];
239
240 XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
241 "\n", (int64_t)ma, (int64_t)pa));
242 KASSERT(xpq_queue_locked());
243 xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
244 xpq_queue[xpq_idx].val = (pa - XPMAP_OFFSET) >> PAGE_SHIFT;
245 xpq_increment_idx();
246 #ifdef XENDEBUG_SYNC
247 xpq_flush_queue();
248 #endif
249 }
250
251 void
252 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
253 {
254
255 mmu_update_t *xpq_queue = xpq_queue_array[xpq_cpu()->ci_cpuid];
256 int xpq_idx = xpq_idx_array[xpq_cpu()->ci_cpuid];
257
258 KASSERT((ptr & 3) == 0);
259 KASSERT(xpq_queue_locked());
260 xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
261 xpq_queue[xpq_idx].val = val;
262 xpq_increment_idx();
263 #ifdef XENDEBUG_SYNC
264 xpq_flush_queue();
265 #endif
266 }
267
268 void
269 xpq_queue_pt_switch(paddr_t pa)
270 {
271 struct mmuext_op op;
272 KASSERT(xpq_queue_locked());
273 xpq_flush_queue();
274
275 XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
276 (int64_t)pa, (int64_t)pa));
277 op.cmd = MMUEXT_NEW_BASEPTR;
278 op.arg1.mfn = pa >> PAGE_SHIFT;
279 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
280 panic("xpq_queue_pt_switch");
281 }
282
283 void
284 xpq_queue_pin_table(paddr_t pa, int lvl)
285 {
286 struct mmuext_op op;
287
288 KASSERT(xpq_queue_locked());
289 xpq_flush_queue();
290
291 XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
292 lvl + 1, pa));
293
294 op.arg1.mfn = pa >> PAGE_SHIFT;
295 op.cmd = lvl;
296
297 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
298 panic("xpq_queue_pin_table");
299 }
300
301 void
302 xpq_queue_unpin_table(paddr_t pa)
303 {
304 struct mmuext_op op;
305
306 KASSERT(xpq_queue_locked());
307 xpq_flush_queue();
308
309 XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
310 op.arg1.mfn = pa >> PAGE_SHIFT;
311 op.cmd = MMUEXT_UNPIN_TABLE;
312 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
313 panic("xpq_queue_unpin_table");
314 }
315
316 void
317 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
318 {
319 struct mmuext_op op;
320
321 KASSERT(xpq_queue_locked());
322 xpq_flush_queue();
323
324 XENPRINTK2(("xpq_queue_set_ldt\n"));
325 KASSERT(va == (va & ~PAGE_MASK));
326 op.cmd = MMUEXT_SET_LDT;
327 op.arg1.linear_addr = va;
328 op.arg2.nr_ents = entries;
329 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
330 panic("xpq_queue_set_ldt");
331 }
332
333 void
334 xpq_queue_tlb_flush(void)
335 {
336 struct mmuext_op op;
337
338 KASSERT(xpq_queue_locked());
339 xpq_flush_queue();
340
341 XENPRINTK2(("xpq_queue_tlb_flush\n"));
342 op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
343 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
344 panic("xpq_queue_tlb_flush");
345 }
346
347 void
348 xpq_flush_cache(void)
349 {
350 struct mmuext_op op;
351 int s = splvm(), err;
352
353 xpq_queue_lock();
354 xpq_flush_queue();
355
356 XENPRINTK2(("xpq_queue_flush_cache\n"));
357 op.cmd = MMUEXT_FLUSH_CACHE;
358 if ((err = HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) < 0)
359 printf("errno == %d\n", err);
360 panic("xpq_flush_cache");
361 xpq_queue_unlock();
362 splx(s); /* XXX: removeme */
363 }
364
365 void
366 xpq_queue_invlpg(vaddr_t va)
367 {
368 struct mmuext_op op;
369 KASSERT(xpq_queue_locked());
370 xpq_flush_queue();
371
372 XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
373 op.cmd = MMUEXT_INVLPG_LOCAL;
374 op.arg1.linear_addr = (va & ~PAGE_MASK);
375 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
376 panic("xpq_queue_invlpg");
377 }
378
379 void
380 xen_mcast_invlpg(vaddr_t va, uint32_t cpumask)
381 {
382 mmuext_op_t op;
383
384 KASSERT(xpq_queue_locked());
385
386 /* Flush pending page updates */
387 xpq_flush_queue();
388
389 op.cmd = MMUEXT_INVLPG_MULTI;
390 op.arg1.linear_addr = va;
391 op.arg2.vcpumask = &cpumask;
392
393 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
394 panic("xpq_queue_invlpg_all");
395 }
396
397 return;
398 }
399
400 void
401 xen_bcast_invlpg(vaddr_t va)
402 {
403 mmuext_op_t op;
404
405 /* Flush pending page updates */
406 KASSERT(xpq_queue_locked());
407 xpq_flush_queue();
408
409 op.cmd = MMUEXT_INVLPG_ALL;
410 op.arg1.linear_addr = va;
411
412 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
413 panic("xpq_queue_invlpg_all");
414 }
415
416 return;
417 }
418
419 /* This is a synchronous call. */
420 void
421 xen_mcast_tlbflush(uint32_t cpumask)
422 {
423 mmuext_op_t op;
424
425 /* Flush pending page updates */
426 KASSERT(xpq_queue_locked());
427 xpq_flush_queue();
428
429 op.cmd = MMUEXT_TLB_FLUSH_MULTI;
430 op.arg2.vcpumask = &cpumask;
431
432 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
433 panic("xpq_queue_invlpg_all");
434 }
435
436 return;
437 }
438
439 /* This is a synchronous call. */
440 void
441 xen_bcast_tlbflush(void)
442 {
443 mmuext_op_t op;
444
445 /* Flush pending page updates */
446 KASSERT(xpq_queue_locked());
447 xpq_flush_queue();
448
449 op.cmd = MMUEXT_TLB_FLUSH_ALL;
450
451 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
452 panic("xpq_queue_invlpg_all");
453 }
454
455 return;
456 }
457
458 /* This is a synchronous call. */
459 void
460 xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, uint32_t cpumask)
461 {
462 KASSERT(eva > sva);
463
464 /* Flush pending page updates */
465 KASSERT(xpq_queue_locked());
466 xpq_flush_queue();
467
468 /* Align to nearest page boundary */
469 sva &= ~PAGE_MASK;
470 eva &= ~PAGE_MASK;
471
472 for ( ; sva <= eva; sva += PAGE_SIZE) {
473 xen_mcast_invlpg(sva, cpumask);
474 }
475
476 return;
477 }
478
479 /* This is a synchronous call. */
480 void
481 xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
482 {
483 KASSERT(eva > sva);
484
485 /* Flush pending page updates */
486 KASSERT(xpq_queue_locked());
487 xpq_flush_queue();
488
489 /* Align to nearest page boundary */
490 sva &= ~PAGE_MASK;
491 eva &= ~PAGE_MASK;
492
493 for ( ; sva <= eva; sva += PAGE_SIZE) {
494 xen_bcast_invlpg(sva);
495 }
496
497 return;
498 }
499
500 int
501 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
502 {
503 mmu_update_t op;
504 int ok;
505
506 KASSERT(xpq_queue_locked());
507 xpq_flush_queue();
508
509 op.ptr = ptr;
510 op.val = val;
511 if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
512 return EFAULT;
513 return (0);
514 }
515
516 #ifdef XENDEBUG
517 void
518 xpq_debug_dump(void)
519 {
520 int i;
521
522 mmu_update_t *xpq_queue = xpq_queue_array[xpq_cpu()->ci_cpuid];
523 int xpq_idx = xpq_idx_array[xpq_cpu()->ci_cpuid];
524
525 XENPRINTK2(("idx: %d\n", xpq_idx));
526 for (i = 0; i < xpq_idx; i++) {
527 snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
528 xpq_queue[i].ptr, xpq_queue[i].val);
529 if (++i < xpq_idx)
530 snprintf(XBUF + strlen(XBUF),
531 sizeof(XBUF) - strlen(XBUF),
532 "%" PRIx64 " %08" PRIx64,
533 xpq_queue[i].ptr, xpq_queue[i].val);
534 if (++i < xpq_idx)
535 snprintf(XBUF + strlen(XBUF),
536 sizeof(XBUF) - strlen(XBUF),
537 "%" PRIx64 " %08" PRIx64,
538 xpq_queue[i].ptr, xpq_queue[i].val);
539 if (++i < xpq_idx)
540 snprintf(XBUF + strlen(XBUF),
541 sizeof(XBUF) - strlen(XBUF),
542 "%" PRIx64 " %08" PRIx64,
543 xpq_queue[i].ptr, xpq_queue[i].val);
544 XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
545 }
546 }
547 #endif
548
549
550 extern volatile struct xencons_interface *xencons_interface; /* XXX */
551 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
552
553 static void xen_bt_set_readonly (vaddr_t);
554 static void xen_bootstrap_tables (vaddr_t, vaddr_t, int, int, int);
555
556 /* How many PDEs ? */
557 #if L2_SLOT_KERNBASE > 0
558 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
559 #else
560 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
561 #endif
562
563 /*
564 * Construct and switch to new pagetables
565 * first_avail is the first vaddr we can use after
566 * we get rid of Xen pagetables
567 */
568
569 vaddr_t xen_pmap_bootstrap (void);
570
571 /*
572 * Function to get rid of Xen bootstrap tables
573 */
574
575 /* How many PDP do we need: */
576 #ifdef PAE
577 /*
578 * For PAE, we consider a single contigous L2 "superpage" of 4 pages,
579 * all of them mapped by the L3 page. We also need a shadow page
580 * for L3[3].
581 */
582 static const int l2_4_count = 6;
583 #elif defined(__x86_64__)
584 static const int l2_4_count = PTP_LEVELS;
585 #else
586 static const int l2_4_count = PTP_LEVELS - 1;
587 #endif
588
589 vaddr_t
590 xen_pmap_bootstrap(void)
591 {
592 int count, oldcount;
593 long mapsize;
594 vaddr_t bootstrap_tables, init_tables;
595
596 memset(xpq_idx_array, 0, sizeof xpq_idx_array);
597
598 xpmap_phys_to_machine_mapping =
599 (unsigned long *)xen_start_info.mfn_list;
600 init_tables = xen_start_info.pt_base;
601 __PRINTK(("xen_arch_pmap_bootstrap init_tables=0x%lx\n", init_tables));
602
603 /* Space after Xen boostrap tables should be free */
604 bootstrap_tables = xen_start_info.pt_base +
605 (xen_start_info.nr_pt_frames * PAGE_SIZE);
606
607 /*
608 * Calculate how many space we need
609 * first everything mapped before the Xen bootstrap tables
610 */
611 mapsize = init_tables - KERNTEXTOFF;
612 /* after the tables we'll have:
613 * - UAREA
614 * - dummy user PGD (x86_64)
615 * - HYPERVISOR_shared_info
616 * - ISA I/O mem (if needed)
617 */
618 mapsize += UPAGES * NBPG;
619 #ifdef __x86_64__
620 mapsize += NBPG;
621 #endif
622 mapsize += NBPG;
623
624 #ifdef DOM0OPS
625 if (xendomain_is_dom0()) {
626 /* space for ISA I/O mem */
627 mapsize += IOM_SIZE;
628 }
629 #endif
630 /* at this point mapsize doens't include the table size */
631
632 #ifdef __x86_64__
633 count = TABLE_L2_ENTRIES;
634 #else
635 count = (mapsize + (NBPD_L2 -1)) >> L2_SHIFT;
636 #endif /* __x86_64__ */
637
638 /* now compute how many L2 pages we need exactly */
639 XENPRINTK(("bootstrap_final mapsize 0x%lx count %d\n", mapsize, count));
640 while (mapsize + (count + l2_4_count) * PAGE_SIZE + KERNTEXTOFF >
641 ((long)count << L2_SHIFT) + KERNBASE) {
642 count++;
643 }
644 #ifndef __x86_64__
645 /*
646 * one more L2 page: we'll alocate several pages after kva_start
647 * in pmap_bootstrap() before pmap_growkernel(), which have not been
648 * counted here. It's not a big issue to allocate one more L2 as
649 * pmap_growkernel() will be called anyway.
650 */
651 count++;
652 nkptp[1] = count;
653 #endif
654
655 /*
656 * install bootstrap pages. We may need more L2 pages than will
657 * have the final table here, as it's installed after the final table
658 */
659 oldcount = count;
660
661 bootstrap_again:
662 XENPRINTK(("bootstrap_again oldcount %d\n", oldcount));
663 /*
664 * Xen space we'll reclaim may not be enough for our new page tables,
665 * move bootstrap tables if necessary
666 */
667 if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
668 bootstrap_tables = init_tables +
669 ((count + l2_4_count) * PAGE_SIZE);
670 /* make sure we have enough to map the bootstrap_tables */
671 if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
672 ((long)oldcount << L2_SHIFT) + KERNBASE) {
673 oldcount++;
674 goto bootstrap_again;
675 }
676
677 /* Create temporary tables */
678 xen_bootstrap_tables(xen_start_info.pt_base, bootstrap_tables,
679 xen_start_info.nr_pt_frames, oldcount, 0);
680
681 /* Create final tables */
682 xen_bootstrap_tables(bootstrap_tables, init_tables,
683 oldcount + l2_4_count, count, 1);
684
685 /* zero out free space after tables */
686 memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
687 (UPAGES + 1) * NBPG);
688
689 /* Finally, flush TLB. */
690 xpq_queue_lock();
691 xpq_queue_tlb_flush();
692 xpq_queue_unlock();
693
694 return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
695 }
696
697 /*
698 * Build a new table and switch to it
699 * old_count is # of old tables (including PGD, PDTPE and PDE)
700 * new_count is # of new tables (PTE only)
701 * we assume areas don't overlap
702 */
703 static void
704 xen_bootstrap_tables (vaddr_t old_pgd, vaddr_t new_pgd,
705 int old_count, int new_count, int final)
706 {
707 pd_entry_t *pdtpe, *pde, *pte;
708 pd_entry_t *cur_pgd, *bt_pgd;
709 paddr_t addr;
710 vaddr_t page, avail, text_end, map_end;
711 int i;
712 extern char __data_start;
713
714 xpq_queue_lock();
715
716 __PRINTK(("xen_bootstrap_tables(%#" PRIxVADDR ", %#" PRIxVADDR ","
717 " %d, %d)\n",
718 old_pgd, new_pgd, old_count, new_count));
719 text_end = ((vaddr_t)&__data_start) & ~PAGE_MASK;
720 /*
721 * size of R/W area after kernel text:
722 * xencons_interface (if present)
723 * xenstore_interface (if present)
724 * table pages (new_count + l2_4_count entries)
725 * extra mappings (only when final is true):
726 * UAREA
727 * dummy user PGD (x86_64 only)/gdt page (i386 only)
728 * HYPERVISOR_shared_info
729 * ISA I/O mem (if needed)
730 */
731 map_end = new_pgd + ((new_count + l2_4_count) * NBPG);
732 if (final) {
733 map_end += (UPAGES + 1) * NBPG;
734 HYPERVISOR_shared_info = (shared_info_t *)map_end;
735 map_end += NBPG;
736 }
737 /*
738 * we always set atdevbase, as it's used by init386 to find the first
739 * available VA. map_end is updated only if we are dom0, so
740 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
741 * this case.
742 */
743 if (final)
744 atdevbase = map_end;
745 #ifdef DOM0OPS
746 if (final && xendomain_is_dom0()) {
747 /* ISA I/O mem */
748 map_end += IOM_SIZE;
749 }
750 #endif /* DOM0OPS */
751
752 __PRINTK(("xen_bootstrap_tables text_end 0x%lx map_end 0x%lx\n",
753 text_end, map_end));
754 __PRINTK(("console %#lx ", xen_start_info.console_mfn));
755 __PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
756
757 /*
758 * Create bootstrap page tables
759 * What we need:
760 * - a PGD (level 4)
761 * - a PDTPE (level 3)
762 * - a PDE (level2)
763 * - some PTEs (level 1)
764 */
765
766 cur_pgd = (pd_entry_t *) old_pgd;
767 bt_pgd = (pd_entry_t *) new_pgd;
768 memset (bt_pgd, 0, PAGE_SIZE);
769 avail = new_pgd + PAGE_SIZE;
770 #if PTP_LEVELS > 3
771 /* per-cpu L4 PD */
772 pd_entry_t *bt_cpu_pgd = bt_pgd;
773 /* pmap_kernel() "shadow" L4 PD */
774 bt_pgd = (pd_entry_t *) avail;
775 memset(bt_pgd, 0, PAGE_SIZE);
776 avail += PAGE_SIZE;
777
778 /* Install level 3 */
779 pdtpe = (pd_entry_t *) avail;
780 memset (pdtpe, 0, PAGE_SIZE);
781 avail += PAGE_SIZE;
782
783 addr = ((u_long) pdtpe) - KERNBASE;
784 bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
785 xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
786
787 __PRINTK(("L3 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
788 " -> L4[%#x]\n",
789 pdtpe, addr, bt_pgd[pl4_pi(KERNTEXTOFF)], pl4_pi(KERNTEXTOFF)));
790 #else
791 pdtpe = bt_pgd;
792 #endif /* PTP_LEVELS > 3 */
793
794 #if PTP_LEVELS > 2
795 /* Level 2 */
796 pde = (pd_entry_t *) avail;
797 memset(pde, 0, PAGE_SIZE);
798 avail += PAGE_SIZE;
799
800 addr = ((u_long) pde) - KERNBASE;
801 pdtpe[pl3_pi(KERNTEXTOFF)] =
802 xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
803 __PRINTK(("L2 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
804 " -> L3[%#x]\n",
805 pde, addr, pdtpe[pl3_pi(KERNTEXTOFF)], pl3_pi(KERNTEXTOFF)));
806 #elif defined(PAE)
807 /* our PAE-style level 2: 5 contigous pages (4 L2 + 1 shadow) */
808 pde = (pd_entry_t *) avail;
809 memset(pde, 0, PAGE_SIZE * 5);
810 avail += PAGE_SIZE * 5;
811 addr = ((u_long) pde) - KERNBASE;
812 /*
813 * enter L2 pages in the L3.
814 * The real L2 kernel PD will be the last one (so that
815 * pde[L2_SLOT_KERN] always point to the shadow).
816 */
817 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
818 /*
819 * Xen doesn't want R/W mappings in L3 entries, it'll add it
820 * itself.
821 */
822 pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
823 __PRINTK(("L2 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
824 " -> L3[%#x]\n",
825 (vaddr_t)pde + PAGE_SIZE * i, addr, pdtpe[i], i));
826 }
827 addr += PAGE_SIZE;
828 pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
829 __PRINTK(("L2 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
830 " -> L3[%#x]\n",
831 (vaddr_t)pde + PAGE_SIZE * 4, addr, pdtpe[3], 3));
832
833 #else /* PAE */
834 pde = bt_pgd;
835 #endif /* PTP_LEVELS > 2 */
836
837 /* Level 1 */
838 page = KERNTEXTOFF;
839 for (i = 0; i < new_count; i ++) {
840 vaddr_t cur_page = page;
841
842 pte = (pd_entry_t *) avail;
843 avail += PAGE_SIZE;
844
845 memset(pte, 0, PAGE_SIZE);
846 while (pl2_pi(page) == pl2_pi (cur_page)) {
847 if (page >= map_end) {
848 /* not mapped at all */
849 pte[pl1_pi(page)] = 0;
850 page += PAGE_SIZE;
851 continue;
852 }
853 pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
854 if (page == (vaddr_t)HYPERVISOR_shared_info) {
855 pte[pl1_pi(page)] = xen_start_info.shared_info;
856 __PRINTK(("HYPERVISOR_shared_info "
857 "va %#lx pte %#" PRIxPADDR "\n",
858 HYPERVISOR_shared_info, pte[pl1_pi(page)]));
859 }
860 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
861 == xen_start_info.console.domU.mfn) {
862 xencons_interface = (void *)page;
863 pte[pl1_pi(page)] = xen_start_info.console_mfn;
864 pte[pl1_pi(page)] <<= PAGE_SHIFT;
865 __PRINTK(("xencons_interface "
866 "va %#lx pte %#" PRIxPADDR "\n",
867 xencons_interface, pte[pl1_pi(page)]));
868 }
869 if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
870 == xen_start_info.store_mfn) {
871 xenstore_interface = (void *)page;
872 pte[pl1_pi(page)] = xen_start_info.store_mfn;
873 pte[pl1_pi(page)] <<= PAGE_SHIFT;
874 __PRINTK(("xenstore_interface "
875 "va %#lx pte %#" PRIxPADDR "\n",
876 xenstore_interface, pte[pl1_pi(page)]));
877 }
878 #ifdef DOM0OPS
879 if (page >= (vaddr_t)atdevbase &&
880 page < (vaddr_t)atdevbase + IOM_SIZE) {
881 pte[pl1_pi(page)] =
882 IOM_BEGIN + (page - (vaddr_t)atdevbase);
883 }
884 #endif
885 pte[pl1_pi(page)] |= PG_k | PG_V;
886 if (page < text_end) {
887 /* map kernel text RO */
888 pte[pl1_pi(page)] |= 0;
889 } else if (page >= old_pgd
890 && page < old_pgd + (old_count * PAGE_SIZE)) {
891 /* map old page tables RO */
892 pte[pl1_pi(page)] |= 0;
893 } else if (page >= new_pgd &&
894 page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
895 /* map new page tables RO */
896 pte[pl1_pi(page)] |= 0;
897 } else {
898 /* map page RW */
899 pte[pl1_pi(page)] |= PG_RW;
900 }
901
902 if ((page >= old_pgd && page < old_pgd + (old_count * PAGE_SIZE))
903 || page >= new_pgd) {
904 __PRINTK(("va %#lx pa %#lx "
905 "entry 0x%" PRIxPADDR " -> L1[%#x]\n",
906 page, page - KERNBASE,
907 pte[pl1_pi(page)], pl1_pi(page)));
908 }
909 page += PAGE_SIZE;
910 }
911
912 addr = ((u_long) pte) - KERNBASE;
913 pde[pl2_pi(cur_page)] =
914 xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
915 __PRINTK(("L1 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
916 " -> L2[%#x]\n",
917 pte, addr, pde[pl2_pi(cur_page)], pl2_pi(cur_page)));
918 /* Mark readonly */
919 xen_bt_set_readonly((vaddr_t) pte);
920 }
921
922 /* Install recursive page tables mapping */
923 #ifdef PAE
924 /*
925 * we need a shadow page for the kernel's L2 page
926 * The real L2 kernel PD will be the last one (so that
927 * pde[L2_SLOT_KERN] always point to the shadow.
928 */
929 memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
930 cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
931 cpu_info_primary.ci_kpm_pdirpa =
932 (vaddr_t) cpu_info_primary.ci_kpm_pdir - KERNBASE;
933
934 /*
935 * We don't enter a recursive entry from the L3 PD. Instead,
936 * we enter the first 4 L2 pages, which includes the kernel's L2
937 * shadow. But we have to entrer the shadow after switching
938 * %cr3, or Xen will refcount some PTE with the wrong type.
939 */
940 addr = (u_long)pde - KERNBASE;
941 for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
942 pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
943 __PRINTK(("pde[%d] va %#" PRIxVADDR " pa %#" PRIxPADDR
944 " entry %#" PRIxPADDR "\n",
945 (int)(PDIR_SLOT_PTE + i), pde + PAGE_SIZE * i,
946 addr, pde[PDIR_SLOT_PTE + i]));
947 }
948 #if 0
949 addr += PAGE_SIZE; /* point to shadow L2 */
950 pde[PDIR_SLOT_PTE + 3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
951 __PRINTK(("pde[%d] va 0x%lx pa 0x%lx entry 0x%" PRIx64 "\n",
952 (int)(PDIR_SLOT_PTE + 3), pde + PAGE_SIZE * 4, (long)addr,
953 (int64_t)pde[PDIR_SLOT_PTE + 3]));
954 #endif
955 /* Mark tables RO, and pin the kernel's shadow as L2 */
956 addr = (u_long)pde - KERNBASE;
957 for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
958 xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
959 if (i == 2 || i == 3)
960 continue;
961 #if 0
962 __PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", i, (int64_t)addr));
963 xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
964 #endif
965 }
966 if (final) {
967 addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
968 __PRINTK(("pin L2 %d addr %#" PRIxPADDR "\n", 2, addr));
969 xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
970 }
971 #if 0
972 addr = (u_long)pde - KERNBASE + 2 * PAGE_SIZE;
973 __PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", 2, (int64_t)addr));
974 xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
975 #endif
976 #else /* PAE */
977 /* recursive entry in higher-level per-cpu PD and pmap_kernel() */
978 bt_pgd[PDIR_SLOT_PTE] =
979 #ifdef __x86_64__
980 bt_cpu_pgd[PDIR_SLOT_PTE] =
981 #endif /* __x86_64__ */
982 xpmap_ptom_masked(new_pgd - KERNBASE) | PG_k | PG_V;
983 __PRINTK(("bt_cpu_pgd[PDIR_SLOT_PTE] va %#" PRIxVADDR " pa %#" PRIxPADDR
984 " entry %#" PRIxPADDR "\n", new_pgd, (paddr_t)new_pgd - KERNBASE,
985 bt_pgd[PDIR_SLOT_PTE]));
986
987
988 /* Mark tables RO */
989 xen_bt_set_readonly((vaddr_t) pde);
990 #endif
991 #if PTP_LEVELS > 2 || defined(PAE)
992 xen_bt_set_readonly((vaddr_t) pdtpe);
993 #endif
994 #if PTP_LEVELS > 3
995 xen_bt_set_readonly(new_pgd);
996 #endif
997 /* Pin the PGD */
998 __PRINTK(("pin PGD: %"PRIxVADDR"\n", new_pgd - KERNBASE));
999 #ifdef __x86_64__
1000 xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1001 #elif PAE
1002 xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1003 #else
1004 xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1005 #endif
1006 /* Save phys. addr of PDP, for libkvm. */
1007 #ifdef PAE
1008 PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
1009 #else
1010 PDPpaddr = (u_long)bt_pgd - KERNBASE;
1011 #endif
1012
1013 /* Switch to new tables */
1014 __PRINTK(("switch to PGD\n"));
1015 xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
1016 __PRINTK(("bt_pgd[PDIR_SLOT_PTE] now entry %#" PRIxPADDR "\n",
1017 bt_pgd[PDIR_SLOT_PTE]));
1018
1019 #ifdef PAE
1020 if (final) {
1021 /* save the address of the L3 page */
1022 cpu_info_primary.ci_pae_l3_pdir = pdtpe;
1023 cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
1024
1025 /* now enter kernel's PTE mappings */
1026 addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
1027 xpq_queue_pte_update(
1028 xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
1029 xpmap_ptom_masked(addr) | PG_k | PG_V);
1030 xpq_flush_queue();
1031 }
1032 #elif defined(__x86_64__)
1033 if (final) {
1034 /* save the address of the real per-cpu L4 pgd page */
1035 cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
1036 cpu_info_primary.ci_kpm_pdirpa = ((paddr_t) bt_cpu_pgd - KERNBASE);
1037 }
1038 #endif
1039
1040 /* Now we can safely reclaim space taken by old tables */
1041
1042 __PRINTK(("unpin old PGD\n"));
1043 /* Unpin old PGD */
1044 xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
1045 /* Mark old tables RW */
1046 page = old_pgd;
1047 addr = (paddr_t) pde[pl2_pi(page)] & PG_FRAME;
1048 addr = xpmap_mtop(addr);
1049 pte = (pd_entry_t *) ((u_long)addr + KERNBASE);
1050 pte += pl1_pi(page);
1051 __PRINTK(("*pde %#" PRIxPADDR " addr %#" PRIxPADDR " pte %#lx\n",
1052 pde[pl2_pi(page)], addr, (long)pte));
1053 while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
1054 addr = xpmap_ptom(((u_long) pte) - KERNBASE);
1055 XENPRINTK(("addr %#" PRIxPADDR " pte %#lx "
1056 "*pte %#" PRIxPADDR "\n",
1057 addr, (long)pte, *pte));
1058 xpq_queue_pte_update(addr, *pte | PG_RW);
1059 page += PAGE_SIZE;
1060 /*
1061 * Our ptes are contiguous
1062 * so it's safe to just "++" here
1063 */
1064 pte++;
1065 }
1066 xpq_flush_queue();
1067 xpq_queue_unlock();
1068 }
1069
1070
1071 /*
1072 * Bootstrap helper functions
1073 */
1074
1075 /*
1076 * Mark a page readonly
1077 * XXX: assuming vaddr = paddr + KERNBASE
1078 */
1079
1080 static void
1081 xen_bt_set_readonly (vaddr_t page)
1082 {
1083 pt_entry_t entry;
1084
1085 entry = xpmap_ptom_masked(page - KERNBASE);
1086 entry |= PG_k | PG_V;
1087
1088 HYPERVISOR_update_va_mapping (page, entry, UVMF_INVLPG);
1089 }
1090
1091 #ifdef __x86_64__
1092 void
1093 xen_set_user_pgd(paddr_t page)
1094 {
1095 struct mmuext_op op;
1096 int s = splvm();
1097
1098 KASSERT(xpq_queue_locked());
1099 xpq_flush_queue();
1100 op.cmd = MMUEXT_NEW_USER_BASEPTR;
1101 op.arg1.mfn = xpmap_phys_to_machine_mapping[page >> PAGE_SHIFT];
1102 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
1103 panic("xen_set_user_pgd: failed to install new user page"
1104 " directory %#" PRIxPADDR, page);
1105 splx(s);
1106 }
1107 #endif /* __x86_64__ */
1108