Home | History | Annotate | Line # | Download | only in x86
x86_xpmap.c revision 1.62
      1 /*	$NetBSD: x86_xpmap.c,v 1.62 2016/11/01 12:00:21 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2006 Mathieu Ropert <mro (at) adviseo.fr>
      5  *
      6  * Permission to use, copy, modify, and distribute this software for any
      7  * purpose with or without fee is hereby granted, provided that the above
      8  * copyright notice and this permission notice appear in all copies.
      9  *
     10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     17  */
     18 
     19 /*
     20  * Copyright (c) 2006, 2007 Manuel Bouyer.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the above copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  *
     31  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     32  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     34  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     37  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     38  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     40  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     41  *
     42  */
     43 
     44 /*
     45  *
     46  * Copyright (c) 2004 Christian Limpach.
     47  * All rights reserved.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     59  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     60  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     61  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     62  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     63  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     64  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     65  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     66  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     67  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     68  */
     69 
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.62 2016/11/01 12:00:21 maxv Exp $");
     73 
     74 #include "opt_xen.h"
     75 #include "opt_ddb.h"
     76 #include "ksyms.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/mutex.h>
     81 #include <sys/cpu.h>
     82 
     83 #include <uvm/uvm.h>
     84 
     85 #include <x86/pmap.h>
     86 #include <machine/gdt.h>
     87 #include <xen/xenfunc.h>
     88 
     89 #include <dev/isa/isareg.h>
     90 #include <machine/isa_machdep.h>
     91 
     92 #undef	XENDEBUG
     93 /* #define XENDEBUG_SYNC */
     94 /* #define	XENDEBUG_LOW */
     95 
     96 #ifdef XENDEBUG
     97 #define	XENPRINTF(x) printf x
     98 #define	XENPRINTK(x) printk x
     99 #define	XENPRINTK2(x) /* printk x */
    100 
    101 static char XBUF[256];
    102 #else
    103 #define	XENPRINTF(x)
    104 #define	XENPRINTK(x)
    105 #define	XENPRINTK2(x)
    106 #endif
    107 #define	PRINTF(x) printf x
    108 #define	PRINTK(x) printk x
    109 
    110 volatile shared_info_t *HYPERVISOR_shared_info;
    111 /* Xen requires the start_info struct to be page aligned */
    112 union start_info_union start_info_union __aligned(PAGE_SIZE);
    113 unsigned long *xpmap_phys_to_machine_mapping;
    114 kmutex_t pte_lock;
    115 
    116 void xen_failsafe_handler(void);
    117 
    118 #define HYPERVISOR_mmu_update_self(req, count, success_count) \
    119 	HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
    120 
    121 /*
    122  * kcpuset internally uses an array of uint32_t while xen uses an array of
    123  * u_long. As we're little-endian we can cast one to the other.
    124  */
    125 typedef union {
    126 #ifdef _LP64
    127 	uint32_t xcpum_km[2];
    128 #else
    129 	uint32_t xcpum_km[1];
    130 #endif
    131 	u_long   xcpum_xm;
    132 } xcpumask_t;
    133 
    134 void
    135 xen_failsafe_handler(void)
    136 {
    137 
    138 	panic("xen_failsafe_handler called!\n");
    139 }
    140 
    141 
    142 void
    143 xen_set_ldt(vaddr_t base, uint32_t entries)
    144 {
    145 	vaddr_t va;
    146 	vaddr_t end;
    147 	pt_entry_t *ptp;
    148 	int s;
    149 
    150 #ifdef __x86_64__
    151 	end = base + (entries << 3);
    152 #else
    153 	end = base + entries * sizeof(union descriptor);
    154 #endif
    155 
    156 	for (va = base; va < end; va += PAGE_SIZE) {
    157 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
    158 		ptp = kvtopte(va);
    159 		XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
    160 		    base, entries, ptp));
    161 		pmap_pte_clearbits(ptp, PG_RW);
    162 	}
    163 	s = splvm();
    164 	xpq_queue_set_ldt(base, entries);
    165 	splx(s);
    166 }
    167 
    168 #ifdef XENDEBUG
    169 void xpq_debug_dump(void);
    170 #endif
    171 
    172 #define XPQUEUE_SIZE 2048
    173 static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
    174 static int xpq_idx_array[MAXCPUS];
    175 
    176 #ifdef i386
    177 extern union descriptor tmpgdt[];
    178 #endif /* i386 */
    179 void
    180 xpq_flush_queue(void)
    181 {
    182 	int i, ok = 0, ret;
    183 
    184 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    185 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    186 
    187 	XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
    188 	for (i = 0; i < xpq_idx; i++)
    189 		XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
    190 		    xpq_queue[i].ptr, xpq_queue[i].val));
    191 
    192 retry:
    193 	ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
    194 
    195 	if (xpq_idx != 0 && ret < 0) {
    196 		struct cpu_info *ci;
    197 		CPU_INFO_ITERATOR cii;
    198 
    199 		printf("xpq_flush_queue: %d entries (%d successful) on "
    200 		    "cpu%d (%ld)\n",
    201 		    xpq_idx, ok, curcpu()->ci_index, curcpu()->ci_cpuid);
    202 
    203 		if (ok != 0) {
    204 			xpq_queue += ok;
    205 			xpq_idx -= ok;
    206 			ok = 0;
    207 			goto retry;
    208 		}
    209 
    210 		for (CPU_INFO_FOREACH(cii, ci)) {
    211 			xpq_queue = xpq_queue_array[ci->ci_cpuid];
    212 			xpq_idx = xpq_idx_array[ci->ci_cpuid];
    213 			printf("cpu%d (%ld):\n", ci->ci_index, ci->ci_cpuid);
    214 			for (i = 0; i < xpq_idx; i++) {
    215 				printf("  0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
    216 				   xpq_queue[i].ptr, xpq_queue[i].val);
    217 			}
    218 #ifdef __x86_64__
    219 			for (i = 0; i < PDIR_SLOT_PTE; i++) {
    220 				if (ci->ci_kpm_pdir[i] == 0)
    221 					continue;
    222 				printf(" kpm_pdir[%d]: 0x%" PRIx64 "\n",
    223 				    i, ci->ci_kpm_pdir[i]);
    224 			}
    225 #endif
    226 		}
    227 		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
    228 	}
    229 	xpq_idx_array[curcpu()->ci_cpuid] = 0;
    230 }
    231 
    232 static inline void
    233 xpq_increment_idx(void)
    234 {
    235 
    236 	if (__predict_false(++xpq_idx_array[curcpu()->ci_cpuid] == XPQUEUE_SIZE))
    237 		xpq_flush_queue();
    238 }
    239 
    240 void
    241 xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
    242 {
    243 
    244 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    245 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    246 
    247 	XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
    248 	    "\n", (int64_t)ma, (int64_t)pa));
    249 
    250 	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
    251 	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
    252 	xpq_increment_idx();
    253 #ifdef XENDEBUG_SYNC
    254 	xpq_flush_queue();
    255 #endif
    256 }
    257 
    258 void
    259 xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
    260 {
    261 
    262 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    263 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    264 
    265 	KASSERT((ptr & 3) == 0);
    266 	xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
    267 	xpq_queue[xpq_idx].val = val;
    268 	xpq_increment_idx();
    269 #ifdef XENDEBUG_SYNC
    270 	xpq_flush_queue();
    271 #endif
    272 }
    273 
    274 void
    275 xpq_queue_pt_switch(paddr_t pa)
    276 {
    277 	struct mmuext_op op;
    278 	xpq_flush_queue();
    279 
    280 	XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
    281 	    (int64_t)pa, (int64_t)pa));
    282 	op.cmd = MMUEXT_NEW_BASEPTR;
    283 	op.arg1.mfn = pa >> PAGE_SHIFT;
    284 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    285 		panic("xpq_queue_pt_switch");
    286 }
    287 
    288 void
    289 xpq_queue_pin_table(paddr_t pa, int lvl)
    290 {
    291 	struct mmuext_op op;
    292 
    293 	xpq_flush_queue();
    294 
    295 	XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
    296 	    lvl + 1, pa));
    297 
    298 	op.arg1.mfn = pa >> PAGE_SHIFT;
    299 	op.cmd = lvl;
    300 
    301 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    302 		panic("xpq_queue_pin_table");
    303 }
    304 
    305 void
    306 xpq_queue_unpin_table(paddr_t pa)
    307 {
    308 	struct mmuext_op op;
    309 
    310 	xpq_flush_queue();
    311 
    312 	XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
    313 	op.arg1.mfn = pa >> PAGE_SHIFT;
    314 	op.cmd = MMUEXT_UNPIN_TABLE;
    315 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    316 		panic("xpq_queue_unpin_table");
    317 }
    318 
    319 void
    320 xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
    321 {
    322 	struct mmuext_op op;
    323 
    324 	xpq_flush_queue();
    325 
    326 	XENPRINTK2(("xpq_queue_set_ldt\n"));
    327 	KASSERT(va == (va & ~PAGE_MASK));
    328 	op.cmd = MMUEXT_SET_LDT;
    329 	op.arg1.linear_addr = va;
    330 	op.arg2.nr_ents = entries;
    331 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    332 		panic("xpq_queue_set_ldt");
    333 }
    334 
    335 void
    336 xpq_queue_tlb_flush(void)
    337 {
    338 	struct mmuext_op op;
    339 
    340 	xpq_flush_queue();
    341 
    342 	XENPRINTK2(("xpq_queue_tlb_flush\n"));
    343 	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
    344 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    345 		panic("xpq_queue_tlb_flush");
    346 }
    347 
    348 void
    349 xpq_flush_cache(void)
    350 {
    351 	int s = splvm();
    352 
    353 	xpq_flush_queue();
    354 
    355 	XENPRINTK2(("xpq_queue_flush_cache\n"));
    356 	asm("wbinvd":::"memory");
    357 	splx(s); /* XXX: removeme */
    358 }
    359 
    360 void
    361 xpq_queue_invlpg(vaddr_t va)
    362 {
    363 	struct mmuext_op op;
    364 	xpq_flush_queue();
    365 
    366 	XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
    367 	op.cmd = MMUEXT_INVLPG_LOCAL;
    368 	op.arg1.linear_addr = (va & ~PAGE_MASK);
    369 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
    370 		panic("xpq_queue_invlpg");
    371 }
    372 
    373 void
    374 xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
    375 {
    376 	xcpumask_t xcpumask;
    377 	mmuext_op_t op;
    378 
    379 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    380 
    381 	/* Flush pending page updates */
    382 	xpq_flush_queue();
    383 
    384 	op.cmd = MMUEXT_INVLPG_MULTI;
    385 	op.arg1.linear_addr = va;
    386 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    387 
    388 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    389 		panic("xpq_queue_invlpg_all");
    390 	}
    391 
    392 	return;
    393 }
    394 
    395 void
    396 xen_bcast_invlpg(vaddr_t va)
    397 {
    398 	mmuext_op_t op;
    399 
    400 	/* Flush pending page updates */
    401 	xpq_flush_queue();
    402 
    403 	op.cmd = MMUEXT_INVLPG_ALL;
    404 	op.arg1.linear_addr = va;
    405 
    406 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    407 		panic("xpq_queue_invlpg_all");
    408 	}
    409 
    410 	return;
    411 }
    412 
    413 /* This is a synchronous call. */
    414 void
    415 xen_mcast_tlbflush(kcpuset_t *kc)
    416 {
    417 	xcpumask_t xcpumask;
    418 	mmuext_op_t op;
    419 
    420 	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
    421 
    422 	/* Flush pending page updates */
    423 	xpq_flush_queue();
    424 
    425 	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
    426 	op.arg2.vcpumask = &xcpumask.xcpum_xm;
    427 
    428 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    429 		panic("xpq_queue_invlpg_all");
    430 	}
    431 
    432 	return;
    433 }
    434 
    435 /* This is a synchronous call. */
    436 void
    437 xen_bcast_tlbflush(void)
    438 {
    439 	mmuext_op_t op;
    440 
    441 	/* Flush pending page updates */
    442 	xpq_flush_queue();
    443 
    444 	op.cmd = MMUEXT_TLB_FLUSH_ALL;
    445 
    446 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    447 		panic("xpq_queue_invlpg_all");
    448 	}
    449 
    450 	return;
    451 }
    452 
    453 /* This is a synchronous call. */
    454 void
    455 xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, kcpuset_t *kc)
    456 {
    457 	KASSERT(eva > sva);
    458 
    459 	/* Flush pending page updates */
    460 	xpq_flush_queue();
    461 
    462 	/* Align to nearest page boundary */
    463 	sva &= ~PAGE_MASK;
    464 	eva &= ~PAGE_MASK;
    465 
    466 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    467 		xen_mcast_invlpg(sva, kc);
    468 	}
    469 
    470 	return;
    471 }
    472 
    473 /* This is a synchronous call. */
    474 void
    475 xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
    476 {
    477 	KASSERT(eva > sva);
    478 
    479 	/* Flush pending page updates */
    480 	xpq_flush_queue();
    481 
    482 	/* Align to nearest page boundary */
    483 	sva &= ~PAGE_MASK;
    484 	eva &= ~PAGE_MASK;
    485 
    486 	for ( ; sva <= eva; sva += PAGE_SIZE) {
    487 		xen_bcast_invlpg(sva);
    488 	}
    489 
    490 	return;
    491 }
    492 
    493 /* Copy a page */
    494 void
    495 xen_copy_page(paddr_t srcpa, paddr_t dstpa)
    496 {
    497 	mmuext_op_t op;
    498 
    499 	op.cmd = MMUEXT_COPY_PAGE;
    500 	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
    501 	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
    502 
    503 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    504 		panic(__func__);
    505 	}
    506 }
    507 
    508 /* Zero a physical page */
    509 void
    510 xen_pagezero(paddr_t pa)
    511 {
    512 	mmuext_op_t op;
    513 
    514 	op.cmd = MMUEXT_CLEAR_PAGE;
    515 	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
    516 
    517 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
    518 		panic(__func__);
    519 	}
    520 }
    521 
    522 int
    523 xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
    524 {
    525 	mmu_update_t op;
    526 	int ok;
    527 
    528 	xpq_flush_queue();
    529 
    530 	op.ptr = ptr;
    531 	op.val = val;
    532 	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
    533 		return EFAULT;
    534 	return (0);
    535 }
    536 
    537 #ifdef XENDEBUG
    538 void
    539 xpq_debug_dump(void)
    540 {
    541 	int i;
    542 
    543 	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
    544 	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
    545 
    546 	XENPRINTK2(("idx: %d\n", xpq_idx));
    547 	for (i = 0; i < xpq_idx; i++) {
    548 		snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
    549 		    xpq_queue[i].ptr, xpq_queue[i].val);
    550 		if (++i < xpq_idx)
    551 			snprintf(XBUF + strlen(XBUF),
    552 			    sizeof(XBUF) - strlen(XBUF),
    553 			    "%" PRIx64 " %08" PRIx64,
    554 			    xpq_queue[i].ptr, xpq_queue[i].val);
    555 		if (++i < xpq_idx)
    556 			snprintf(XBUF + strlen(XBUF),
    557 			    sizeof(XBUF) - strlen(XBUF),
    558 			    "%" PRIx64 " %08" PRIx64,
    559 			    xpq_queue[i].ptr, xpq_queue[i].val);
    560 		if (++i < xpq_idx)
    561 			snprintf(XBUF + strlen(XBUF),
    562 			    sizeof(XBUF) - strlen(XBUF),
    563 			    "%" PRIx64 " %08" PRIx64,
    564 			    xpq_queue[i].ptr, xpq_queue[i].val);
    565 		XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
    566 	}
    567 }
    568 #endif
    569 
    570 
    571 extern volatile struct xencons_interface *xencons_interface; /* XXX */
    572 extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
    573 
    574 static void xen_bt_set_readonly(vaddr_t);
    575 static void xen_bootstrap_tables(vaddr_t, vaddr_t, int, int, int);
    576 
    577 /* How many PDEs ? */
    578 #if L2_SLOT_KERNBASE > 0
    579 #define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
    580 #else
    581 #define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
    582 #endif
    583 
    584 /*
    585  * Construct and switch to new pagetables
    586  * first_avail is the first vaddr we can use after
    587  * we get rid of Xen pagetables
    588  */
    589 
    590 vaddr_t xen_pmap_bootstrap(void);
    591 
    592 /*
    593  * Function to get rid of Xen bootstrap tables
    594  */
    595 
    596 /* How many PDP do we need: */
    597 #ifdef PAE
    598 /*
    599  * For PAE, we consider a single contigous L2 "superpage" of 4 pages,
    600  * all of them mapped by the L3 page. We also need a shadow page
    601  * for L3[3].
    602  */
    603 static const int l2_4_count = 6;
    604 #elif defined(__x86_64__)
    605 static const int l2_4_count = PTP_LEVELS;
    606 #else
    607 static const int l2_4_count = PTP_LEVELS - 1;
    608 #endif
    609 
    610 vaddr_t
    611 xen_pmap_bootstrap(void)
    612 {
    613 	int count, oldcount;
    614 	long mapsize;
    615 	vaddr_t bootstrap_tables, init_tables;
    616 
    617 	xen_init_features();
    618 
    619 	memset(xpq_idx_array, 0, sizeof(xpq_idx_array));
    620 
    621 	xpmap_phys_to_machine_mapping =
    622 	    (unsigned long *)xen_start_info.mfn_list;
    623 	init_tables = xen_start_info.pt_base;
    624 	__PRINTK(("xen_arch_pmap_bootstrap init_tables=0x%lx\n", init_tables));
    625 
    626 	/* Space after Xen boostrap tables should be free */
    627 	bootstrap_tables = xen_start_info.pt_base +
    628 		(xen_start_info.nr_pt_frames * PAGE_SIZE);
    629 
    630 	/*
    631 	 * Calculate how many space we need
    632 	 * first everything mapped before the Xen bootstrap tables
    633 	 */
    634 	mapsize = init_tables - KERNTEXTOFF;
    635 	/* after the tables we'll have:
    636 	 *  - UAREA
    637 	 *  - dummy user PGD (x86_64)
    638 	 *  - HYPERVISOR_shared_info
    639 	 *  - early_zerop
    640 	 *  - ISA I/O mem (if needed)
    641 	 */
    642 	mapsize += UPAGES * PAGE_SIZE;
    643 #ifdef __x86_64__
    644 	mapsize += PAGE_SIZE;
    645 #endif
    646 	mapsize += PAGE_SIZE;
    647 	mapsize += PAGE_SIZE;
    648 
    649 #ifdef DOM0OPS
    650 	if (xendomain_is_dom0()) {
    651 		/* space for ISA I/O mem */
    652 		mapsize += IOM_SIZE;
    653 	}
    654 #endif
    655 	/* at this point mapsize doesn't include the table size */
    656 
    657 #ifdef __x86_64__
    658 	count = TABLE_L2_ENTRIES;
    659 #else
    660 	count = (mapsize + (NBPD_L2 -1)) >> L2_SHIFT;
    661 #endif /* __x86_64__ */
    662 
    663 	/* now compute how many L2 pages we need exactly */
    664 	XENPRINTK(("bootstrap_final mapsize 0x%lx count %d\n", mapsize, count));
    665 	while (mapsize + (count + l2_4_count) * PAGE_SIZE + KERNTEXTOFF >
    666 	    ((long)count << L2_SHIFT) + KERNBASE) {
    667 		count++;
    668 	}
    669 #ifndef __x86_64__
    670 	/*
    671 	 * one more L2 page: we'll alocate several pages after kva_start
    672 	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
    673 	 * counted here. It's not a big issue to allocate one more L2 as
    674 	 * pmap_growkernel() will be called anyway.
    675 	 */
    676 	count++;
    677 	nkptp[1] = count;
    678 #endif
    679 
    680 	/*
    681 	 * install bootstrap pages. We may need more L2 pages than will
    682 	 * have the final table here, as it's installed after the final table
    683 	 */
    684 	oldcount = count;
    685 
    686 bootstrap_again:
    687 	XENPRINTK(("bootstrap_again oldcount %d\n", oldcount));
    688 	/*
    689 	 * Xen space we'll reclaim may not be enough for our new page tables,
    690 	 * move bootstrap tables if necessary
    691 	 */
    692 	if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
    693 		bootstrap_tables = init_tables +
    694 					((count + l2_4_count) * PAGE_SIZE);
    695 	/* make sure we have enough to map the bootstrap_tables */
    696 	if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
    697 	    ((long)oldcount << L2_SHIFT) + KERNBASE) {
    698 		oldcount++;
    699 		goto bootstrap_again;
    700 	}
    701 
    702 	/* Create temporary tables */
    703 	xen_bootstrap_tables(xen_start_info.pt_base, bootstrap_tables,
    704 		xen_start_info.nr_pt_frames, oldcount, 0);
    705 
    706 	/* Create final tables */
    707 	xen_bootstrap_tables(bootstrap_tables, init_tables,
    708 	    oldcount + l2_4_count, count, 1);
    709 
    710 	/* zero out free space after tables */
    711 	memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
    712 	    (UPAGES + 1) * PAGE_SIZE);
    713 
    714 	/* Finally, flush TLB. */
    715 	xpq_queue_tlb_flush();
    716 
    717 	return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
    718 }
    719 
    720 /*
    721  * Build a new table and switch to it.
    722  * old_count is # of old tables (including PGD, PDTPE and PDE).
    723  * new_count is # of new tables (PTE only).
    724  * We assume the areas don't overlap.
    725  */
    726 static void
    727 xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd,
    728     int old_count, int new_count, int final)
    729 {
    730 	pd_entry_t *pdtpe, *pde, *pte;
    731 	pd_entry_t *bt_pgd;
    732 	paddr_t addr;
    733 	vaddr_t page, avail, map_end;
    734 	int i;
    735 	extern char __rodata_start;
    736 	extern char __data_start;
    737 	extern char __kernel_end;
    738 	extern char *early_zerop; /* from pmap.c */
    739 	pt_entry_t pg_nx;
    740 	u_int descs[4];
    741 
    742 	__PRINTK(("xen_bootstrap_tables(%#" PRIxVADDR ", %#" PRIxVADDR ","
    743 	    " %d, %d)\n",
    744 	    old_pgd, new_pgd, old_count, new_count));
    745 
    746 	/*
    747 	 * Set the NX/XD bit, if available. descs[3] = %edx.
    748 	 */
    749 	x86_cpuid(0x80000001, descs);
    750 	pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
    751 
    752 	/*
    753 	 * size of R/W area after kernel text:
    754 	 *     xencons_interface (if present)
    755 	 *     xenstore_interface (if present)
    756 	 *     table pages (new_count + l2_4_count entries)
    757 	 * extra mappings (only when final is true):
    758 	 *     UAREA
    759 	 *     dummy user PGD (x86_64 only)/gdt page (i386 only)
    760 	 *     HYPERVISOR_shared_info
    761 	 *     early_zerop
    762 	 *     ISA I/O mem (if needed)
    763 	 */
    764 	map_end = new_pgd + ((new_count + l2_4_count) * PAGE_SIZE);
    765 	if (final) {
    766 		map_end += (UPAGES + 1) * PAGE_SIZE;
    767 		HYPERVISOR_shared_info = (shared_info_t *)map_end;
    768 		map_end += PAGE_SIZE;
    769 		early_zerop = (char *)map_end;
    770 		map_end += PAGE_SIZE;
    771 	}
    772 
    773 	/*
    774 	 * we always set atdevbase, as it's used by init386 to find the first
    775 	 * available VA. map_end is updated only if we are dom0, so
    776 	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
    777 	 * this case.
    778 	 */
    779 	if (final)
    780 		atdevbase = map_end;
    781 #ifdef DOM0OPS
    782 	if (final && xendomain_is_dom0()) {
    783 		/* ISA I/O mem */
    784 		map_end += IOM_SIZE;
    785 	}
    786 #endif /* DOM0OPS */
    787 
    788 	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
    789 	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
    790 	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
    791 
    792 	/*
    793 	 * Create bootstrap page tables. What we need:
    794 	 * - a PGD (level 4)
    795 	 * - a PDTPE (level 3)
    796 	 * - a PDE (level 2)
    797 	 * - some PTEs (level 1)
    798 	 */
    799 
    800 	bt_pgd = (pd_entry_t *)new_pgd;
    801 	memset(bt_pgd, 0, PAGE_SIZE);
    802 	avail = new_pgd + PAGE_SIZE;
    803 
    804 #if PTP_LEVELS > 3
    805 	/* per-cpu L4 PD */
    806 	pd_entry_t *bt_cpu_pgd = bt_pgd;
    807 	/* pmap_kernel() "shadow" L4 PD */
    808 	bt_pgd = (pd_entry_t *)avail;
    809 	memset(bt_pgd, 0, PAGE_SIZE);
    810 	avail += PAGE_SIZE;
    811 
    812 	/* Install level 3 */
    813 	pdtpe = (pd_entry_t *)avail;
    814 	memset(pdtpe, 0, PAGE_SIZE);
    815 	avail += PAGE_SIZE;
    816 
    817 	addr = ((u_long)pdtpe) - KERNBASE;
    818 	bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
    819 	    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
    820 
    821 	__PRINTK(("L3 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
    822 	    " -> L4[%#x]\n",
    823 	    pdtpe, addr, bt_pgd[pl4_pi(KERNTEXTOFF)], pl4_pi(KERNTEXTOFF)));
    824 #else
    825 	pdtpe = bt_pgd;
    826 #endif /* PTP_LEVELS > 3 */
    827 
    828 #if PTP_LEVELS > 2
    829 	/* Level 2 */
    830 	pde = (pd_entry_t *)avail;
    831 	memset(pde, 0, PAGE_SIZE);
    832 	avail += PAGE_SIZE;
    833 
    834 	addr = ((u_long)pde) - KERNBASE;
    835 	pdtpe[pl3_pi(KERNTEXTOFF)] =
    836 	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
    837 	__PRINTK(("L2 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
    838 	    " -> L3[%#x]\n",
    839 	    pde, addr, pdtpe[pl3_pi(KERNTEXTOFF)], pl3_pi(KERNTEXTOFF)));
    840 #elif defined(PAE)
    841 	/* our PAE-style level 2: 5 contigous pages (4 L2 + 1 shadow) */
    842 	pde = (pd_entry_t *)avail;
    843 	memset(pde, 0, PAGE_SIZE * 5);
    844 	avail += PAGE_SIZE * 5;
    845 	addr = ((u_long)pde) - KERNBASE;
    846 	/*
    847 	 * enter L2 pages in the L3.
    848 	 * The real L2 kernel PD will be the last one (so that
    849 	 * pde[L2_SLOT_KERN] always point to the shadow).
    850 	 */
    851 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    852 		/*
    853 		 * Xen doesn't want R/W mappings in L3 entries, it'll add it
    854 		 * itself.
    855 		 */
    856 		pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    857 		__PRINTK(("L2 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
    858 		    " -> L3[%#x]\n",
    859 		    (vaddr_t)pde + PAGE_SIZE * i, addr, pdtpe[i], i));
    860 	}
    861 	addr += PAGE_SIZE;
    862 	pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    863 	__PRINTK(("L2 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
    864 	    " -> L3[%#x]\n",
    865 	    (vaddr_t)pde + PAGE_SIZE * 4, addr, pdtpe[3], 3));
    866 #else /* PAE */
    867 	pde = bt_pgd;
    868 #endif /* PTP_LEVELS > 2 */
    869 
    870 	/* Level 1 */
    871 	page = KERNTEXTOFF;
    872 	for (i = 0; i < new_count; i ++) {
    873 		vaddr_t cur_page = page;
    874 
    875 		pte = (pd_entry_t *)avail;
    876 		avail += PAGE_SIZE;
    877 
    878 		memset(pte, 0, PAGE_SIZE);
    879 		while (pl2_pi(page) == pl2_pi(cur_page)) {
    880 			if (page >= map_end) {
    881 				/* not mapped at all */
    882 				pte[pl1_pi(page)] = 0;
    883 				page += PAGE_SIZE;
    884 				continue;
    885 			}
    886 			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
    887 			if (page == (vaddr_t)HYPERVISOR_shared_info) {
    888 				pte[pl1_pi(page)] = xen_start_info.shared_info;
    889 				__PRINTK(("HYPERVISOR_shared_info "
    890 				    "va %#lx pte %#" PRIxPADDR "\n",
    891 				    HYPERVISOR_shared_info, pte[pl1_pi(page)]));
    892 			}
    893 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    894 			    == xen_start_info.console.domU.mfn) {
    895 				xencons_interface = (void *)page;
    896 				pte[pl1_pi(page)] = xen_start_info.console_mfn;
    897 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    898 				__PRINTK(("xencons_interface "
    899 				    "va %#lx pte %#" PRIxPADDR "\n",
    900 				    xencons_interface, pte[pl1_pi(page)]));
    901 			}
    902 			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
    903 			    == xen_start_info.store_mfn) {
    904 				xenstore_interface = (void *)page;
    905 				pte[pl1_pi(page)] = xen_start_info.store_mfn;
    906 				pte[pl1_pi(page)] <<= PAGE_SHIFT;
    907 				__PRINTK(("xenstore_interface "
    908 				    "va %#lx pte %#" PRIxPADDR "\n",
    909 				    xenstore_interface, pte[pl1_pi(page)]));
    910 			}
    911 #ifdef DOM0OPS
    912 			if (page >= (vaddr_t)atdevbase &&
    913 			    page < (vaddr_t)atdevbase + IOM_SIZE) {
    914 				pte[pl1_pi(page)] =
    915 				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
    916 				pte[pl1_pi(page)] |= pg_nx;
    917 			}
    918 #endif
    919 
    920 			pte[pl1_pi(page)] |= PG_k | PG_V;
    921 			if (page < (vaddr_t)&__rodata_start) {
    922 				/* Map the kernel text RX. */
    923 				pte[pl1_pi(page)] |= PG_RO;
    924 			} else if (page >= (vaddr_t)&__rodata_start &&
    925 			    page < (vaddr_t)&__data_start) {
    926 				/* Map the kernel rodata R. */
    927 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    928 			} else if (page >= old_pgd &&
    929 			    page < old_pgd + (old_count * PAGE_SIZE)) {
    930 				/* Map the old page tables R. */
    931 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    932 			} else if (page >= new_pgd &&
    933 			    page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
    934 				/* Map the new page tables R. */
    935 				pte[pl1_pi(page)] |= PG_RO | pg_nx;
    936 #ifdef i386
    937 			} else if (page == (vaddr_t)tmpgdt) {
    938 				/*
    939 				 * Map bootstrap gdt R/O. Later, we
    940 				 * will re-add this to page to uvm
    941 				 * after making it writable.
    942 				 */
    943 
    944 				pte[pl1_pi(page)] = 0;
    945 				page += PAGE_SIZE;
    946 				continue;
    947 #endif /* i386 */
    948 			} else if (page >= (vaddr_t)&__data_start &&
    949 			    page < (vaddr_t)&__kernel_end) {
    950 				/* Map the kernel data+bss RW. */
    951 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    952 			} else {
    953 				/* Map the page RW. */
    954 				pte[pl1_pi(page)] |= PG_RW | pg_nx;
    955 			}
    956 
    957 			if ((page  >= old_pgd && page < old_pgd + (old_count * PAGE_SIZE))
    958 			    || page >= new_pgd) {
    959 				__PRINTK(("va %#lx pa %#lx "
    960 				    "entry 0x%" PRIxPADDR " -> L1[%#x]\n",
    961 				    page, page - KERNBASE,
    962 				    pte[pl1_pi(page)], pl1_pi(page)));
    963 			}
    964 			page += PAGE_SIZE;
    965 		}
    966 
    967 		addr = ((u_long) pte) - KERNBASE;
    968 		pde[pl2_pi(cur_page)] =
    969 		    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
    970 		__PRINTK(("L1 va %#lx pa %#" PRIxPADDR " entry %#" PRIxPADDR
    971 		    " -> L2[%#x]\n",
    972 		    pte, addr, pde[pl2_pi(cur_page)], pl2_pi(cur_page)));
    973 		/* Mark readonly */
    974 		xen_bt_set_readonly((vaddr_t) pte);
    975 	}
    976 
    977 	/* Install recursive page tables mapping */
    978 #ifdef PAE
    979 	/*
    980 	 * we need a shadow page for the kernel's L2 page
    981 	 * The real L2 kernel PD will be the last one (so that
    982 	 * pde[L2_SLOT_KERN] always point to the shadow.
    983 	 */
    984 	memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
    985 	cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
    986 	cpu_info_primary.ci_kpm_pdirpa =
    987 	    (vaddr_t) cpu_info_primary.ci_kpm_pdir - KERNBASE;
    988 
    989 	/*
    990 	 * We don't enter a recursive entry from the L3 PD. Instead,
    991 	 * we enter the first 4 L2 pages, which includes the kernel's L2
    992 	 * shadow. But we have to entrer the shadow after switching
    993 	 * %cr3, or Xen will refcount some PTE with the wrong type.
    994 	 */
    995 	addr = (u_long)pde - KERNBASE;
    996 	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
    997 		pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
    998 		__PRINTK(("pde[%d] va %#" PRIxVADDR " pa %#" PRIxPADDR
    999 		    " entry %#" PRIxPADDR "\n",
   1000 		    (int)(PDIR_SLOT_PTE + i), pde + PAGE_SIZE * i,
   1001 		    addr, pde[PDIR_SLOT_PTE + i]));
   1002 	}
   1003 #if 0
   1004 	addr += PAGE_SIZE; /* point to shadow L2 */
   1005 	pde[PDIR_SLOT_PTE + 3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
   1006 	__PRINTK(("pde[%d] va 0x%lx pa 0x%lx entry 0x%" PRIx64 "\n",
   1007 	    (int)(PDIR_SLOT_PTE + 3), pde + PAGE_SIZE * 4, (long)addr,
   1008 	    (int64_t)pde[PDIR_SLOT_PTE + 3]));
   1009 #endif
   1010 	/* Mark tables RO, and pin the kernel's shadow as L2 */
   1011 	addr = (u_long)pde - KERNBASE;
   1012 	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
   1013 		xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
   1014 		if (i == 2 || i == 3)
   1015 			continue;
   1016 #if 0
   1017 		__PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", i, (int64_t)addr));
   1018 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
   1019 #endif
   1020 	}
   1021 	if (final) {
   1022 		addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
   1023 		__PRINTK(("pin L2 %d addr %#" PRIxPADDR "\n", 2, addr));
   1024 		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
   1025 	}
   1026 #if 0
   1027 	addr = (u_long)pde - KERNBASE + 2 * PAGE_SIZE;
   1028 	__PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", 2, (int64_t)addr));
   1029 	xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
   1030 #endif
   1031 #else /* PAE */
   1032 
   1033 	/* Recursive entry in pmap_kernel(). */
   1034 	bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
   1035 	    | PG_k | PG_RO | PG_V | pg_nx;
   1036 #ifdef __x86_64__
   1037 	/* Recursive entry in higher-level per-cpu PD. */
   1038 	bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
   1039 	    | PG_k | PG_RO | PG_V | pg_nx;
   1040 #endif
   1041 	__PRINTK(("bt_pgd[PDIR_SLOT_PTE] va %#" PRIxVADDR " pa %#" PRIxPADDR
   1042 	    " entry %#" PRIxPADDR "\n", new_pgd, (paddr_t)new_pgd - KERNBASE,
   1043 	    bt_pgd[PDIR_SLOT_PTE]));
   1044 
   1045 	/* Mark tables RO */
   1046 	xen_bt_set_readonly((vaddr_t) pde);
   1047 #endif
   1048 #if PTP_LEVELS > 2 || defined(PAE)
   1049 	xen_bt_set_readonly((vaddr_t) pdtpe);
   1050 #endif
   1051 #if PTP_LEVELS > 3
   1052 	xen_bt_set_readonly(new_pgd);
   1053 #endif
   1054 
   1055 	/* Pin the PGD */
   1056 	__PRINTK(("pin PGD: %"PRIxVADDR"\n", new_pgd - KERNBASE));
   1057 #ifdef __x86_64__
   1058 	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1059 #elif PAE
   1060 	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1061 #else
   1062 	xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
   1063 #endif
   1064 
   1065 	/* Save phys. addr of PDP, for libkvm. */
   1066 #ifdef PAE
   1067 	PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
   1068 #else
   1069 	PDPpaddr = (u_long)bt_pgd - KERNBASE;
   1070 #endif
   1071 
   1072 	/* Switch to new tables */
   1073 	__PRINTK(("switch to PGD\n"));
   1074 	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
   1075 	__PRINTK(("bt_pgd[PDIR_SLOT_PTE] now entry %#" PRIxPADDR "\n",
   1076 	    bt_pgd[PDIR_SLOT_PTE]));
   1077 
   1078 #ifdef PAE
   1079 	if (final) {
   1080 		/* save the address of the L3 page */
   1081 		cpu_info_primary.ci_pae_l3_pdir = pdtpe;
   1082 		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
   1083 
   1084 		/* now enter kernel's PTE mappings */
   1085 		addr =  (u_long)pde - KERNBASE + PAGE_SIZE * 3;
   1086 		xpq_queue_pte_update(
   1087 		    xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
   1088 		    xpmap_ptom_masked(addr) | PG_k | PG_V);
   1089 		xpq_flush_queue();
   1090 	}
   1091 #elif defined(__x86_64__)
   1092 	if (final) {
   1093 		/* save the address of the real per-cpu L4 pgd page */
   1094 		cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
   1095 		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t) bt_cpu_pgd - KERNBASE);
   1096 	}
   1097 #endif
   1098 	__USE(pdtpe);
   1099 
   1100 	/* Now we can safely reclaim space taken by old tables */
   1101 
   1102 	__PRINTK(("unpin old PGD\n"));
   1103 	/* Unpin old PGD */
   1104 	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
   1105 	/* Mark old tables RW */
   1106 	page = old_pgd;
   1107 	addr = (paddr_t) pde[pl2_pi(page)] & PG_FRAME;
   1108 	addr = xpmap_mtop(addr);
   1109 	pte = (pd_entry_t *) ((u_long)addr + KERNBASE);
   1110 	pte += pl1_pi(page);
   1111 	__PRINTK(("*pde %#" PRIxPADDR " addr %#" PRIxPADDR " pte %#lx\n",
   1112 	    pde[pl2_pi(page)], addr, (long)pte));
   1113 	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
   1114 		addr = xpmap_ptom(((u_long) pte) - KERNBASE);
   1115 		XENPRINTK(("addr %#" PRIxPADDR " pte %#lx "
   1116 		   "*pte %#" PRIxPADDR "\n",
   1117 		   addr, (long)pte, *pte));
   1118 		xpq_queue_pte_update(addr, *pte | PG_RW);
   1119 		page += PAGE_SIZE;
   1120 		/*
   1121 		 * Our PTEs are contiguous so it's safe to just "++" here.
   1122 		 */
   1123 		pte++;
   1124 	}
   1125 	xpq_flush_queue();
   1126 }
   1127 
   1128 
   1129 /*
   1130  * Bootstrap helper functions
   1131  */
   1132 
   1133 /*
   1134  * Mark a page readonly
   1135  * XXX: assuming vaddr = paddr + KERNBASE
   1136  */
   1137 
   1138 static void
   1139 xen_bt_set_readonly (vaddr_t page)
   1140 {
   1141 	pt_entry_t entry;
   1142 
   1143 	entry = xpmap_ptom_masked(page - KERNBASE);
   1144 	entry |= PG_k | PG_V;
   1145 
   1146 	HYPERVISOR_update_va_mapping (page, entry, UVMF_INVLPG);
   1147 }
   1148 
   1149 #ifdef __x86_64__
   1150 void
   1151 xen_set_user_pgd(paddr_t page)
   1152 {
   1153 	struct mmuext_op op;
   1154 	int s = splvm();
   1155 
   1156 	xpq_flush_queue();
   1157 	op.cmd = MMUEXT_NEW_USER_BASEPTR;
   1158 	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
   1159         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
   1160 		panic("xen_set_user_pgd: failed to install new user page"
   1161 			" directory %#" PRIxPADDR, page);
   1162 	splx(s);
   1163 }
   1164 #endif /* __x86_64__ */
   1165